(19)
(11)EP 3 412 211 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 18175702.2

(22)Date of filing:  04.06.2018
(51)International Patent Classification (IPC): 
A61B 6/10(2006.01)
G02C 7/10(2006.01)
H04N 5/445(2011.01)
G01T 1/02(2006.01)
A61B 34/00(2016.01)
A61B 6/00(2006.01)
G21F 1/08(2006.01)
G02B 27/01(2006.01)
A61F 9/02(2006.01)

(54)

AUGMENTED REALITY GOGGLES HAVING X-RAY PROTECTION

BRILLE FÜR ERWEITERTE REALITÄT MIT RÖNTGENSTRAHLENSCHUTZ

LUNETTES DE RÉALITÉ AUGMENTÉE DE PROTECTION CONTRE LES RAYONS X


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 05.06.2017 US 201715613496

(43)Date of publication of application:
12.12.2018 Bulletin 2018/50

(73)Proprietor: Biosense Webster (Israel) Ltd.
Yokneam 2066717 (IL)

(72)Inventor:
  • ALTMANN, Andres Claudio
    2066717 Yokneam (IL)

(74)Representative: Small, Gary James 
Carpmaels & Ransford LLP One Southampton Row
London WC1B 5HA
London WC1B 5HA (GB)


(56)References cited: : 
EP-A1- 3 318 214
US-A- 5 740 222
US-A1- 2015 363 979
WO-A1-2018/134172
US-A1- 2015 335 298
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention relates generally to medical vision accessories, and particularly to augmented reality goggles having X-ray protection.

    BACKGROUND OF THE INVENTION



    [0002] Eye glasses that are protective against X-ray radiation may be used by physicians in various medical applications.

    [0003] For example, U.S. Patent 5,140,710 describes an eye shield having two layers of X-radiation protective material. The shield comprises a metalized thin layer that permits the substantial transmission of accompanying visible light. Beneath the metalized thin layer is a lead layer that allows the passage of limited amounts of visible light yet functions to absorb effectively X-radiation.

    [0004] Chinese utility model CN202060967U describes a multifunctional vision protection health care eyeshade, which comprises an eyeshade body. Two ends of the eyeshade body are connected with a lacing, and the eyeshade body is provided with an inwards concave cavity and a cover body covered on the cavity.

    [0005] U.S. Patent 5,422,684 describes a form of protective eyewear having retractable eye shields which protect the wearer eyes from injury from mechanical, chemical or radiation hazards. The eye shields have an extended position and a retracted position.

    [0006] EP 3318214 A1 describes a medical imaging device comprising at least one pair of mixed reality smartglasses.

    [0007] WO 2018/134172 A1 describes a system for radiation dose monitoring in a medical environment including an imaging device for directing radiation onto a patient and a radiation dose measuring device for measuring a radiation dose of at least one medical personnel within the medical environment.

    [0008] US 5740222 describes a radiation computed tomography apparatus including a couch, a top board slidably arranged on the couch and a gantry.

    [0009] US 2015/0363979 A1 describes a head mounted display which allows a user to visually recognise a virtual image and external scenery.

    SUMMARY OF THE INVENTION



    [0010] An embodiment of the present invention that is described herein provides a personal display apparatus as defined by independent claim 1.

    [0011] In some embodiments, the electronic circuitry includes a transceiver, which is configured to exchange the display signals and the control signal with an external system. In other embodiments, the external system includes an imaging system. In yet other embodiments, the dual-use plate includes nanoparticles, which are configured to block the at least part of X-ray radiation.

    [0012] In an embodiment, the nanoparticles include lead or cerium. In another embodiment, the dual-use plate includes at least a film of material, which is configured to block the at least part of X-ray radiation. In yet another embodiment, the electronic circuitry is configured to issue an alert in case the level of the X-ray radiation measured by the detector exceeds a predefined threshold.

