(19)
(11)EP 3 412 540 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 18183577.8

(22)Date of filing:  25.11.2014
(51)International Patent Classification (IPC): 
B62D 53/02(2006.01)
F16L 55/26(2006.01)
B60B 19/00(2006.01)
B62D 61/00(2006.01)
B62D 57/00(2006.01)
G21C 17/013(2006.01)
B60B 19/12(2006.01)
F16L 101/30(2006.01)

(54)

HINGED VEHICLE CHASSIS

SCHWENKBARES FAHRZEUGCHASSIS

CHÂSSIS DE VÉHICULE À CHARNIÈRE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 30.11.2013 US 201361910323 P

(43)Date of publication of application:
12.12.2018 Bulletin 2018/50

(60)Divisional application:
20181314.4

(62)Application number of the earlier application in accordance with Art. 76 EPC:
14816515.2 / 3077279

(73)Proprietor: Saudi Arabian Oil Company
Dhahran 31311 (SA)

(72)Inventors:
  • Parrott, Brian
    31311 Dhahran (SA)
  • Outa, Ali
    31311 Dhahran (SA)
  • Carrasco Zanini Gonzalez, Pablo Eduardo
    23955-6900 Kaust Thuwal (SA)
  • Abdellatif, Fadl
    31311 Dhahran (SA)

(74)Representative: Bittner, Thomas L. 
Boehmert & Boehmert Anwaltspartnerschaft mbB Pettenkoferstrasse 22
80336 München
80336 München (DE)


(56)References cited: : 
WO-A1-01/79007
US-A1- 2003 075 366
US-A1- 2013 140 801
JP-A- S62 268 782
US-A1- 2007 235 238
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present disclosure relates to vehicles and, in particular, robotic inspection vehicles.

    Background



    [0002] In the past, there have been different inspection vehicle designs that are used to inspect various structures, such as factory equipment, ships, underwater platforms, pipelines and storage tanks. If a suitable inspection vehicle is not available to inspect the structure, an alternative is to build scaffolding that will allow people access to inspect these structures, but at great cost and danger to the physical safety of the inspectors. Past inspection vehicles have lacked the control necessary to inspect such surfaces effectively. There are different ways of controlling and providing translational forces to vehicles, however, many of these systems are designed for gravity-dependent transport, whether the goal is to overcome gravity or simply use it.

    [0003] Document US 2013/140801 A1 discloses a mobile robot configured to be used on different surfaces, regardless of their orientation and/or shape. The mobile robot may be configured with two or more component units which, for use on ferromagnetic surfaces, can employ magnets and a control system for orientating the magnets. In some cases, one or more component couplings join the component units. This mobile robot comprises a first chassis section, a second chassis section, and a hinge joint connecting the first and second chassis sections such that the first and second chassis sections are capable of rotation with respect to each other in at least a first direction. This mobile robot further comprises a drive wheel mounted to the first section and an omni-wheel mounted to the second chassis section, the omni-wheel being mounted at an angle orthogonal with respect to the drive wheel.

    [0004] In Document WO 01/79007 A1, an omni-direction wheel for an omni-directional vehicle is disclosed. A wheel assembly is rotatably connected to the omni-directional vehicle chassis. The wheel assembly comprises a hub on which free spinning rollers are rotatably mounted at an angle to the wheel axis. The rollers are configured with an exterior profile, thickness, material properties and surface grooving to achieve constant deflection of the roller contact surface at all wheel rotation angles.

    Summary



    [0005] It is an object of the disclosure to provide a vehicle for effectively navigating a variety of curved surfaces such as pipes and vessels. Further, a solution for providing vehicular movement in non-gravity-dependent operations may be provided, where the impact of gravity on vehicle movement can be minimized while still enabling versatile control.

