(19)
(11)EP 3 415 106 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
03.08.2022 Bulletin 2022/31

(21)Application number: 17176002.8

(22)Date of filing:  14.06.2017
(51)International Patent Classification (IPC): 
A61B 17/34(2006.01)
A61B 90/10(2016.01)
A61B 10/00(2006.01)
(52)Cooperative Patent Classification (CPC):
A61B 10/0045; A61B 17/3478; A61B 2090/103; A61B 90/10

(54)

BRAIN INTERACTION APPARATUS, CRANIAL ANCHOR, AND RELATED SYSTEMS

GEHIRNINTERAKTIONSVORRICHTUNG, KRANIALER ANKER, SOWIE ENTSPRECHENDE SYSTEME

APPAREIL D'INTERACTION CÉRÉBRALE, ANCRE CRÂNIENNE ET SYSTÈMES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
19.12.2018 Bulletin 2018/51

(73)Proprietors:
  • IMEC vzw
    3001 Leuven (BE)
  • Katholieke Universiteit Leuven
    3000 Leuven (BE)
  • VIB VZW
    9052 Gent (BE)

(72)Inventors:
  • HAESLER, Sebastian
    3001 Leuven (BE)
  • HOFFMAN, Luis
    3001 Leuven (BE)

(74)Representative: AWA Sweden AB 
Box 5117
200 71 Malmö
200 71 Malmö (SE)


(56)References cited: : 
WO-A1-2009/047494
US-A1- 2011 224 607
US-A1- 2012 316 628
US-A1- 2006 015 067
US-A1- 2012 245 529
US-A1- 2016 346 513
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical field



    [0001] The inventive concept described herein generally relates to the field of brain interaction apparatuses and, more particularly, to a brain interaction apparatus comprising a plurality of filaments, to cranial anchors, and to related systems.

    Background



    [0002] Catheters have been used for many years to deliver therapeutic agents to patients. In many instances, catheters are implanted in patients that have been diagnosed with diseases that require long-term therapeutic treatment, for example brain tumors. When treating these types of diseases, a need arises to deliver therapeutic drugs to multiple locations simultaneously. Current technology requires the use of multiple separate catheters and pumps to ensure the equal delivery of therapeutics to the tumor and the outlying tissues.

    [0003] Additionally, in some cases it is necessary to obtain several samples over a period of time in order to determine the type of disease and monitor its progress. Such surgical procedures carry an intrinsically high level of risk of infection and hemorrhage.

    [0004] An example of a catheter assembly aimed at reducing the risk of hemorrhage or tissue trauma is disclosed in US application US2011/0224607A. The catheter assembly comprises a first catheter including a wall with an inner surface, and a second catheter connected to the wall of the first catheter and disposed outward of the inner surface of the wall.

    [0005] PCT application WO2014170338 discloses another type of a surgical instrument used for invasive maneuvers in the body of a patient. The multi-cannula surgical instrument disclosed in this document functions either as an electrocautery instrument or as a safety needle. The multi-cannula surgical instrument comprises a rigid outer cannula, and an inner cannula. The inner cannula further comprises one or more first inner ducts and one or more first flow-through orifices near a distal tip of the inner cannula.

    [0006] Further, in US 2010/0222668A1 a catheter system adapted for navigating, guiding and implanting a catheter or a plurality of catheters in a spatially defined implantation within the tissue of a patient is provided. The system can include a tissue navigation system and a probe to inform the navigation system to guide emplacement of the catheters within a target tissue. The probe can provide images, such as fiber-optic visual images, or ultrasound images, or can provide radiolocation data, to guide the catheter emplacement. The catheters supply a pressurized liquid including a bioactive agent, such as can be used in the treatment of cancer, for example 1231-or 1251-IUDR. The system and methods provided can be used in the treatment of locally advanced tumors, such as cancers of the brain, head or neck, esophagus, prostate, ovary, liver, pancreas, bladder or rectum.

    [0007] US2016/346513 A1 discloses needle-sized tools used in arthroscopy, otolaryngology, and other surgical fields. By bendable joint designs the tools can be used by surgeons to navigate sharp corners.

    [0008] US2006/015067 A1 discloses methods and apparatuses for treating damaged tissue by using an apparatus that atraumatically delivers a bioactive agent via a needle.

    [0009] US2012/0245529 A1 discloses an anchoring device for anchoring a line in a skull bore hole. By using the anchoring device, the line can be lead out of the bore hole at a flat angle without being bent too greatly or even kinked.

    [0010] WO2009/047494 A1 presents a skull mount that is attachable to a hole formed in the skull. The skull mount comprises an alignment guide along which neurosurgical instruments can be passed.

    [0011] US2012/0316628 A1 discloses a method of performing a medical procedure comprising introducing a medical device through a cranial burr hole into the brain tissue and mounting a plug base around the cranial burr hole.

    [0012] However, there exists a significant need for improved techniques related to brain interaction apparatuses in order to minimize the invasiveness of procedures in the brain of a patient. Further, there is a need for increased accuracy of such procedures in order to gain a better understanding of diseases and ultimately select an appropriate treatment. Still further, there is a need to improve brain interaction apparatuses with respect to size and ease of application to the skull and brain of a patient.