    [0013] In some embodiments, the scene presents an organ of a patient in which the user carries out a medical procedure. In other embodiments, the information includes at least a marker of a medical apparatus applied on the organ. In yet other embodiments, the information includes at least an anatomical image of at least part of the organ.

    [0014] There is additionally provided, in accordance with an embodiment of the present invention, a method for producing a personal display apparatus, the method being defined in independent claim 10.

    [0015] The present invention will be more fully understood from the following detailed description of the embodiments thereof, taken together with the drawings in which:

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0016] 

    Fig. 1 is a schematic, pictorial illustration of a surgical system, in accordance with an embodiment of the present invention;

    Fig. 2A is a schematic, pictorial illustration of goggles used in a medical procedure, in accordance with an embodiment of the present invention; and

    Fig. 2B is a block diagram that schematically illustrates goggles used in a medical procedure, in accordance with an embodiment of the present invention.


    DETAILED DESCRIPTION OF EMBODIMENTS


    OVERVIEW



    [0017] X-ray systems, such as Fluoroscopes, are used for imaging patient organs in various medical diagnostics and surgical procedures. A physician that carries out such procedures may be exposed to excessive doses of X-ray radiation on a daily basis, and therefore may use protection measures against the radiation, such as a radiopaque apron, a toroid neck protection or an X-ray eye shield for protecting eye tissue from the radiation.

    [0018] Embodiments of the present invention that are described hereinbelow provide methods and apparatus in which eye protection from the X-ray radiation, and a display used to carry out the procedure are combined.

    [0019] In some embodiments, a personal display apparatus, such as goggles, is worn by the physician who may be exposed to X-ray radiation. The goggles comprise a dual-use plate, which is configured to (i) display information using augmented reality techniques, and (ii) block at least part of the X-ray radiation from passing through the plate and reaching the physician eye tissue.

    [0020] In an embodiment, the goggles comprise a material that blocks at least part of the X-ray radiation. The material may be incased in the goggles, e.g., in a form of particles, or applied as a film on the goggles surface.

    [0021] In some embodiments, the physician views a scene, such as an organ of a patient, while relevant information is displayed on the dual-use plate of the goggles, overlaid on the scene. The displayed information may comprise sectional images of the organ in question, markers of medical apparatus, or any other information relevant for the physician during the procedure.

    [0022] In some embodiments, the goggles comprise an X-ray detector, which is configured to measure a level of the X-ray radiation in the vicinity of the goggles.

    [0023] In some embodiments, the goggles comprise electronic circuitry, which is electrically connected to the plate and to the detector. The circuitry is configured to exchange display signals with the plate so as to display the information to the physician, and to send a control signal indicative of the level of the X-ray radiation measured by the detector.

    [0024] The disclosed techniques enable the physician to focus his/her gaze and attention on the patient during the entire procedure, while protecting his/her eyes from the X-ray radiation and simultaneously displaying information required to carry out the procedure successfully.

    SYSTEM DESCRIPTION



    [0025] Fig. 1 is a schematic, pictorial illustration of a surgical system 20, in accordance with an embodiment of the present invention. In some embodiments, system 20 may be applied in a minimally invasive procedure, as shown in Fig. 1, in which a physician 40 carries-out the procedure using a suitable catheter 22 and an image 44 of a heart (or any other organ in question) displayed on a display 46 of a patient 26.

    [0026] In other embodiments, system 20 may be applied in any other medical procedure, such as an open-heart surgery, in which physician 40 has direct visibility of the patient heart. In these embodiment, physician 40 may use various suitable surgical tools, instead of, or in addition to, catheter 22.

    [0027] In some embodiments, system 20 comprises a fluoroscopy imaging system 36, which is configured to produce X-ray images of the organ in question (e.g., heart) of patient 26. System 36 comprises an x-ray source 52 and an X-ray detector 54, which are mounted on a C-shaped arm 62. X-ray source 52 is configured to irradiate X-rays 70 on patient 26 lying on a movable table 28. Detector 54, which is located below table 28, is configured to image X-rays 70 passing through patient 26.