    [0006] For achieving the object, a robotic vehicle chassis according to the independent claim 1 is provided. Further embodiments are disclosed in dependent claims

    [0007] A robotic vehicle chassis is dislcosed. The vehicle chassis includes a first chassis section, a second chassis section, and a hinge joint connecting the first and second chassis sections such that the first and second chassis sections are capable of rotation with respect to each other in at least a first direction. The vehicle includes at least one rotation stop positioned to prevent undesired rotation about the hinge joint. The vehicle includes a drive wheel mounted to one of the first and second chassis sections and an omni-wheel mounted to the other of the first and second chassis sections. The omni-wheel is mounted at an angle orthogonal with respect to the drive wheel.

    Description of further embodiments



    [0008] Following, embodiments, by way of example, are described with reference to figures. In the figures show:
    Fig. 1
    illustrates a vehicle having a hinged chassis;
    Fig. 2
    illustrates additional features of a vehicle;
    Fig. 3
    illustrates a vehicle having a hinged chassis on a curved surface;
    Fig. 4A
    illustrates a schematic of a vehicle having a hinged chassis on a curved surface; and
    Fig. 4B
    illustrates a schematic of a vehicle having a hinged chassis on a flat surface.


    [0009] Referring to Fig. 1, a robotic vehicle 810 in accordance with an embodiment of the invention is shown. The robotic vehicle 810 includes a first chassis section 812 and a second chassis section 814. A drive wheel 816 is connected to the first chassis section 812 and an omni-wheel 818 is connected to the second chassis section 814. Each chassis section can include a control module 813, 815. Each control module can include a motor, drive assembly for transferring mechanical power from the motor to the wheels, a power source (e.g., battery), and a controller that can control the operation of the vehicle by processing sensed data, processing stored instructions, and/or processing control instruction/signals received from a remote computer/operator. The control modules 813, 815 can also be connected by a flexible cable so that power and control instructions can be shared between the two modules.

    [0010] The first and second chassis sections are connected together via a connection that provides a degree of freedom between the two chassis sections, such as a hinge 820. The hinge 820 can by of several different types, including a knuckle/pin hinge or ball and detent hinge, for example. Other types of structures can be used to provide a degree of freedom between the two chassis sections. For example, a flexible material (e.g., flexible plastic) can be used to connect the two chassis sections together while providing the degree of freedom between the two chassis sections. The hinge 820 provides a degree of freedom of movement between the first and second chassis sections. In particular, chassis sections 812, 814 are rotatable through a range of degrees, with respect to each other as indicated by arrow "A" about the hinge 820. As discussed in more detail below, the range of degrees of rotation between the first and second chassis sections 812, 814 provides flexibility of movement for the vehicle 810 to traverse curved surfaces while the drive wheel 816 and omni-wheel 818 remain in contact with and normal to the curved surface. The hinge can also have some play in the connection that permits a limited degree of side-to-side movement. The play can be a result of a loose fit between the joints of the hinge or the material used (e.g., plastic that permits some twisting). The play can permit the chassis sections to slightly move side-to-side and/or twist. This play can improve the function of the robot as it moves along particular trajectories that induce a twisting motion between the two chassis sections, such as when the vehicle is traveling in a helical pattern around a pipe.

    [0011] Referring now to Fig. 2, a simplified sketch shows the orientation of the drive wheel 816 and the omni-wheel 818, without illustrating the hinged chassis. In the robotic vehicle's preferred direction of travel, which is indicated by arrow "D," the drive wheel 816 of the robotic vehicle 810 rotates about its access in a direction indicated by arrow "R1" in response to a motor that propels the vehicle forward. The axis of rotation of the omni-wheel 818 is nominally oriented perpendicular to the drive wheel 816 (and the wheels are in orthogonal planes), as shown in Fig. 2. The omni-wheel 818 includes a plurality of rollers 822 that are located around the periphery of the omni-wheel 818. The rollers 822 are mounted on the omni-wheel 818 (via pins or axles, for example) for rotation in the same direction as the drive wheel 816, as indicated by arrow "R2" (i.e., R1 is the same direction as R2). Accordingly, when the drive wheel 816 is driven, the omni-wheel 818 can serve as a follower wheel that is not driven. The rollers 822 passively rotate as the drive wheel 816 is driven, thereby allowing the vehicle to travel in the driven direction as indicated by arrow "D" with the rollers serving the purpose of reducing the friction of the passive omni-wheel 818, at least that is the result when the vehicle 810 is moving along a level surface.

