(19)
(11)EP 3 412 582 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 18172498.0

(22)Date of filing:  15.05.2018
(51)International Patent Classification (IPC): 
B64G 1/40(2006.01)
B64G 1/64(2006.01)
B64G 1/00(2006.01)
B64G 1/26(2006.01)
B64G 1/24(2006.01)

(54)

CROSS-FEEDING PROPELLANT BETWEEN STACKED SPACECRAFT

TREIBSTOFFZUFUHR ZWISCHEN GESTAPELTEN RAUMFAHRZEUGEN

ALIMENTATION CROISÉE DE PROPERGOL ENTRE DES ENGINS SPATIAUX EMPILÉS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 07.06.2017 US 201715616803

(43)Date of publication of application:
12.12.2018 Bulletin 2018/50

(73)Proprietor: Space Systems/Loral, LLC
Palo Alto, California 94303 (US)

(72)Inventors:
  • BALDWIN, Jeff, Aaron
    Sunnyvale, California 94086 (US)
  • NOLAND, Jonathan
    Palo Alto, California 94303-4604 (US)
  • TADROS, Alfred, Heikal
    Los Altos, California 94022 (US)
  • STOEN, Jeffrey, Donald
    Palo Alto, California 94306 (US)
  • MAHER, Adam
    Palo Alto, California 94303-4604 (US)

(74)Representative: Beck Greener LLP 
Fulwood House 12 Fulwood Place
London WC1V 6HR
London WC1V 6HR (GB)


(56)References cited: : 
WO-A1-2016/020390
US-A1- 2015 151 855
US-B2- 9 145 216
US-A1- 2008 265 098
US-A1- 2016 304 219
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The invention relates to a system comprising at least two spacecraft, and also relates to a method comprising deploying a payload stack including at least a first spacecraft and a second spacecraft.

    [0002] In embodiments, this invention relates generally to a system including two or more spacecraft configured to undergo orbit transfer maneuvers in a stacked configuration, and more particularly a configuration where a thruster on a first of the two or more spacecraft is detachably coupled with a propellant supply of a second of the two or more spacecraft.

    [0003] The assignee of the present invention designs and manufactures spacecraft for communications and broadcast services. The spacecraft are carried into space, into a transfer orbit or an operational orbit, for example, by a launch vehicle.

    [0004] It is sometimes desirable to configure two or more spacecraft for simultaneous launch on a single launch vehicle. US patent publication number 2016/0304219, assigned to the assignee of the present invention, and hereby incorporated by reference in its entirety into the present application, discloses a stacked launch configuration where at least a portion of orbit raising is performed with the two or more spacecraft coupled together and allocation of orbit raising capability between the two or more spacecraft is optimized.

    [0005] Figure 1 illustrates an example of two spacecraft configured to be launched within a common fairing 1001 of a launch vehicle (not illustrated). A lower spacecraft 100(1) includes an adapter 107(1) that is mechanically coupled, in the launch configuration, with a primary payload adapter 1002 that may be part of an upper stage (not illustrated) of the launch vehicle. The lower spacecraft 100(1) includes an inter-spacecraft coupling arrangement 109 that is mechanically coupled, in the launch configuration, with an adapter 107(2) of an upper spacecraft 100(2).

    [0006] The spacecraft may include on-board propulsion subsystems to perform orbit transfer maneuvers. For example the on-board propulsion subsystems, including chemical and/or electric thrusters, may be configured to execute orbit raising maneuvers to transfer the spacecraft from a launch vehicle transfer orbit (or "parking orbit") to an operational orbit, for example, to a geosynchronous orbit. The on-board propulsion subsystems may also be configured to perform stationkeeping and for attitude control/momentum management purposes. For a stacked launch configuration such as illustrated in Figure 1, at least a portion of orbit transfer maneuvers may be performed with the two or more spacecraft coupled together.

    [0007] The spacecraft thrusters may be broadly categorized as either "chemical" or "electric" based on the respective primary energy source. Chemical thrusters, for example bipropellant thrusters, deliver thrust by converting chemical energy stored in the propellant to kinetic energy delivered to combustion products of the chemical propellant, e.g., a fuel such as monomethyl hydrazine and an oxidizer such as dinitrogen tetroxide.

    [0008] A propulsion system may include chemical thrusters of diverse thrust levels for different mission phases. For example, orbit transfer maneuvers may be performed with a relatively high thrust chemical thruster, with a nominal thrust rating of, for example, 300 Newtons (N) or greater. Such a thruster may be referred to herein, and in the claims as a "high thrust chemical thruster" or as a "main satellite thruster" or MST. In addition, the propulsion system may include other chemical thrusters for stationkeeping and attitude control delivering, advantageously, relatively low thrust, for example a nominal thrust rating of less than 30 N and/or electric thrusters having a nominal thrust rating of less than 1 N for orbit transfer and/or stationkeeping.

    [0009] US-A-2016/304,219 discloses a first satellite and a second satellite configured to be disposed together in a launch configuration the launch by a single launch vehicle. The launch vehicle includes a primary payload adapter and the first satellite includes a secondary payload adapter. In the launch configuration, the first satellite is mechanically coupled with the primary payload adapter and the second satellite is mechanically coupled with a secondary payload adapter. Following injection into orbit the first satellite separates from the primary payload adapter while the second satellite is mechanically coupled with the second payload adapter. The second satellite is detached from the secondary payload adapter of the first satellite only after an orbit transfer maneuver executed by propulsion systems of the first satellite has been executed.

    [0010] According to a first aspect of the invention as defined in claim 1, a system is provided.

    [0011] In an embodiment, the one or more thrusters configured to execute the orbit transfer maneuver includes a main satellite thruster (MST).

    [0012] In an embodiment, the MST is a high thrust chemical thruster.

    [0013] In an embodiment, propellant stored in each of the first propellant storage arrangement and the second propellant storage arrangement is available for use by the MST.

    [0014] In an embodiment, the one or more thrusters configured to execute the orbit transfer maneuver includes a high specific impulse electric thruster.