    [0028] In some embodiments, system 20 comprises a personal display, such as goggles 30, worn by physician 40. Goggles 30 are configured to partially or fully block X-rays 70 from reaching the eyes of physician 40, and to exchange display signals with an operating console 24 of system 20, so as to display information overlaid on a scene viewed by physician 40. Goggles 30 are further depicted in detail in Figs. 2A and 2B below.

    [0029] The terms "goggles" and "glasses" in the present disclosure are used interchangeably and refer to goggles 30 shown in Fig. 1, which are protective glasses used by physician 40.

    [0030] In some embodiment, console 24 comprises a transceiver 50, which is configured to exchange wireless signals 60 with goggles 30. In an embodiment, signals 60 comprise display signals exchanged with electronic circuitry (shown in Figs. 2A and 2B) of goggles 30. In another embodiment, signals 60 may comprise communication signals that are indicative of X-ray radiation levels measured by a detector (shown in Fig. 2A) mounted on goggles 30, and transmitted from the electronic circuitry of goggles 30 to transceiver 50.

    [0031] In some embodiments, console 24 comprises a driver circuit 34, which drives fluoroscopy imaging system 36 via a cable 56, and is further configured to receive the X-ray radiation signals measured by detector 54 of system 36.

    [0032] In some embodiments, console 24 comprises a processor 42, typically a general-purpose computer, with suitable front end and interface circuits for receiving signals from multiple sources, such as circuit 34, transceiver 50 and catheter 22.

    [0033] In some embodiments, processor 42 is configured to produce imaging signals that are indicative of the anatomy and medical tools applied in the patient heart, based on the level of X-ray radiation measured by detector 54 of system 36. The medical tools may comprise catheter 22 in case of a minimally invasive procedure, and/or any suitable surgical tool used, for example, in an open-heart surgery.

    [0034] Processor 42 may be programmed in software to carry out the functions that are used by the system, and the processor stores data for the software in a memory (not shown). The software may be downloaded to console 24 in electronic form, over a network, for example, or it may be provided on non-transitory tangible media, such as optical, magnetic or electronic memory media. Alternatively, some or all of the functions of processor 42 may be carried out by dedicated or programmable digital hardware components.

    USING AUGMENTED REALITY GOGGLES HAVING X-RAY PROTECTION IN A SURGICAL PROCEDURE



    [0035] Fig. 2A is a schematic, pictorial illustration of goggles 30, in accordance with an embodiment of the present invention. In some embodiments, goggles 30 comprise a transparent plate 64, made from plastic or any other suitable material. The plate is mounted on a frame 68 made from metal of any other suitable material.

    [0036] In some embodiments, goggles 30 comprise a material 72, which is applied across the entire area of plate 64, and is configured to prevent passage of at least part of the radiation of X-ray 70 from reaching into the eye tissue of physician 40.

    [0037] In an embodiment, material 72 may comprise nanoparticles of cerium oxide (CeO2), and/or plumbic oxide (PbO), and/or any other suitable material distributed uniformly (or in another suitable manner) and incased in plate 64 of goggles 30.

    [0038] Alternatively or additionally, material 72 may be applied as one or more films on an external surface of goggles 30, and/or as a layer embedded within plate 64.

    [0039] Note that applied material 72 does not have a significant impact the transparency or of plate 64.

    [0040] In some embodiments, goggles 30 comprise two displays 74, one for positioning against each eye of physician 40. In other embodiments, google 30 may comprise any other suitable number of displays 74, for example, a single display positioned in front of one selected eye.

    [0041] During the medical procedure, the gaze of physician 40 is directed on a distant scene, such as image 44 (in Fig. 1) in case of a minimally invasive procedure, or directly on the patient heart in an open-heart surgery. In some embodiments, displays 74 are configured to display information to be viewed by physician 40 overlaid on the scene.