    [0012] The drive wheel 816 can have a single hub or yoke or can have two hubs or yokes ("drive hubs"). The two drive hubs can be arranged to rotate together or they can be arranged so that they can rotate with respect to each other. Allowing one of the drive hubs of the driving wheel to rotate freely is useful when pivoting in place. Such an arrangement allows rotation about truly a single point rather than the center of the driving wheel. This arrangement can also preventing the driving wheel from damaging the surface as it slides through the rotation. The driving wheel can also have curved (and/or textured or coated) points of contact (rim of each hub) such that each side of the driving wheel contacts the surface in just one point regardless of the curvature. As one example, the rim can be knurled to provide texture.. As another example, the rim can be coated with rubber or polyurethane. Such an arrangement can improve the consistency of pull force and friction and can also improve the performance of the chassis and reduce the power consumption on the steering wheel when pivoting. The drive wheel can include magnets when adhesion to a ferromagnetic surface is required.

    [0013] The omni-wheel can include two sets of rollers 822 provided around the periphery of the wheel and located on each side of the omni-wheel as shown in Fig. 2. The omni-wheel 818 can have two hubs or yokes in which a set of rollers 822 is provided on each hub. The two hubs can rotate together or the two hubs can rotate with respect to each other. An omni-wheel that includes two sets of rollers permits the omni-wheel to remain normal to the surface as the vehicle maneuvers. This structural arrangement allows the vehicle to be a fully defined structure with increased stability, and it increases pull force and traction as the wheel steers. The use of two sets of rollers results in the omni-wheel having at least two points of contact with the surface. Since the omni-wheei is mounted orthogonal to the driving wheel, the distance between each point of contact and the driving wheel is different. The steering wheel could also include a ball caster to maintain the steering normal to the surface. The omni-wheel can include magnets when adhesion to a ferromagnetic surface is required.

    [0014] The omni-wheel 818 provides steering, or rotation, to control the robotic vehicle 810. The vehicle 810 can be steered by driving the omni-wheel 818 using the motor mentioned above, or a second motor (neither separately shown) by using conventional linkages between the omni-wheel and the motor. The omni-wheel rotates in a direction indicated by arrow "R3". Rotation of the omni-wheel causes the vehicle to turn or steer in a direction indicated by arrows "S". Controlling the rotation of the omni-wheel 818 allows for steering of the vehicle 810. The hinge 820 is constructed to have minimal to no yield as the omni-wheel is driven in the "S" directions so that the vehicle can be rotated in the direction "S" without the vehicle folding upon itself and so that movement in the "S" direction of the omni-wheel 818 can be correlated with a re-orientation of the drive wheel 816 as a result of the movement transferred to the drive wheel through the hinge 820.

    [0015] Accordingly, the drive wheel 816 can be controlled to provide forward and rearward movement of the vehicle while the omni-wheel 818 is either a passive, low resistance follower wheel or serving as an active, steering mechanism for the vehicle. The wheels 816, 818 can be activated and driven separately or at the same time to effect different types of steering of the vehicle 810.

    [0016] The configuration of the wheels of the vehicle provide for excellent mobility and stability while maintaining a relatively small foot print. This permits the robot to fit into small areas and have maneuverability that would be difficult, if not impossible, to achieve with traditional arrangements such as four wheeled vehicles. For example, a vehicle having the described arrangement can be constructed so that it can be effective on surfaces ranging from 8 inches in diameter to completely flat surfaces. The drive wheel 816 provides stability to the vehicle. In particular, the drive wheel can include a strong magnet which creates a pull force between the wheel and a ferromagnetic surface on which the vehicle 810 can be moved, and this structural arrangement assists in resisting tipping of the vehicle. In addition, the drive wheel can have a relatively wide and flat configuration, which further provides stability to the vehicle.