    [0015] In an embodiment, propellant stored in each of the first propellant storage arrangement and the second propellant storage arrangement is available for use by the high specific impulse electric thruster.

    [0016] In an embodiment, the one or more thrusters configured to execute the orbit transfer maneuver include one or both of a first high specific impulse electric thruster and a first high thrust chemical thruster.

    [0017] In an embodiment, propellant stored in each of the first propellant storage arrangement and the second propellant storage arrangement is available for use by at least one of the first high specific impulse electric thruster and a first high thrust chemical thruster.

    [0018] In an embodiment, the second onboard propulsion subsystem does not include a high thrust chemical thruster.

    [0019] In an embodiment, the second onboard propulsion subsystem includes one or both of a monopropellant thruster and a cold gas thruster, does not include high thrust chemical thruster and does not include a high specific impulse electric thruster.

    [0020] According to a second aspect of the present invention, there is provided a method defined as per claim 11.

    [0021] In an embodiment, propellant stored in each of the first propellant storage arrangement and the second propellant storage arrangement is available for use by the first onboard propulsion subsystem.

    [0022] In an embodiment, the one or more thrusters configured to execute the orbit transfer maneuver include one or both of a first high specific impulse electric thruster and a first high thrust chemical thruster.

    [0023] In an embodiment, propellant stored in each of the first propellant storage arrangement and the second propellant storage arrangement is available for use by at least one of the first high specific impulse electric thruster and a first high thrust chemical thruster.

    [0024] In an embodiment, the second onboard propulsion subsystem does not include a high thrust chemical thruster.

    [0025] The present inventors have appreciated, where two or more spacecraft are configured to be launched in a stacked launch configuration, propellant stored in an upper spacecraft may advantageously be made available for use, by way of a detachable coupling, by a thruster on a lower spacecraft. The presently disclosed techniques contemplate that the upper spacecraft may avoid carrying an MST, with a consequent mass and cost savings. In some implementations, a reduction in total height of the stacked spacecraft may be realized.

    [0026] Features of the invention are more fully disclosed in the following detailed description of the preferred embodiments, reference being had to the accompanying drawings, in which like reference numerals designate like structural element, and in which:

    Figure 1 illustrates an example of two spacecraft configured to be launched within a common fairing 1001 of a launch vehicle;

    Figure 2 illustrates two examples of onboard propulsion subsystems that are within the contemplation of the present disclosure;

    Figure 3 illustrates a system of two spacecraft disposed in a launch configuration according to an implementation;

    Figure 4 illustrates a system of two spacecraft disposed in a launch configuration according to another implementation;

    Figure 5 illustrates a system of two spacecraft disposed in a launch configuration according to a yet further implementation;

    Figure 6 illustrates a system of two spacecraft disposed in a launch configuration according to another implementation; and

    Figure 7 illustrates a method for deploying a payload stack, according to an implementation.



    [0027] Specific exemplary embodiments of the invention will now be described with reference to the accompanying drawings. This invention may, however, be embodied in many different forms, and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.

    [0028] It will be understood that when an element is referred to as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element, or intervening elements may be present. It will be understood that although the terms "first" and "second" are used herein to describe various elements, these elements should not be limited by these terms. These terms are used only to distinguish one element from another element. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. The symbol "/" is also used as a shorthand notation for "and/or".

    [0029] The present inventors have appreciated that overall performance of a launch vehicle payload system that includes a first spacecraft and a second spacecraft to be launched as a stack (the "payload stack") may be improved by configuring the first spacecraft to perform at least some substantial part of orbit transfer maneuvers, for the benefit of both spacecraft following deployment from the launch vehicle and prior to separation of the first spacecraft from the second spacecraft. In other words, the first spacecraft may include a first onboard propulsion subsystem configured to execute an orbit transfer maneuver for the payload stack from the first orbit to a second orbit. As a result of the presently disclosed techniques, at least some propellant stored in the second spacecraft may be made available for use by the first onboard propulsion subsystem.

    [0030] Figure 2 illustrates two examples of onboard propulsion subsystems that are within the contemplation of the present disclosure. Referring first to Detail A, an example of an onboard propulsion subsystem configured to include bipropellant thrusters is illustrated. The on-board propulsion subsystem 110 may include any number of low thrust chemical thrusters 116 and/or a MST 118 manifolded by way of a control module 115 with fuel tank 113 and oxidizer tank 114. The fuel tank 113 and the oxidizer tank 114 may each be loaded with a desired quantity of liquid propellant, and include an ullage volume, gaseous pressure of which may be regulated by a pressure control module 112. For example the pressure control module 112 may include one or more pressure regulators. Helium (He) stored in pressurant tanks 111 at a high pressure may be reduced in pressure by the pressure control module 112 and delivered to the fuel tank 113 and the oxidizer tank 114.

    [0031] Referring now to Detail B, an on-board propulsion subsystem 120 may include any number of electric thrusters 126 manifolded by way of a propellant management assembly (PMA) 122 with propellant tanks 121. Propellant such as xenon (Xe) stored in tanks 121 at a high pressure may be reduced in pressure by the PMA 122 and delivered to the electric thrusters 126. An electric thruster, as contemplated by the present disclosure, may be configured to deliver a specific impulse of at least 500 seconds and be referred to herein and in the claims as a "high specific impulse electric thruster". The high specific impulse electric thruster may be, for example a Hall accelerator, a gridded electrostatic accelerator, a cross field (E×B) accelerator, a pulsed plasma thruster, a pulsed inductive thruster, a field-reversed configuration plasma thruster, a wakefield accelerator, a traveling wave accelerator, and an ion cyclotron resonance heater combined with a magnetic nozzle.

    [0032] For clarity of illustration, the on-board propulsion subsystem 110 and the on-board propulsion subsystem 120 are depicted as separate arrangements. In some implementations, however, a unified chemical electric propulsion system may be contemplated, as described in US Patent 9,145,216, assigned to the assignee of the present invention and hereby incorporated by reference in its entirety into the present application.