    [0042] In the example of Fig. 2A, a sectional view of a selected slice of the patient heart is displayed on both displays 74. In some embodiments, the selected slice is acquired by imaging system 36 and may comprise a display of catheter 22 within the patient heart.

    [0043] In some embodiments, goggles 30 comprise a detector 66, and electronic circuitry 76, which are mounted on frame 68 or otherwise coupled to plate 64 in any other suitable manner.

    [0044] In an embodiment, detector 66 is configured to measure a level of the radiation of X-rays 70 impinging on goggles 30. In an embodiment, electronic circuitry 76 is mounted in close proximity to detector 66 and is configured to receive the level of the X-ray radiation measured by detector 66. Circuitry 76 is depicted in detail in Fig. 2B below.

    [0045] Fig. 2B is a block diagram that schematically illustrates circuitry 76 of goggles 30, in accordance with an embodiment of the present invention. In some embodiments, circuitry 76 comprises a processor 80 and a transceiver 82. In some embodiments, transceiver 82 connects to an antenna 78, and is configured to exchange wireless signals 60 (via antenna 78) with transceiver 50 of console 24. In an embodiment, signals 60 may comprise display signals exchanged between processor 42 of console 24 and processor 80 of goggles 30.

    [0046] For example, processor 80 is configured to receive the display signals comprising the sectional view of the patient heart acquired by system 36, and, based on the display signals, to display the sectional view on displays 74 of goggle 30 as depicted in Fig. 2A. In this embodiment, physician 40 can see the sectional view overlaid on a selected scene, such as image 44 (in case of a minimally invasive procedure) or directly on the heart of patient 26 during an open-heart surgery.

    [0047] In another embodiment, processor 80 is configured to receive measurements of X-ray radiation measured by detector 66 (e.g., level of X-ray radiation) and to produce a control signal based on the radiation measurements. In this embodiment, the control signal is transmitted, via transceivers 82 and 50, to processor 42 that may prompt physician 40 to stop the operation of fluoroscopy imaging system 36 when the measured level of radiation exceeds a predefined limit. In an alternative embodiment, processor 80 may hold a predefined threshold of the level of the X-ray radiation. In this embodiment, processor 80 is configured to issue an alert (e.g., an audible alarm) to physician 40 in case the level of the X-ray radiation measured by detector 66 exceeds the predefined threshold.

    [0048] In alternative embodiments, goggles 30 are connected to console 24 using a communication cable (not shown) instead of or in addition to antenna 78. In these embodiments, the information and control signals are exchanged between goggles 30 and console 24, e.g., through the communication cable instead of wirelessly.

    [0049] Processor 80 typically comprises a general-purpose processor, which is programmed in software to carry out the functions described herein. The software may be downloaded to the processor in electronic form, over a network, for example, or it may, alternatively or additionally, be provided and/or stored on non-transitory tangible media, such as magnetic, optical, or electronic memory.

    [0050] Although the embodiments described herein mainly address cardiac procedures, the methods and systems described herein can also be used in other applications, such as in any medical procedure that applies X-ray imaging. Furthermore, the methods and systems described herein can also be used in any medical device that may be exposed to X-ray radiation when navigating a tool within the patient body during a medical treatment, such as but not limited to, orthopedic surgery, ablation procedure in the liver, or ablation of a tumor in the lung.

    [0051] It will thus be appreciated that the embodiments described above are cited by way of example, and that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention is defined by the claims.


    Claims

    1. A personal display apparatus (30), comprising:

    a frame (68);

    a dual-use plate (64) mounted on the frame (68), and which is configured to:

    be worn by a user (40) while the user is viewing a scene;

    block, at least partially, X-ray radiation from passing through the plate and reaching an eye of the user; and

    display information to be viewed by the user overlaid on the scene;

    a detector (66), which is mounted on the frame and is configured to measure a level of the X-ray radiation; and

    electronic circuitry (76), which is connected to the plate (64) and to the detector (66), and is configured to exchange display signals with the plate (64) so as to display the information, and to send a control signal indicative of the level of the X-ray radiation measured by the detector.