    [0017] Referring to Fig. 3, the vehicle 810 is shown traversing a curved ferromagnetic surface 1, which, by way of example only, can be a steel pipe. The drive wheel 816 and the omni-wheel 818 can each include a magnet. For example, a magnet can be included in the hub of each of these wheels, or in the case of a double omni-wheel, (as shown, in Fig. 3) between the two hubs. By connecting the drive wheel and the omni-wheel to respective chassis sections, each chassis section is attracted (via the magnets in the wheels) to the ferromagnetic/magnetically inducible material surface (e.g., a material that generates an attractive force in the presence of a magnetic field, such as a steel pipe). Alternatively, or in addition, the chassis sections themselves could include magnets that provided attractive force between each chassis section and the ferromagnetic surface. As such, when the vehicle traverses a curved or uneven surface, each of the chassis sections can be magnetically attracted to the surface. Meanwhile, the hinge 820 enables the chassis sections to rotate relative to one another. By this arrangement, the drive wheel 816 and the omni-wheel 18 maintain contact with and normal to the surface along which the vehicle 810 is traveling. A spring 824 can also extend between the two chassis sections 812, 814 and be connected so as to provide an urging force to assist the sections back to the a position in which the two wheels are located on the same planar surface with approximately zero degrees of rotation between the two chassis sections.

    [0018] Referring now to Figs. 4A and 4B, a schematic of the robotic vehicle on a curved surface and on a flat, planar surface are shown, respectively. As shown in Fig. 4A, the chassis sections rotate about the hinge 820 so that the wheels maintain contact with the curved surface 2 on which the vehicle is traveling. Accordingly, the hinge is positioned such that it allows the steering wheel to adjust to the curvature while preventing the rest of the chassis from touching. Without the hinge 820, the chassis would remain in a straight line configuration and one of the wheels could fail to maintain contact the curved surface, or may only be in partial contact with the curved surface (e.g, only an edge of a wheel may maintain contact). Failure of one or two of the wheels to maintain contact with the traveling surface can have significant consequences. First, parts of the wheel such as the perimeter edges can come into contact with the surface which can introduce drag and wear on the parts as the vehicle continues along the surface. Second, that failure can result in a significant drop in the attractive force between the magnets of the chassis and surface. This could have a catastrophic consequence, such as when the vehicle is traversing a vertical or inverted surface, in which the vehicle fails to maintain magnetic purchase with the surface and actually decouples from the surface. Decoupling of the vehicle can result in damage to the vehicle suffered as a result of the fall, present a danger to workers in the area, and/or could result in the vehicle becoming stuck, which could present further problems. In addition, the hinge and chassis can be arranged to maintain a low center of mass of the vehicle.

    [0019] As shown in Fig. 4B, the vehicle 810 is disposed on a flat surface 3. The hinge 820 can include rotation stops 826 and 828. These can be mating surfaces on each of the first and second chassis sections for example. The rotations stops can be positioned to prevent undesired rotation about the hinge 820, or to limit rotation to a set range of degrees, such as when the vehicle is on a flat surface. For example, the hinges can prevent the vehicle from folding upon itself when on a flat surface such that the hinge joint is dragged on the surface. The stops can also be spaced to allow a limited amount of rotation in both up and down directions. Accordingly, the vehicle can rotate about the hinge to adapt to both concave and convex surfaces. As such, the vehicle can be used on the outside of a pipe (convex surface) as well as in the inside of a tank (concave surface) without structural changes to the vehicle. The degree of freedom can permit movement in both the up and down directions, which can increase the vehicle's ability to traverse both convex surfaces (e.g., outside of a pipe) and concave surfaces (such as a tank surface). The width of the omni-wheel and the magnets that provide attractive force between the wheel and the surface help resist unwanted movement in the up and down directions. The omni-wheel, by its width and its magnets (which can provide two points of contact with the surface), is biased to be normal to the traveling surface. Accordingly, the omni-wheel itself provides a resistive force to over rotation of the vehicle about the hinge.

    [0020] In addition, the hinge can have other limited degrees of freedom, which can be accomplished by incorporating some play in the hinge design, This play can improve the function of the robot as it moves along particular trajectories that induce a twisting motion between the two chassis sections, such as when the vehicle is traveling in a helical pattern around a pipe.