    Summary of the invention



    [0013] The invention is defined in claims 1 and 11. Further embodiments are defined in the dependent claims.

    [0014] It is an object of the present inventive concept to mitigate, alleviate or eliminate one or more of the above-identified deficiencies in the art and disadvantages singly or in combination. As laid forward in the appended claims, this object is achieved by a brain interaction apparatus in combination with a cranial anchor as well as a system comprising the two, and a kit of parts including the brain interaction apparatus and filaments.

    [0015] Features and advantages of the present inventive concept will appear from the following detailed disclosure, from the attached claims as well as from the drawings.

    [0016] Generally, all terms used in the claims are to be interpreted according to their ordinary meaning in the technical field, unless explicitly defined otherwise herein. Further, the use of terms "first", "second", and "third", and the like, herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. All references to "a/an/the [element, device, component, means, step, etc]" are to be interpreted openly as referring to at least one instance of said element, device, component, means, step, etc., unless explicitly stated otherwise. The steps of any method disclosed herein do not have to be performed in the exact order disclosed, unless explicitly stated.

    Brief description of the drawings



    [0017] The above, as well as additional objects, features and advantages of the present concept, will be better understood through the following illustrative and non-limiting detailed description of different examples of the present concept, with reference to the appended drawings, wherein:

    FIG. 1a schematically illustrates a side view of a brain interaction apparatus and a cranial anchor;

    FIG. 1b schematically illustrates a perspective view of a brain interaction apparatus and a cranial anchor;

    FIG. 1c schematically illustrates a top view of cranial anchor;

    FIG. 1d schematically illustrates a side view of a cranial anchor;

    FIG. 2 schematically illustrates a brain interaction apparatus;

    FIG. 3a schematically illustrates a side view of a steering tip;

    FIG. 3b schematically illustrates a side view of a steering tip;

    FIG. 3c schematically illustrates a side view of a steering tip;

    FIG. 3d schematically illustrates a top view of a steering tip;

    FIG. 4a schematically illustrates a side view of a brain invasive launcher;

    FIG. 4b schematically illustrates a side view of a brain invasive launcher;

    FIG. 5 schematically illustrates a two-dimensional representation of a plurality of filaments and respective trajectories;

    Fig 6a schematically illustrates a cross-sectional view of another example of a combination of a brain interaction apparatus and a cranial anchor;

    Fig 6b illustrates a cross-section of a multi-lumen stylet;

    Fig 7a, b and c illustrates a narrowed section of the cranial anchor of fig 6 in further detail;

    Fig 8 is a flow chart illustrating a method, not forming part of the invention, for reaching a pre-determined location of a brain by using a brain interaction apparatus and a cranial anchor;

    Fig 9 is a flowchart illustrating a method, not forming part of the invention, for assisted decision support; and

    Fig 10 generally illustrates a system for implanting the exemplary method according to the flowchart of fig 9.


    Detailed description



    [0018] Fig. 1a and 1b generally illustrates a system 100 comprising a brain interaction apparatus 102 and a cranial anchor 104 for providing filaments 106 into a brain such that measurement data or biological samples can be collected or such that a medical substance can be injected with a high degree of location accuracy. In fig. 1c and 1d, the cranial anchor 104 is illustrated in isolation.

    [0019] The system 100 may be applied by providing an aperture in a skull and thereafter insert the cranial anchor 104 into the hole. In order to be securely attached to the skull the cranial anchor 104 may be provided with a flange that rests against the skull when the cranial anchor is inserted. Further, the cranial anchor may be rotationally symmetric and have side walls sloping inwards, as illustrated. An advantage of these features is that the filaments 106 can be gradually redirected approximately 90 degrees from being fed in parallel with a skull surface outside the skull to being fed in parallel with a normal of the skull surface inside the skull. This in turn implies that the filaments may lay close to the skull when measurement data or samples are collected or when substance is injected, which both reduces a risk that the filaments are unintentionally displaced and increases the comfort of a patient.

    [0020] In order to guide the filaments grooves 108 may be provided in the cranial anchor. These grooves 108 may in a distal end of the cranial anchor be aligned with launching channels of the brain interaction apparatus 102 such that the filaments may smoothly be transferred from the cranial anchor to the brain interaction apparatus.

    [0021] In order to make sure that the pre-determined location can be reached with a high degree of accuracy a launcher position indicator may be used. The launcher position indicator may be achieved in different ways. It may be achieved mechanically by having a recess provided in the brain invasive launcher 102 and a protrusion in the cranial anchor 104, or vice versa, such that a sound is formed such that in turn that an operator is notified acoustically and/or tactically that the brain invasive launcher is correctly provided in the cranial anchor 104. After having made sure that the brain invasive launcher 102 is correctly mounted with respect to the cranial anchor 104 a location of a distal end of the brain invasive launcher 102 can be determined with high degree of accuracy.