     
    2. The apparatus according to claim 1, wherein the electronic circuitry (76) comprises a transceiver (82), which is configured to exchange the display signals and the control signal with an external system (20).
     
    3. The apparatus according to claim 2, wherein the external system (20) comprises an imaging system (36).
     
    4. The apparatus according to claim 1, wherein the dual-use plate (64) comprises nanoparticles, which are configured to block the at least part of X-ray radiation.
     
    5. The apparatus according to claim 1, wherein the dual-use plate (64) comprises at least a film of material, which is configured to block the at least part of X-ray radiation.
     
    6. The apparatus according to claim 1, wherein the electronic circuitry (76) is configured to issue an alert in case the level of the X-ray radiation measured by the detector (66) exceeds a predefined threshold.
     
    7. The apparatus according to claim 1, wherein the scene presents an organ of a patient in which the user carries out a medical procedure.
     
    8. The apparatus according to claim 7, wherein the information comprises at least a marker of a medical apparatus applied on the organ.
     
    9. The apparatus according to claim 7, wherein the information comprises at least an anatomical image of at least part of the organ.
     
    10. A method for producing a personal display apparatus (30), the method comprising:

    providing a frame (68),

    providing a dual-use plate (64) mounted on the frame (68), to be worn by a user (40) while the user is viewing a scene, wherein the plate (64) is capable of (i) blocking, at least partially, X-ray radiation from passing through the plate (64) and reaching an eye of the user (40), and (ii) displaying information to be viewed by the user overlaid on the scene;

    providing a detector (66), mounted on the frame (68), that measures a level of the X-ray radiation; and

    connecting to the plate (64) and to the detector (66), electronic circuitry (76) for exchanging display signals with the plate (64), and for sending a control signal indicative of the level of the X-ray radiation measured by the detector (66).


     
    11. The method according to claim 10, wherein the electronic circuitry (76) comprises a transceiver (82) for exchanging the display signals and the control signal with an external system (20).
     
    12. The method according to claim 11, wherein the transceiver (82) comprises a wireless transceiver.
     
    13. The method according to claim 10, wherein the dual-use plate (64) comprises nanoparticles for blocking the at least part of X-ray radiation.
     
    14. The apparatus according to claim 4 or the method according to claim 13, wherein the nanoparticles comprise lead or cerium.
     
    15. The method according to claim 10, wherein the dual-use plate (64) comprises at least a film of material for blocking the at least part of X-ray radiation.
     


    Ansprüche

    1. Persönliche Anzeigevorrichtung (30), die Folgendes umfasst:

    einen Rahmen (68);

    eine Platte (64) zur zweifachen Verwendung, die auf dem Rahmen (68) angebracht ist und die konfiguriert ist zum:

    Getragen-Werden durch einen Anwender (40), während der Anwender eine Szene betrachtet;

    Sperren zumindest teilweise, dass Röntgenstrahlung durch die Platte hindurchtritt und ein Auge des Anwenders erreicht; und

    Anzeigen von Informationen, die durch den Anwender betrachtet werden sollen, auf der Szene überlagert;

    einen Detektor (66), der auf dem Rahmen angebracht ist und konfiguriert ist, einen Pegel der Röntgenstrahlung zu messen; und

    eine elektronische Schaltungsanordnung (76), die mit der Platte (64) und dem Detektor (66) verbunden ist und konfiguriert ist, mit der Platte (64) Anzeigesignale auszutauschen, um die Informationen anzuzeigen, und ein Steuersignal zu senden, das den Pegel der Röntgenstrahlung angibt, der durch den Detektor gemessen wird.


     
    2. Vorrichtung nach Anspruch 1, wobei die elektronische Schaltungsanordnung (76) eine Sende/Empfangs-Einrichtung (82) umfasst, die konfiguriert ist, die Anzeigesignale und das Steuersignal mit einem externen System (20) auszutauschen.
     