    [0021] The robotic vehicle 810, including the orientations of its magnetic wheel and the hinged chassis, provides significant advances in mobility. It is possible to accomplish a complete 180° turn while traversing a half circle (e.g., steel pipe) that has a diameter only slightly larger than the diameter of the drive wheel. The vehicle can be used to move and carry inspection equipment. Other uses for such a vehicle having the above described chassis design can be used to move and transport goods/personnel on magnetically inducible materials, such as the steel framework of a skyscraper that is being constructed (or for inspection/maintenance after construction by providing magnetic purchase to the steel structure) or the side of a large vessel.

    [0022] A vehicle as described above can transverse steel surfaces with diameters of as little as 6" and potentially even smaller, with the ability to move in any direction and to any orientation. The movement of the vehicle can include longitudinal movement, circumferential movement, helical movement, 360 degree pivoting around a fixed point. The vehicle can overcome obstacles such as welds or patches of up to at least one half inch. The vehicle is cable of performing these maneuvers on the underside of steel surfaces, including both internally within a pipe and externally on multiple structures. The vehicle can also negotiate elbows or other turns in pipes on both the convex and concave surfaces. Additionally, the vehicle, as a result of its pivoting motion, can overcome certain types of obstacles which would not be easy for a normal wheel to drive over. Accordingly, the vehicle can temporarily use the omni-wheel as the primary locomotive accessory (while the 'driving wheel' remains primarily in place). The design of the vehicle also allows the vehicle to transverse very narrow surfaces (such as the side of a beam, very small pipe, etc.) due to its in-line configuration. The minimum width of such a surface is limited only by the inner distanced between the two yokes of the magnetic driving wheel.

    [0023] It should be understood that various combination, alternatives and modifications of the present invention could be devised by those skilled in the art. The present invention is intended to embrace all such alternatives, modifications and variances that fall within the scope of the appended claims.


    Claims

    1. A robotic vehicle (810) chassis, comprising:

    - a first chassis section (812);

    - a second chassis section (814);

    - a hinge joint (820) connecting the first (812) and second (814) chassis sections such that the first (812) and second (814) chassis sections are capable of rotation with respect to each other in at least a first direction (A);

    - at least one rotation stop (826, 828) positioned to prevent undesired rotation about the hinge joint (820);

    - a drive wheel (816) mounted to one of the first (812) and second (814) chassis sections; and

    - an omni-wheel (818) mounted to the other of the first (812) and second (814) chassis sections, the omni-wheel (818) being mounted at an angle orthogonal with respect to the drive wheel (816).


     
    2. The robotic vehicle (810) chassis of claim 1, further comprising:

    - at least a first magnet connected to at least the drive wheel (816) or the chassis section (812, 814) to which the drive wheel (816) is mounted; and

    - at least a second magnet connected to at least the omni-wheel (818) or the chassis section (812, 814) to which the omni-wheel (818) is mounted,
    wherein the at least first and second magnets maintain an attractive force between the first chassis section (812) and a surface the robotic vehicle (810) is traversing and the second chassis section (814) and the surface, respectively,
    wherein the hinge joint (820) rotates in response to the curvature of the surface and is limited in rotation to a set range of degrees by the at least one rotation stop (826, 828).


     
    3. The robotic vehicle (810) chassis of any of the preceding claims, wherein the at least one rotation stop (826, 828) is included in the hinge joint (820).
     
    4. The robotic vehicle (810) chassis of any of the preceding claims, wherein the at least one rotation stop (826, 828) includes mating surfaces on each of the first chassis section (812) and the second chassis section (814).
     
    5. The robotic vehicle (810) chassis of any of claims 1 and 3-4, wherein the at least one rotation stop (826, 828) limits rotation of the hinge joint (820) to a set range of degrees.
     
    6. The robotic vehicle (810) chassis of any of the preceding claims, wherein the at least one rotation stop (826, 828) is adjustable to allow the hinge (820) to rotate to adapt to both concave and convex surfaces.
     