    [0033] Figure 3 illustrates a system of two spacecraft disposed in a launch configuration according to an implementation. In the illustrated implementation, a first (lower) spacecraft 300(1) is disposed beneath a second (upper) spacecraft 300(2). A launch vehicle includes a primary payload adapter 3002, with which, in the launch configuration, the first spacecraft 300(1) is mechanically coupled. The first spacecraft 300(1) is mechanically coupled with the second spacecraft 300(2), in the launch configuration, by way of an inter-spacecraft coupling arrangement 309. The system of two spacecraft may be injected by the launch vehicle into a first orbit that may be, for example, a low earth orbit or a geosynchronous transfer orbit. Subsequent to being injected into the first orbit, the system may be separated from the launch vehicle. More particularly, the system may be deployed by separating the first spacecraft 300(1) from the primary payload adapter 3002 while the second spacecraft 300(2) remains mechanically coupled with the second spacecraft 300(1) by way of inter-spacecraft coupling arrangement 309.

    [0034] In the illustrated implementation, the lower spacecraft 300(1) includes an on-board propulsion system such as described in connection with Detail A of Figure 1. More particularly, in the illustrated implementation, the lower spacecraft 300(1) includes a plurality of low thrust thrusters 116(1) and at least one MST 118 and a first propellant storage arrangement including a fuel tank 113(1), and an oxidizer tank 114(1). The upper spacecraft 300(2) may include one or more low thrust thrusters 116(2), as well as a second propellant storage arrangement including a fuel tank 113(2), and an oxidizer tank 114(2).

    [0035] Advantageously, the upper spacecraft 300(2) may not include an MST.

    [0036] Propellant from the upper spacecraft 300(2) is made available to the propulsion subsystem of the lower spacecraft by way of propellant lines and propellant line coupling devices. More particularly, propellant line 323(2), coupling device 325, and propellant line 323(1) may couple a port of fuel tank 113(2) of the upper spacecraft 300(2) with a port of fuel tank 113(1) of the first spacecraft 300(1). Similarly, propellant line 324(2), coupling device 327, and propellant line 324(1) may couple a port of oxidizer tank 114(2) of the upper spacecraft 300(2) with a port of oxidizer tank 114(1) of lower spacecraft 300(1). As a result, propellant from the upper spacecraft 300(2) may be made available to the lower spacecraft 300(1) and, more particularly to the MST 118 and low thrust chemical thrusters 116(1). Thus, in some implementations, orbit raising maneuvers may be executed using a single MST 118, drawing propellant from each of two or more stacked spacecraft.

    [0037] The coupling device 325 and the coupling device 327 may be configured to detachably couple the propellant storage arrangement of the first spacecraft 300(1) with the propellant storage arrangement of the second spacecraft 300(2). In some implementations, one or both of the coupling device 325 and the coupling device 327 may be or include a line disconnect. An example of a line disconnect appropriate for use cases contemplated by the present disclosure is described in NASA Technical Memorandum 100755 (Glubke, "Engineering Test Results for the Moog Single Line Disconnect", Goddard Space Flight Center, 1990).

    [0038] One or both of the coupling device 325 and the coupling device 327 includes a line disconnect including a proximal portion and a distal portion, each of the proximal portion and the distal portion including a respective valving element. The valving elements are configured to permit propellant flow when the distal portion and the proximal portion are mutually engaged and prevent propellant flow when the distal portion and the proximal portion are detached.

    [0039] Figure 4 illustrates a system of two spacecraft disposed in a launch configuration according to another implementation. In the illustrated implementation, a lower spacecraft 400(1) is disposed beneath an upper spacecraft 400(2). A launch vehicle includes a primary payload adapter 4002, with which, in the launch configuration, the first spacecraft 400(1) is mechanically coupled. The first spacecraft 400(1) is mechanically coupled with the second spacecraft 400(2), in the launch configuration, by way of an inter-spacecraft coupling arrangement 409. The system of two spacecraft may be injected by the launch vehicle into a first orbit that may be, for example, a low earth orbit or a geosynchronous transfer orbit. Subsequent to being injected into the first orbit, the system may be separated from the launch vehicle. More particularly, the system may be deployed by separating the first spacecraft 400(1) from the primary payload adapter 4002 while the second spacecraft 400(2) remains mechanically coupled with the second spacecraft 400(1) by way of inter-spacecraft coupling arrangement 409.

    [0040] In the illustrated implementation, the lower spacecraft 400(1) includes an on-board propulsion system such as described in connection with Detail B of Figure 1. More particularly, in the illustrated implementation, the lower spacecraft 400(1) includes a number of electric thrusters 126 manifolded by way of the PMA 122 with propellant tanks 121.

    [0041] Propellant such as xenon (Xe) stored in tanks 121 at a high pressure may be reduced in pressure by the PMA 122 and delivered to the electric thrusters 126. Advantageously, a quantity and/or power rating of thrusters 126(1) on the lower spacecraft 400(1) may be optimized for executing an orbit transfer maneuver, whereas the thrusters 126(2) on the upper spacecraft 400(2) may be configured so as to primarily or exclusively execute stationkeeping maneuvers. Advantageously, propellant stored in xenon tanks 121(2) of the upper spacecraft 400(2), as well as propellant stored in xenon tanks 121(1) of the lower spacecraft 400(1) may be available for use by the electric thrusters 126(1) on the lower spacecraft 400(1).

    [0042] Propellant from the upper spacecraft 400(2) is made available to the propulsion subsystem of the lower spacecraft by way of propellant lines and propellant line coupling devices. More particularly, propellant line 423(2), coupling device 425, and propellant line 423(1) may couple a port of propellant tank 121(2) of the upper spacecraft 400(2) with a port of propellant tank 121(1) of lower spacecraft 400(1). As a result, propellant from the upper spacecraft 400(2) may be made available to the lower spacecraft 400(1) and, more particularly to electric thrusters 126(1). Thus in some implementations, orbit raising maneuvers may be executed using one or more thrusters 126(1), drawing propellant from each of two or more stacked spacecraft.