    3. Vorrichtung nach Anspruch 2, wobei das externe System (20) ein Bildgebungssystem (36) umfasst.
     
    4. Vorrichtung nach Anspruch 1, wobei die Platte (64) zur zweifachen Verwendung Nanoteilchen umfasst, die konfiguriert sind, zumindest den Anteil der Röntgenstrahlung zu sperren.
     
    5. Vorrichtung nach Anspruch 1, wobei die Platte (64) zur zweifachen Verwendung mindestens einen Film aus einem Material, das konfiguriert ist, zumindest den Anteil der Röntgenstrahlung zu sperren, umfasst.
     
    6. Vorrichtung nach Anspruch 1, wobei die elektronische Schaltungsanordnung (76) konfiguriert ist, einen Alarm auszugeben, wenn der Pegel der Röntgenstrahlung, der durch den Detektor (66) gemessen wird, einen vorgegebenen Schwellenwert überschreitet.
     
    7. Vorrichtung nach Anspruch 1, wobei die Szene ein Organ eines Patienten darstellt, in dem der Anwender einen medizinischen Vorgang ausführt.
     
    8. Vorrichtung nach Anspruch 7, wobei die Informationen mindestens einen Markierer einer medizinischen Vorrichtung, die auf das Organ angewendet wird, umfassen.
     
    9. Vorrichtung nach Anspruch 7, wobei die Informationen mindestens ein anatomisches Bild zumindest eines Abschnitts des Organs umfassen.
     
    10. Verfahren zum Erzeugen einer persönlichen Anzeigevorrichtung (30), wobei das Verfahren Folgendes umfasst:

    Bereitstellen eines Rahmens (68),

    Bereitstellen einer Platte (64) zur zweifachen Verwendung, die auf dem Rahmen (68) angebracht ist, um durch einen Anwender (40) getragen zu werden, während der Anwender eine Szene betrachtet, wobei die Platte (64) (i) zumindest teilweise sperren kann, dass Röntgenstrahlung durch die Platte (64) hindurchtritt und ein Auge des Anwenders (40) erreicht, und (ii) Informationen, die durch den Anwender betrachtet werden sollen, auf der Szene überlagert anzeigen kann;

    Bereitstellen eines Detektors (66), der auf dem Rahmen (68) angebracht ist, der einen Pegel der Röntgenstrahlung misst; und

    Verbinden einer elektronischen Schaltungsanordnung (76) zum Austauschen von Anzeigesignalen mit der Platte (64) und zum Senden eines Steuersignals, das den Pegel der Röntgenstrahlung angibt, der durch den Detektor (66) gemessen wird, mit der Platte (64) und dem Detektor (66).


     
    11. Verfahren nach Anspruch 10, wobei die elektronische Schaltungsanordnung (76) eine Sende/Empfangs-Einrichtung (82) zum Austauschen der Anzeigesignale und des Steuersignals mit einem externen System (20) umfasst.
     
    12. Verfahren nach Anspruch 11, wobei die Sende/Empfangs-Einrichtung (82) eine drahtlose Sende/Empfangs-Einrichtung umfasst.
     
    13. Verfahren nach Anspruch 10, wobei die Platte (64) zur zweifachen Verwendung Nanoteilchen zum Sperren zumindest des Anteils der Röntgenstrahlung umfasst.
     
    14. Vorrichtung nach Anspruch 4 oder Verfahren nach Anspruch 13, wobei die Nanoteilchen Blei oder Cerium umfassen.
     
    15. Verfahren nach Anspruch 10, wobei die Platte (64) zur zweifachen Verwendung mindestens einen Film aus einem Material zum Sperren zumindest des Anteils der Röntgenstrahlung umfasst.
     