    7. The robotic vehicle (810) chassis of any of the preceding claims, wherein the at least one rotation stop (826, 828) provides resistance to rotation in a direction other than the first direction (A).
     
    8. The robotic vehicle (810) chassis of any of the preceding claims, wherein the omni-wheel (818) further comprises a first and second set of rollers (822) located on each side of the omni-wheel (818) such that the first and second set of rollers (822) are located to maintain at least two points of contact with the surface.
     
    9. The robotic vehicle (810) chassis of claim 8, wherein the first and second set of rollers (822) are supported by a first and second hub, respectively, where the first and second hubs are configured to rotate freely with respect to each other.
     
    10. The robotic vehicle (810) chassis of any of the preceding claims, wherein the drive wheel (816) includes a first and second drive hub, wherein the first and second drive hubs are configured to selectively rotate freely with respect to each other.
     
    11. The robotic vehicle (810) chassis of claim 10, wherein the contact surfaces of the drive hubs are curved such that each side of the drive wheel (816) contacts the surface at a single point.
     
    12. The robotic vehicle (810) chassis of claim 10, wherein points of contact of the drive hubs are textured.
     
    13. The robotic vehicle (810) chassis of any of the preceding claims, further comprising a motor wherein the drive wheel (816) includes a first and second drive hub, wherein the first and second drive hubs are configured to actuate the drive wheel (816), wherein the omni-wheel (818) is configured to be passively driven by the drive wheel (816).
     
    14. The robotic vehicle (810) chassis of claim 13, wherein a single power source provides power to the first (812) and second (814) chassis sections and the motor for driving the drive wheel (816).
     


    Ansprüche

    1. Fahrgestell eines Roboterfahrzeugs (810), umfassend:

    - einen ersten Fahrgestellabschnitt (812);

    - einen zweiten Fahrgestellabschnitt (814);

    - ein Scharniergelenk (820), das die ersten (812) und zweiten (814) Fahrgestellabschnitte so verbindet, dass die ersten (812) und zweiten (814) Fahrgestellabschnitte in Bezug zueinander in mindestens einer ersten Richtung (A) drehbar sind;

    - mindestens einen Drehanschlag (826, 828), der so positioniert ist, dass eine unerwünschte Drehung um das Scharniergelenk (820) verhindert wird;

    - ein Antriebsrad (816), das an einem der ersten (812) und zweiten (814) Fahrgestellabschnitte montiert ist; und

    - ein Omni-Rad (818), das an dem anderen der ersten (812) und zweiten (814) Fahrgestellabschnitte montiert ist, wobei das Omni-Rad (818) in einem Winkel orthogonal in Bezug auf das Antriebsrad (816) montiert ist.


     
    2. Fahrgestell eines Roboterfahrzeugs (810) nach Anspruch 1, ferner umfassend:

    - mindestens einen ersten Magneten, der mindestens mit dem Antriebsrad (816) oder dem Fahrgestellabschnitt (812, 814), an dem das Antriebsrad (816) montiert ist, verbunden ist; und

    - mindestens einen zweiten Magneten, der mit mindestens dem Omni-Rad (818) oder dem Fahrgestellabschnitt (812, 814), an dem das Omni-Rad (818) montiert ist, verbunden ist,
    wobei der mindestens erste und zweite Magnet eine Anziehungskraft zwischen dem ersten Fahrgestellabschnitt (812) und einer Fläche, die das Roboterfahrzeug (810) durchquert, und dem zweiten Fahrgestellabschnitt (814) und der Fläche aufrechterhalten, wobei sich das Scharniergelenk (820) als Reaktion auf die Krümmung der Oberfläche dreht und in der Drehung durch den mindestens einen Drehanschlag (826, 828) auf einen festgelegten Grad-Bereich begrenzt ist.


     
    3. Fahrgestell eines Roboterfahrzeugs (810) nach einem der vorhergehenden Ansprüche, wobei der mindestens eine Drehanschlag (826, 828) im Scharniergelenk (820) enthalten ist.
     