    [0043] The coupling device 425 is configured to detachably couple the propellant storage arrangement of the first spacecraft 300(1) with the propellant storage arrangement of the second spacecraft 300(2). The coupling device 425 is or includes a line disconnect as described hereinabove.

    [0044] Figure 5 illustrates a system of two spacecraft disposed in a launch configuration according to a yet further implementation. In the illustrated implementation, a first (lower) spacecraft 500(1) is disposed beneath a second (upper) spacecraft 500(2). A launch vehicle includes a primary payload adapter 5002, with which, in the launch configuration, the first spacecraft 500(1) is mechanically coupled. The first spacecraft 500(1) is mechanically coupled with the second spacecraft 500(2), in the launch configuration, by way of an inter-spacecraft coupling arrangement 509. The system of two spacecraft may be injected by the launch vehicle into a first orbit that may be, for example, a low earth orbit or a geosynchronous transfer orbit. Subsequent to being injected into the first orbit, the system may be separated from the launch vehicle. More particularly, the system may be deployed by separating the first spacecraft 500(1) from the primary payload adapter 5002 while the second spacecraft 500(2) remains mechanically coupled with the second spacecraft 500(1) by way of inter-spacecraft coupling arrangement 509.

    [0045] In the illustrated implementation, the lower spacecraft 500(1) includes an on-board propulsion system such as described in connection with Detail B of Figure 1. More particularly, in the illustrated implementation, the lower spacecraft 500(1) includes a number of electric thrusters 126 manifolded by way of the PMA 122 with propellant tanks 121. Propellant such as xenon (Xe) stored in tanks 121 at a high pressure may be reduced in pressure by the PMA 122 and delivered to the electric thrusters 126. Advantageously, a quantity and/or power rating of thrusters 126(1) on the lower spacecraft 400(1) may be optimized for executing an orbit transfer maneuver.

    [0046] In the illustrated implementation, the second spacecraft 500(2) includes thrusters 536, which may be monopropellant or cold gas thrusters, fed by propellant (or cold gas) stored in tank 535. The second spacecraft 500(2), in the illustrated implementation, does not include a high thrust chemical thruster and does not include high specific impulse electric thrusters. The illustrated configuration may be advantageous for missions in which the second spacecraft 500(2), once delivered to or near an operational orbit, does not require a large amount of propulsive energy for orbit transfer or stationkeeping. As a result lower performance, low cost propulsion equipment such as monopropellant or cold gas thrusters may be preferred to high specific impulse electric thrusters or bipropellant thrusters. Advantageously, propellant stored in xenon tanks 121(2) of the upper spacecraft 500(2), as well as propellant stored in xenon tanks 121(1) of the lower spacecraft 500(1) may be available for use by the electric thruster 126(1) on the lower spacecraft 500(1).

    [0047] Propellant from the upper spacecraft 500(2) is made available to the propulsion subsystem of the lower spacecraft by way of propellant lines and propellant line coupling devices. More particularly, propellant line 523(2), coupling device 525, and propellant line 523(1) may couple a port of propellant tank 121(2) of the second spacecraft 500(2) with a port of propellant tank 121(1) of the first spacecraft 500(1). As a result, propellant from the upper spacecraft 500(2) may be made available to the lower spacecraft 500(1) and, more particularly to electric thrusters 126(1). Thus, in some implementations, orbit raising maneuvers may be executed using one or more thrusters 126(1), drawing propellant from each of two or more stacked spacecraft.

    [0048] The coupling device 525 is configured to detachably couple the propellant storage arrangement of the first spacecraft 500(1) with the propellant storage arrangement of the second spacecraft 500(2). The coupling device 525 is or includes a line disconnect as described hereinabove.

    [0049] Figure 6 illustrates a system of two spacecraft disposed in a launch configuration according to an implementation. In the illustrated implementation, a first (lower) spacecraft 600(1) is disposed beneath a second (upper) spacecraft 600(2). A launch vehicle includes a primary payload adapter 6002, with which, in the launch configuration, the first spacecraft 600(1) is mechanically coupled. The first spacecraft 600(1) is mechanically coupled with the second spacecraft 600(2), in the launch configuration, by way of an inter-spacecraft coupling arrangement 609. The system of two spacecraft may be injected by the launch vehicle into a first orbit that may be, for example, a low earth orbit or a geosynchronous transfer orbit. Subsequent to being injected into the first orbit, the system may be separated from the launch vehicle. More particularly, the system may be deployed by separating the first spacecraft 600(1) from the primary payload adapter 6002 while the second spacecraft 600(2) remains mechanically coupled with the second spacecraft 600(1) by way of inter-spacecraft coupling arrangement 609.

    [0050] In the illustrated implementation, the lower spacecraft 600(1) includes an on-board propulsion system such as described in connection with Detail A of Figure 1. More particularly, in the illustrated implementation, the lower spacecraft 600(1) includes a plurality of low thrust thrusters 116(1) and at least one MST 118 and a first propellant storage arrangement including a fuel tank 113(1), and an oxidizer tank 114(1). The upper spacecraft 600(2) may include a second propellant storage arrangement including a fuel tank 113(2), and an oxidizer tank 114(2). In the illustrated implementation, the second spacecraft 600(2) includes thrusters 536, which may be monopropellant or cold gas thrusters, fed by propellant (or cold gas) stored in tank 535. The second spacecraft 600(2), in the illustrated implementation, does not include a high thrust chemical thruster and does not include high specific impulse electric thrusters.

    [0051] Advantageously, propellant stored in the fuel tank 113(2), and the oxidizer tank 114(2) of the upper spacecraft 600(2), as well as propellant stored in the fuel tank 113(1), and the oxidizer tank 114(1) of the lower spacecraft 600(1) may be available for use by the MST 118 and low thrust chemical thrusters 116(1) on the lower spacecraft 600(1).