    Revendications

    1. Appareil d'affichage personnel (30), comprenant :

    une monture (68) ;

    une plaque à double usage (64) montée sur la monture (68), et qui est configurée pour :

    être portée par un utilisateur (40) pendant que l'utilisateur regarde une scène ;

    empêcher au moins partiellement un rayonnement de rayons X de traverser la plaque et d'atteindre un œil de l'utilisateur ; et

    afficher des informations devant être vues par l'utilisateur en superposition sur la scène ;

    un détecteur (66), qui est monté sur la monture et est configuré pour mesurer un niveau du rayonnement de rayons X ; et

    un circuit électronique (76), qui est raccordé à la plaque (64) et au détecteur (66), et est configuré pour échanger des signaux d'affichage avec la plaque (64) de manière à afficher les informations, et pour envoyer un signal de commande indicatif du niveau du rayonnement de rayons X mesuré par le détecteur.


     
    2. Appareil selon la revendication 1, dans lequel le circuit électronique (76) comprend un émetteur-récepteur (82), qui est configuré pour échanger les signaux d'affichage et le signal de commande avec un système externe (20).
     
    3. Appareil selon la revendication 2, le système externe (20) comprenant un système d'imagerie (36).
     
    4. Appareil selon la revendication 1, dans lequel la plaque à double usage (64) comprend des nanoparticules, qui sont configurées pour bloquer l'au moins une partie de rayonnement de rayons X.
     
    5. Appareil selon la revendication 1, dans lequel la plaque à double usage (64) comprend au moins un film de matériau, qui est configuré pour bloquer l'au moins une partie de rayonnement de rayons X.
     
    6. Appareil selon la revendication 1, dans lequel le circuit électronique (76) est configuré pour émettre une alerte dans le cas où le niveau du rayonnement de rayons X mesuré par le détecteur (66) dépasse un seuil prédéfini.
     
    7. Appareil selon la revendication 1, la scène présentant un organe d'un patient dans lequel l'utilisateur réalise une procédure médicale.
     
    8. Appareil selon la revendication 7, dans lequel les informations comprennent au moins un repère d'un appareil médical appliqué sur l'organe.
     
    9. Appareil selon la revendication 7, dans lequel les informations comprennent au moins une image anatomique d'au moins une partie de l'organe.
     
    10. Procédé de production d'un appareil d'affichage personnel (30), le procédé comprenant :

    l'obtention d'une monture (68) ;

    l'obtention d'une plaque à double usage (64) montée sur la monture (68), devant être portée par un utilisateur (40) pendant que l'utilisateur regarde une scène, la plaque (64) pouvant (i) empêcher au moins partiellement un rayonnement de rayons X de traverser la plaque (64) et d'atteindre un œil de l'utilisateur (40), et (ii) afficher des informations devant être vues par l'utilisateur en superposition sur la scène ;

    l'obtention d'un détecteur (66), monté sur la monture (68), qui mesure un niveau du rayonnement de rayons X ; et

    le raccordement, à la plaque (64) et au détecteur (66), d'un circuit électronique (76) destiné à échanger des signaux d'affichage avec la plaque (64), et à envoyer un signal de commande indicatif du niveau du rayonnement de rayons X mesuré par le détecteur (66).


     
    11. Procédé selon la revendication 10, dans lequel le circuit électronique (76) comprend un émetteur-récepteur (82) destiné à échanger les signaux d'affichage et le signal de commande avec un système externe (20).
     
    12. Procédé selon la revendication 11, dans lequel l'émetteur-récepteur (82) comprend un émetteur-récepteur sans fil.
     
    13. Procédé selon la revendication 10, dans lequel la plaque à double usage (64) comprend des nanoparticules destinées à bloquer l'au moins une partie de rayonnement de rayons X.
     
    14. Appareil selon la revendication 4 ou procédé selon la revendication 13, les nanoparticules comprenant du plomb ou du cérium.
     
    15. Procédé selon la revendication 10, dans lequel la plaque à double usage (64) comprend au moins un film de matériau destiné à bloquer l'au moins une partie de rayonnement de rayons X.
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description