    4. Fahrgestell eines Roboterfahrzeugs (810) nach einem der vorhergehenden Ansprüche, wobei der mindestens eine Drehanschlag (826, 828) zusammenpassende Oberflächen an jedem der ersten Fahrgestellabschnitte (812) und der zweiten Fahrgestellabschnitte (814) aufweist.
     
    5. Fahrgestell eines Roboterfahrzeugs (810) nach einem der Ansprüche 1 und 3 bis 4, wobei der mindestens eine Drehanschlag (826, 828) die Drehung des Scharniergelenks (820) auf einen festgelegten Grad-Bereich begrenzt.
     
    6. Fahrgestell eines Roboterfahrzeugs (810) nach einem der vorhergehenden Ansprüche, wobei der mindestens eine Drehanschlag (826, 828) einstellbar ist, damit sich das Gelenk (820) drehen kann, um sich sowohl an konkave als auch an konvexe Oberflächen anzupassen.
     
    7. Fahrgestell eines Roboterfahrzeugs (810) nach einem der vorhergehenden Ansprüche, wobei der mindestens eine Drehanschlag (826, 828) einen Widerstand gegen eine Drehung in eine andere Richtung als die erste Richtung (A) bietet.
     
    8. Fahrgestell eines Roboterfahrzeugs (810) nach einem der vorhergehenden Ansprüche, wobei das Omni-Rad (818) ferner einen ersten und einen zweiten Satz von Rollen (822) aufweist, die auf jeder Seite des Omni-Rads (818) so angeordnet sind, dass der erste und der zweite Satz von Rollen (822) so angeordnet sind, dass sie mindestens zwei Kontaktpunkte mit der Oberfläche aufrechterhalten.
     
    9. Fahrgestell für ein Roboterfahrzeug (810) nach Anspruch 8, wobei der erste und zweite Satz Rollen (822) von einer ersten bzw. zweiten Nabe getragen wird, wobei die erste und zweite Nabe eingerichtet sind, sich frei zueinander drehen zu können.
     
    10. Fahrgestell des Roboterfahrzeugs (810) nach einem der vorhergehenden Ansprüche, wobei das Antriebsrad (816) eine erste und eine zweite Antriebsnabe aufweist, wobei die erste und die zweite Antriebsnabe eingerichtet sind, sich selektiv frei in Bezug aufeinander drehen zu können.
     
    11. Fahrgestell eines Roboterfahrzeugs (810) nach Anspruch 10, wobei die Kontaktflächen der Antriebsnaben so gekrümmt sind, dass jede Seite des Antriebsrads (816) die Oberfläche an einem einzigen Punkt berührt.
     
    12. Fahrgestell eines Roboterfahrzeugs (810) nach Anspruch 10, wobei die Kontaktpunkte der Antriebsnaben strukturiert sind.
     
    13. Fahrgestell eines Roboterfahrzeugs (810) nach einem der vorhergehenden Ansprüche, ferner umfassend einen Motor, wobei das Antriebsrad (816) eine erste und eine zweite Antriebsnabe umfasst, wobei die erste und die zweite Antriebsnabe eingerichtet sind, das Antriebsrad (816) zu betätigen, wobei das Omni-Rad (818) eingerichtet ist, passiv durch das Antriebsrad (816) angetrieben zu werden.
     
    14. Fahrgestell eines Roboterfahrzeugs (810) nach Anspruch 13, wobei eine einzige Energiequelle den ersten (812) und zweiten (814) Fahrgestellabschnitt und den Motor zum Antrieb des Antriebsrads (816) mit Energie versorgt.
     


    Revendications

    1. Châssis de véhicule robotisé (810), comprenant :

    - une première section de châssis (812) ;

    - une seconde section de châssis (814) ;

    - un joint articulé (820) reliant les première (812) et seconde (814) sections de châssis de sorte que les première (812) et seconde (814) sections de châssis sont capables de tourner l'une par rapport à l'autre dans au moins une première direction (A) ;

    - au moins une butée de rotation (826, 828) positionnée pour empêcher une rotation indésirable autour du joint articulé (820) ;

    - une roue motrice (816) montée sur l'une des première (812) et seconde (814) sections de châssis ; et

    - une roue holonome (818) montée sur l'autre des première (812) et seconde (814) sections de châssis, la roue holonome (818) étant montée selon un angle orthogonal par rapport à la roue motrice (816).