    [0052] Propellant from the upper spacecraft 600(2) is made available to the propulsion subsystem of the lower spacecraft by way of propellant lines and propellant line coupling devices. More particularly, propellant line 623(2), coupling device 625, and propellant line 623(1) may couple a port of fuel tank 113(2) of the second spacecraft 600(2) with a port of fuel tank 113(1) of the first spacecraft 300(1). As a result, propellant from the upper spacecraft 600(2) may be made available to the lower spacecraft 600(1) and, more particularly to MST 118 and low thrust chemical thrusters 116(1). Thus, in some implementations, orbit raising maneuvers may be executed using a single MST 118, drawing propellant from each of two or more stacked spacecraft.

    [0053] At least one of the coupling device 625 or the coupling device 627 is configured to detachably couple the propellant storage arrangement of the first spacecraft 600(1) with the propellant storage arrangement of the second spacecraft 600(2). At least one of the coupling device 625 or the coupling device 627 is or includes a line disconnect as described hereinabove.

    [0054] Referring now to Figure 7, a method 700 for deploying a system or payload stack will be described. The payload stack includes at least a first spacecraft and a second spacecraft, disposed together, in a launch configuration, for launch by a single launch vehicle. The method may begin, at block 710, by deploying the payload stack, following injection into a first orbit by separating the first spacecraft from the single launch vehicle while the second spacecraft is mechanically coupled with the first spacecraft. As descried hereinabove, the payload stack may include a propellant line arrangement that detachably couples a propellant storage arrangement of the first spacecraft with a propellant storage arrangement of the second spacecraft.

    [0055] The method 700 may continue at block 720 by executing an orbit transfer maneuver from the first orbit to a second orbit. At least a substantial portion of the orbit transfer maneuver may be executed by using at least one thruster of the first spacecraft. Advantageously, propellant stored in each of the first spacecraft and the second propellant storage arrangement is available for use by the at least one thruster of the second spacecraft. At block 730, the second spacecraft may be detached from the first spacecraft only after executing the orbit transfer maneuver.

    [0056] The foregoing merely illustrates principles of the invention. It will thus be appreciated that those skilled in the art will be able to devise numerous systems and methods which, although not explicitly shown or described herein, embody said principles of the invention and are thus within the scope of the invention as defined by the following claims.


    Claims

    1. A system comprising:

    at least two spacecraft, including at least a first spacecraft (300 (1)) and a second spacecraft (300 (2)), the at least two spacecraft disposed together, in a launch configuration, for launch by a single launch vehicle; wherein:

    in the launch configuration, the first spacecraft (300 (1)) is mechanically coupled with a primary payload adapter (3002) of the launch vehicle, and the second spacecraft (300 (2)) is mechanically coupled with the first spacecraft by way of an inter-spacecraft coupling arrangement (309);

    the system is configured to be deployed, following injection into a first orbit by the launch vehicle, by separating the first spacecraft from the primary payload adapter (3002) while the second spacecraft is mechanically coupled with the first spacecraft;

    the first spacecraft includes (300 (1)) a first on-board propulsion subsystem including a first propellant storage arrangement (113 (1), 114 (1));

    the second spacecraft (300 (2)) includes a second on-board propulsion subsystem including a second propellant storage arrangement (113(2), 114(2));

    the first on-board propulsion subsystem includes one or more thrusters (116(2)) configured to execute an orbit transfer manoeuvre from the first orbit to a second orbit; and

    the system includes a propellant line arrangement (323 (1, 2)) comprising at least one coupling device (325, 327) configured to detachably couple the first propellant storage arrangement with the second propellant storage arrangement;

    characterised in that the at least one coupling device (325, 327) is disposed between and exterior to the first spacecraft and second spacecraft;

    and in that the at least one coupling includes a line disconnect including a first portion proximal to the first spacecraft and a second portion proximal to the second spacecraft, each of the first portion and the second portion including a respective valving element and in that the respective valving elements are configured to permit propellant flow when the first portion and the second portion are mutually engaged and prevent propellant flow when the first portion and the second portion are detached.


     
    2. The system of claim 1, wherein the one or more thrusters configured to execute the orbit transfer manoeuvre include a main satellite thruster (MST) (118).
     
    3. The system of claim 2, wherein the MST (118) is a high thrust chemical thruster.
     
    4. The system of claim 2 or 3, wherein propellant stored in each of the first propellant storage arrangement and the second propellant storage arrangement is available for use by the MST (118).
     
    5. The system of any of claims 1-4, wherein the one or more thrusters configured to execute the orbit transfer manoeuvre include a high specific impulse electric thruster.
     
    6. The system of claim 5, wherein propellant stored in each of the first propellant storage arrangement and the second propellant storage arrangement is available for use by the high specific impulse electric thruster.
     
    7. The system of any of claims 1-6, wherein the one or more thrusters configured to execute the orbit transfer manoeuvre include one or both of a first high specific impulse electric thruster and a first high thrust chemical thruster.
     
    8. The system of claim 7, wherein propellant stored in each of the first propellant storage arrangement and the second propellant storage arrangement is available for use by at least one of the first high specific impulse electric thruster and a first high thrust chemical thruster.
     
    9. The system of claim 7 or 8, wherein the second on-board propulsion subsystem does not include a high thrust chemical thruster.
     
    10. The system of any of claims 7-9, wherein the second on-board propulsion subsystem includes one or both of a monopropellant thruster and a cold gas thruster, does not include high thrust chemical thruster and does not include a high specific impulse electric thruster.
     
    11. A method comprising:

    deploying a payload stack including at least a first spacecraft (300 (1)) and a second spacecraft (300 (2)), the first spacecraft and the second spacecraft disposed together, in a launch configuration, for launch by a single launch vehicle, wherein deploying the payload stack includes separating the first spacecraft (300 (1)) from the single launch vehicle while the second spacecraft (300 (2)) is mechanically coupled with the first spacecraft;

    executing an orbit transfer manoeuvre from a first orbit to a second orbit; and

    detaching the second spacecraft from the first spacecraft only after executing the orbit transfer manoeuvre; wherein:

    the first spacecraft includes a first on-board propulsion subsystem including a first propellant storage arrangement;

    the second spacecraft includes a second on-board propulsion subsystem including a second propellant storage arrangement;

    the first on-board propulsion subsystem includes one or more thrusters configured to execute an orbit transfer manoeuvre from the first orbit to a second orbit; and

    the payload stack includes a propellant line arrangement comprising at least one coupling device configured to couple the first propellant storage arrangement with the second propellant storage arrangement and characterized in that J Z the at least one coupling device is diposed between and exterior to the first spacecraft and the second spacecraft;

    and in that the at least one coupling device includes a line disconnect including a first portion proximal to the first spacecraft and a second portion proximal to the second spacecraft, each of the first portion and the second portion including a respective valving element and in that the respective valving elements are configured to permit propellant flow when the first portion and the second portion are mutually engaged and prevent propellant flow when the first portion and the second portion are detached.


     
    12. The method of claim 11, wherein propellant stored in each of the first propellant storage arrangement and the second propellant storage arrangement is available for use by the first on-board propulsion subsystem.
     
    13. The method of claim 11, wherein: the one or more thrusters configured to execute the orbit transfer manoeuvre include one or both of a first high specific impulse electric thruster and a first high thrust chemical thruster; and
    propellant stored in each of the first propellant storage arrangement and the second propellant storage arrangement is available for use by at least one of the first high specific impulse electric thruster and a first high thrust chemical thruster.
     


    Ansprüche

    1. System, umfassend:
    mindestens zwei Raumfahrzeuge, einschließlich mindestens eines ersten Raumfahrzeugs (800 (1)) und eines zweiten Raumfahrzeugs (300 (2)), wobei die mindestens zwei Raumfahrzeuge zusammen in einer Startkonfiguration angeordnet sind, um von einer einzelnen Trägerrakete gestartet zu werden; wobei:

    das erste Raumfahrzeug (300 (1)) in der Startkonfiguration mechanisch mit einem primären Nutzlastadapter (3002) der Trägerrakete gekoppelt ist, und das zweite Raumfahrzeug (300 (2)) mechanisch mit dem ersten Raumfahrzeug über eine Kopplungsanordnung zwischen Raumfahrzeugen (309) gekoppelt ist;

    das System konfiguriert ist, um nach der Injektion in eine erste Umlaufbahn durch die Trägerrakete durch Trennen des ersten Raumfahrzeugs vom primären Nutzlastadapter (3002) eingesetzt zu werden, während das zweite Raumfahrzeug mechanisch mit dem ersten Raumfahrzeug gekoppelt ist;

    das erste Raumfahrzeug (300 (1)) ein erstes Bordantriebssubsystem mit einer ersten Treibmittelspeicheranordnung (113 (1), 114 (1)) umfasst;

    das zweite Raumfahrzeug (300 (2)) ein zweites Bordantriebssubsystem mit einer zweiten Treibstoffspeicheranordnung (113 (2), 114 (2)) umfasst;

    das erste Bordantriebssubsystem ein oder mehrere Triebwerke (116 (2)) umfasst, die konfiguriert sind, um ein Umlaufbahnübertragungsmanöver von der ersten Umlaufbahn zu einer zweiten Umlaufbahn auszuführen; und

    das System eine Treibmittelleitungsanordnung (323 (1, 2)) umfasst, die mindestens eine Kopplungsvorrichtung (325, 327) umfasst, die konfiguriert ist, um die erste Treibmittelspeicheranordnung abtrennbar mit der zweiten Treibmittelspeicheranordnung zu koppeln,

    dadurch gekennzeichnet, dass die mindestens eine Kopplungsvorrichtung (325, 327) zwischen und außerhalb des ersten Raumfahrzeugs und des zweiten Raumfahrzeugs angeordnet ist;

    und dass die mindestens eine Kopplung eine Leitungstrennung umfasst, die einen ersten Abschnitt proximal zum ersten Raumfahrzeug und einen zweiten Abschnitt proximal zum zweiten Raumfahrzeug umfasst, wobei jeder des ersten Abschnitts und des zweiten Abschnitts ein entsprechendes Ventilelement enthält, und dass die jeweiligen Ventilelemente konfiguriert sind, um den Treibmittelfluss zu ermöglichen, wenn der erste Abschnitt und der zweite Abschnitt miteinander in Eingriff stehen, und den Treibmittelfluss verhindern, wenn der erste Abschnitt und der zweite Abschnitt abgetrennt sind.


     
    2. System nach Anspruch 1, wobei das eine oder die mehreren Triebwerke, die zum Ausführen des Umlaufübertragungsmanövers konfiguriert sind, ein Hauptsatellitentriebwerk (MST) (118) umfassen.
     
    3. System nach Anspruch 2, wobei das MST (118) ein chemisches Triebwerk mit hohem Schub ist.
     
    4. System nach Anspruch 2 oder 3, wobei Treibmittel, das in jeder der ersten Treibmittellageranordnung und der zweiten Treibmittellageranordnung gespeichert ist, zur Verwendung durch das MST (118) verfügbar ist.
     
    5. System nach einem der Ansprüche 1 bis 4, wobei das eine oder die mehreren Triebwerke, die zum Ausführen des Umlaufübertragungsmanövers konfiguriert sind, ein elektrisches Triebwerk mit hohem spezifischen Impuls umfassen.
     
    6. System nach Anspruch 5, wobei in jeder der ersten Treibmittelspeicheranordnung und der zweiten Treibmittelspeicheranordnung gespeichertes Treibmittel zur Verwendung durch das elektrische Triebwerk mit hohem spezifischen Impuls verfügbar ist.
     
    7. System nach einem der Ansprüche 1 bis 6, wobei das eine oder die mehreren Triebwerke, die zum Ausführen des Umlaufübertragungsmanövers konfiguriert sind, eines oder beide eines ersten elektrischen Triebwerks mit hohem spezifischen Impuls und eines ersten chemischen Triebwerks mit hohem Schub umfassen.
     