     
    2. Châssis de véhicule robotisé (810) selon la revendication 1, comprenant en outre :

    - au moins un premier aimant relié au moins à la roue motrice (816) ou à la section de châssis (812, 814) sur laquelle la roue motrice (816) est montée ; et

    - au moins un second aimant relié au moins à la roue holonome (818) ou à la section de châssis (812, 814) sur laquelle la roue holonome (818) est montée,
    les au moins premier et second aimants conservant une force d'attraction entre la première section de châssis (812) et une surface traversée par le véhicule robotisé (810) et la seconde section de châssis (814) et la surface, respectivement, le joint articulé (820) tournant en réponse à la courbure de la surface et étant limité en rotation à une plage de degrés définie par l'au moins une butée de rotation (826, 828).


     
    3. Châssis de véhicule robotisé (810) selon l'une quelconque des revendications précédentes, dans lequel l'au moins une butée de rotation (826, 828) est incluse dans le joint articulé (820).
     
    4. Châssis de véhicule robotisé (810) selon l'une quelconque des revendications précédentes, dans lequel l'au moins une butée de rotation (826, 828) comporte des surfaces de contact sur chacune de la première section de châssis (812) et de la seconde section de châssis (814).
     
    5. Châssis de véhicule robotisé (810) selon l'une quelconque des revendications 1 et 3 à 4, dans lequel l'au moins une butée de rotation (826, 828) limite la rotation du joint articulé (820) à une plage définie de degrés.
     
    6. Châssis de véhicule robotisé (810) selon l'une quelconque des revendications précédentes, dans lequel l'au moins une butée de rotation (826, 828) est réglable pour permettre au joint articulé (820) de tourner pour s'adapter aux surfaces concaves et convexes.
     
    7. Châssis de véhicule robotisé (810) selon l'une quelconque des revendications précédentes, dans lequel l'au moins une butée de rotation (826, 828) fournit une résistance à la rotation dans une direction autre que la première direction (A).
     
    8. Châssis de véhicule robotisé (810) selon l'une quelconque des revendications précédentes, dans lequel la roue holonome (818) comprend en outre un premier et un second ensemble de rouleaux (822) situés de chaque côté de la roue holonome (818) de sorte que le premier et le second ensemble de rouleaux (822) sont situés pour maintenir au moins deux points de contact avec la surface.
     
    9. Châssis de véhicule robotisé (810) selon la revendication 8, dans lequel le premier et le second ensemble de rouleaux (822) sont supportés par un premier et un second moyeu, respectivement, où les premier et second moyeux sont conçus pour tourner librement l'un par rapport à l'autre.
     
    10. Châssis de véhicule robotisé (810) selon l'une quelconque des revendications précédentes, dans lequel la roue motrice (816) comporte un premier et un second moyeu d'entraînement, les premier et second moyeux d'entraînement étant conçus pour tourner sélectivement librement l'un par rapport à l'autre.
     
    11. Châssis de véhicule robotisé (810) selon la revendication 10, dans lequel les surfaces de contact des moyeux d'entraînement sont incurvées de sorte que chaque côté de la roue motrice (816) touche la surface en un seul point.
     
    12. Châssis de véhicule robotisé (810) selon la revendication 10, dans lequel les points de contact des moyeux d'entraînement sont texturés.
     
    13. Châssis de véhicule robotisé (810) selon l'une quelconque des revendications précédentes, comprenant en outre un moteur dans lequel la roue motrice (816) comporte un premier et un second moyeu d'entraînement, les premier et second moyeux d'entraînement étant conçus pour actionner la roue motrice (816), la roue holonome (818) étant conçue pour être entraînée passivement par la roue motrice (816).
     
    14. Châssis de véhicule robotisé (810) selon la revendication 13, dans lequel une seule source d'alimentation alimente les première (812) et seconde (814) sections de châssis et le moteur pour entraîner la roue motrice (816).
     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description