    8. System nach Anspruch 7, wobei Treibmittel, das in jeder der ersten Treibmittelspeicheranordnung und der zweiten Treibmittelspeicheranordnung gespeichert ist, zur Verwendung durch mindestens eines des ersten elektrischen Triebwerks mit hohem spezifischen Impuls und eines ersten chemischen Triebwerks mit hohem Schub verfügbar ist.
     
    9. System nach Anspruch 7 oder 8, wobei das zweite Bordantriebssubsystem kein chemisches Triebwerk mit hohem Schub enthält.
     
    10. System nach einem der Ansprüche 7 bis 9, wobei das zweite Bordantriebssubsystem eines oder beide eines Monotreibstoff-Triebwerks und eines Kaltgas-Triebwerks umfasst, kein chemisches Triebwerk mit hohem Schub umfasst und kein elektrisches Triebwerk mit hohem spezifischen Impuls umfasst.
     
    11. Verfahren, umfassend:

    Einsetzen eines Nutzlaststapels mit mindestens einem ersten Raumfahrzeug (300 (1)) und einem zweiten Raumfahrzeug (300 (2)), wobei das erste Raumfahrzeug und das zweite Raumfahrzeug zusammen in einer Startkonfiguration angeordnet sind, um von einer einzelnen Trägerrakete gestartet zu werden, wobei das Einsetzen des Nutzlaststapels das Trennen des ersten Raumfahrzeugs (300 (1)) von der einzelnen Trägerrakete umfasst, während das zweite Raumfahrzeug (300 (2)) mechanisch mit dem ersten Raumfahrzeug gekoppelt ist;

    Ausführen eines Umlaufbahnübertragungsmanövers von einer ersten Umlaufbahn zu einer zweiten Umlaufbahn; und

    Trennen des zweiten Raumfahrzeugs vom ersten Raumfahrzeug erst nach Ausführung des Umlaufübertragungsmanövers; wobei:

    das erste Raumfahrzeug ein erstes Bordantriebssubsystem mit einer ersten Treibmittelspeicheranordnung umfasst;

    das zweite Raumfahrzeug ein zweites Bordantriebssubsystem mit einer zweiten Treibmittelspeicheranordnung umfasst;

    das erste Bordantriebssubsystem ein oder mehrere Triebwerke umfasst, die konfiguriert sind, um ein Umlaufbahnübertragungsmanöver von der ersten Umlaufbahn zu einer zweiten Umlaufbahn auszuführen, und

    der Nutzlaststapel eine Treibmittelleitungsanordnung umfasst, die mindestens eine Kopplungsvorrichtung umfasst, die konfiguriert ist, um die erste Treibmittelspeicheranordnung mit der zweiten Treibmittellageranordnung zu koppeln, und

    dadurch gekennzeichnet, dass die mindestens eine Kopplungsvorrichtung zwischen und außerhalb des ersten Raumfahrzeugs und des zweiten Raumfahrzeugs angeordnet ist;

    und indem die mindestens eine Kopplungsvorrichtung eine Leitungstrennung umfasst, die einen ersten Abschnitt proximal zum ersten Raumfahrzeug und einen zweiten Abschnitt proximal zum zweiten Raumfahrzeug enthält, wobei jeder des ersten Abschnitts und des zweiten Abschnitts ein entsprechendes Ventilelement enthält, und dass die jeweiligen Ventilelemente konfiguriert sind, um den Treibmittelfluss zu ermöglichen, wenn der erste Abschnitt und der zweite Abschnitt miteinander in Eingriff stehen, und den Treibmittelfluss zu verhindern, wenn der erste Abschnitt und der zweite Abschnitt abgetrennt sind.


     
    12. Verfahren nach Anspruch 11, wobei Treibmittel, das in jeder der ersten Treibmittelspeicheranordnungen und der zweiten Treibmittelspeicheranordnung gespeichert ist, zur Verwendung durch das erste Bordantriebssubsystem verfügbar ist.
     
    13. Verfahren nach Anspruch 11, wobei: das eine oder die mehreren Triebwerke, die zum Ausführen des Umlaufübertragungsmanövers konfiguriert sind, eines oder beide eines ersten elektrischen Triebwerks mit hohem spezifischen Impuls und eines ersten chemischen Triebwerks mit hohem Schub umfassen; und
    Treibmittel, das in jeder der ersten Treibmittelspeicheranordnung und der zweiten Treibmittelspeicheranordnung gespeichert ist, zur Verwendung durch mindestens eines des ersten elektrischen Triebwerks mit hohem spezifischen Impuls und eines ersten chemischen Triebwerks mit hohem Schub verfügbar ist.
     


    Revendications

    1. Système comprenant :
    au moins deux engins spatiaux, comportant au moins un premier engin spatial (300 (1)) et un second engin spatial (300 (2)), les au moins deux engins spatiaux étant disposés ensemble, dans une configuration de lancement, pour le lancement par un seul véhicule de lancement ; dans lequel :

    dans la configuration de lancement, le premier engin spatial (300 (1)) est couplé mécaniquement à un adaptateur de charge utile principal (3002) du véhicule de lancement, et le second engin spatial (300 (2)) est couplé mécaniquement au premier engin spatial au moyen d'un agencement de couplage inter-engins spatiaux (309) ;

    le système est configuré pour être déployé, après l'injection dans une première orbite par le véhicule, en séparant le premier engin spatial de l'adaptateur de charge utile principal (3002) tandis que le second engin spatial est couplé mécaniquement au premier engin spatial ;

    le premier engin spatial comporte (300 (1)) un premier sous-système de propulsion embarqué comportant un premier agencement de stockage de propergol (113 (1), 114 (1)) ;

    le second engin spatial (300 (2)) comporte un second sous-système de propulsion embarqué comportant un second agencement de stockage de propergol (113 (2), 114 (2)) ;

    le premier sous-système de propulsion embarqué comporte un ou plusieurs propulseurs (116 (2)) configurés pour exécuter une manœuvre de transfert d'orbite de la première orbite à une seconde orbite ; et

    le système comporte un agencement de conduite de propergol (323 (1, 2)) comprenant au moins un dispositif de couplage (325, 327) configuré pour coupler de manière détachable le premier agencement de stockage de propergol avec le second agencement de stockage de propergol ;
    caractérisé en ce que l'au moins un dispositif de couplage (325, 327) est disposé entre le premier engin spatial et le second engin spatial et à l'extérieur de ceux-ci ;

    et en ce que l'au moins un couplage comporte une déconnexion de conduite comportant une première partie proximale au premier engin spatial et une seconde partie proximale au second engin spatial, chacune de la première partie et de la seconde partie comportant un élément de soupape respectif et en ce que les éléments de soupape respectifs sont configurés pour permettre l'écoulement de propergol lorsque la première partie et la seconde partie sont mutuellement en prise et pour empêcher l'écoulement de propergol lorsque la première partie et la seconde partie sont détachées.


     
    2. Système selon la revendication 1, dans lequel les un ou plusieurs propulseurs configurés pour exécuter la manœuvre de transfert d'orbite comportent un propulseur de satellite principal (MST) (118).
     
    3. Système selon la revendication 2, dans lequel le MST (118) est un propulseur chimique à forte poussée.
     
    4. Système selon la revendication 2 ou 3, dans lequel le propergol stocké dans chacun du premier agencement de stockage de propergol et du second agencement de stockage de propergol est disponible pour être utilisé par le MST (118).
     
    5. Système selon l'une quelconque des revendications 1 à 4, dans lequel les un ou plusieurs propulseurs configurés pour exécuter la manœuvre de transfert d'orbite comportent un propulseur électrique à impulsion spécifique élevée.
     
    6. Système selon la revendication 5, dans lequel le propergol stocké dans chacun du premier agencement de stockage de propergol et du second agencement de stockage de propergol est disponible pour être utilisé par le propulseur électrique à impulsion spécifique élevée.
     
    7. Système selon l'une quelconque des revendications 1 à 6, dans lequel les un ou plusieurs propulseurs configurés pour exécuter la manœuvre de transfert d'orbite comportent l'un ou les deux d'un premier propulseur électrique à impulsion spécifique élevée et d'un premier propulseur chimique à forte poussée.
     
    8. Système selon la revendication 7, dans lequel le propergol stocké dans chacun du premier agencement de stockage de propergol et du second agencement de stockage de propergol est disponible pour être utilisé par au moins l'un du premier propulseur électrique à impulsion spécifique élevée et d'un premier propulseur chimique à forte poussée.
     
    9. Système selon la revendication 7 ou 8, dans lequel le second sous-système de propulsion embarqué ne comporte pas de propulseur chimique à forte poussée.
     
    10. Système selon l'une quelconque des revendications 7 à 9, dans lequel le second sous-système de propulsion embarqué comporte l'un ou les deux d'un propulseur monopropergol et d'un propulseur à gaz froid, ne comporte pas de propulseur chimique à forte poussée et ne comporte pas de propulseur électrique à impulsion spécifique élevée.
     
    11. Procédé comprenant :

    le déploiement d'une pile de charges utiles comportant au moins un premier engin spatial (300 (1)) et un second engin spatial (300 (2)), le premier engin spatial et le second engin spatial étant disposés ensemble, dans une configuration de lancement, pour le lancement par un seul véhicule de lancement, dans lequel le déploiement de la pile de charges utiles comporte la séparation du premier engin spatial (300 (1)) du véhicule de lancement unique tandis que le second engin spatial (300 (2)) est couplé mécaniquement au premier engin spatial ;

    l'exécution d'une manœuvre de transfert d'orbite d'une première orbite à une seconde orbite ; et

    le détachement du second engin spatial du premier engin spatial seulement après l'exécution de la manœuvre de transfert d'orbite ; dans lequel :

    le premier engin spatial comporte un premier sous-système de propulsion embarqué comportant un premier agencement de stockage de propergol ;

    le second engin spatial comporte un second sous-système de propulsion embarqué comportant un second agencement de stockage de propergol ;

    le premier sous-système de propulsion embarqué comporte un ou plusieurs propulseurs configurés pour exécuter une manœuvre de transfert d'orbite de la première orbite à une seconde orbite ; et

    la pile de charges utiles comporte un agencement de conduite de propergol comprenant au moins un dispositif de couplage configuré pour coupler le premier agencement de stockage de propergol au second agencement de stockage de propergol et caractérisé en ce que l'au moins un dispositif de couplage est disposé entre le premier engin spatial et le second engin spatial et à l'extérieur de ceux-ci ;

    et en ce que l'au moins un dispositif de couplage comporte une déconnexion de conduite comportant une première partie proximale au premier engin spatial et une seconde partie proximale au second engin spatial, chacune de la première partie et de la seconde partie comportant un élément de soupape respectif et en ce que les éléments de soupape respectifs sont configurés pour permettre l'écoulement de propergol lorsque la première partie et la seconde partie sont mutuellement en prise et pour empêcher l'écoulement de propergol lorsque la première partie et la seconde partie sont détachées.


     
    12. Procédé selon la revendication 11, dans lequel le propergol stocké dans chacun du premier agencement de stockage de propergol et du second agencement de stockage de propergol est disponible pour être utilisé par le premier sous-système de propulsion embarqué.
     
    13. Procédé selon la revendication 11, dans lequel : les un ou plusieurs propulseurs configurés pour exécuter la manœuvre de transfert d'orbite comportent l'un ou les deux d'un premier propulseur électrique à impulsion spécifique élevée et d'un premier propulseur chimique à forte poussée ; et
    le propergol stocké dans chacun du premier agencement de stockage de propergol et du second agencement de stockage de propergol est disponible pour être utilisé par au moins l'un du premier propulseur électrique à impulsion spécifique élevée et d'un premier propulseur chimique à forte poussée.
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description