    [0022] As illustrated in fig 2, in order to be able to steer the filaments 106 to final positions within the brain each of the filaments are provided with steering tips 200. The steering tips 200 are designed to be rotationally asymmetrical, which has the effect that they move into the brain along a preset trajectory. In order to be able to precisely guide the filaments into the brain the steering tips are exchangeable, which means e.g. that if a sharp trajectory is to prefer, i.e. a path having a high degree of curvature, a steering tip with a palpable rotational asymmetry is chosen.

    [0023] As illustrated in fig 3a to 3d, the steering tips 200 may come in different designs and shapes. As illustrated in fig 3a, a steering tip 200a according to a first example may have a distal end being offset with respect to a longitudinal center axis and be provided with one aperture, such as a micro pore, for injecting substances into the brain or for receiving a biological sample e.g. in the form of a suspension or other fluid or semi-fluid containing biological material. In fig 3b a steering tip 200b according to a second example is illustrated. Unlike the steering tip 200a according to the first example, the steering tip 200b is provided with a plurality of apertures 202b, such as micro-pores, such that biological material can be gathered quicker or such that substances can be injected over a larger area at the same time. In addition, an advantage of having the plurality of apertures is that a flow may be distributed over a larger area, which makes higher flow rates possible. Further, another positive effect of having the flow distributed over a larger area is that a risk that the tissue is damaged can be reduced.

    [0024] In fig 3c a steering tip 200c is illustrated. Unlike the steering tips 200a, 200b according to the first and second examples, the steering tip 200c according to the third example is not provided with a distal end offset a longitudinal center axis, but instead being curved such that when being fed into the brain curvature will give rise to that the filament to which the steering tip is attached moves along a trajectory. Thus, providing for that the filament is following the trajectory does not require the steering tip to be placed off-set with respect to the longitudinal center axis. In fig 3d a top view of a steering tip 200d according to a fourth example is illustrated. As the steering tips 200a, 200b according to the first and second examples, a distal end is offset a longitudinal center axis.

    [0025] As mentioned above, the apertures may be micro-pores. Micro-pores used for delivering substances may be in a range 0.5 µm to 2 µm, and micro-pores used for collecting biological samples may be in a range 2 µm to 30 µm. Further, in order to provide for that the micro-pores for collecting are at reduced risk of being clogged these may have an anti-clogging design.

    [0026] Having micro-pores that are fabricated provides an advantage compared to e.g. porous polysulfane in that shape and size can be precisely controlled, which in turn provides for that injecting substances can be made with a high degree of accuracy.

    [0027] In order to provide for that the filaments can reach locations of the brain with high accuracy launching channels 400 of the brain invasive launcher 102 can have exit holes 402 at well-defined angles and directed in chosen directions, as illustrated in fig 4a and 4b.

    [0028] Fig 5 schematically illustrates an example of how trajectories along which the filaments are inserted can be controlled. After having placed the brain invasive launcher 102 in the cranial anchor (not shown in fig 5) the filaments are fed into the brain, and due to the rotational asymmetry of the steering tips the filaments will move along well defined trajectories.

    [0029] In order to change a path 500a of a first filament to reach a first location 502a the first filament may be rotated a pre-set number of degrees in a first rotation location 504a such that the path 500a is changed. In the same manner, a path 500b of a second filament to reach a second location 502b may be changed by being rotated in a second rotation location 504b.

    [0030] Fig 6a illustrates an example of a system 600 for providing filaments 602 into the brain, wherein the system comprises a brain invasive launcher 604 connected to a cranial anchor 606 similar to the system 100 illustrated in fig 1a and 1b. However, unlike the system 100, the brain invasive launcher 604 is combined with a multi-lumen stylet 608, further illustrated in fig 6b, such that the filaments can be fed into grooves 610, or other types of channels, of the multi-lumen stylet as the brain invasive launcher 604 and the multi-lumen stylet 608 are fed into the brain.

    [0031] Further, a central channel 612 of the multi-lumen stylet 608 may be provided for a central filament 614. The central filament may be of a different type than the other filaments 602. For instance, the central filament 614 may be a filament configured for gathering biological material and the other filaments 602 may be electrodes for collecting electric impulse data. Even though only illustrated together with the multi-lumen stylet 608, the central channel 612 may also be used in systems without the multi-lumen stylet 608, such as the system 100 illustrated in fig 1a and 1b. Further, the central filament 614 and the central channel 612 does not necessarily have to be placed centrally, but may in other embodiments than the one illustrated in fig 6a be placed in a non-central location. In addition, even though one central channel 612 and central filament 614 are illustrated, several channels and filaments like the central channel 612 and the central filament 614 may be used as well.

    [0032] In order to provide for that the filaments 602 are properly fed into the grooves 610 of the multi-lumen stylet 608 a narrowed section 616 may be provided in the cranial anchor 606, as illustrated in fig 7a-c. In addition to pushing the filaments 602 into the grooves 610 the narrowed section 616 may also serve as a pivotal point for the multi-lumen stylet as illustrated in fig 7a-c. By having the possibility to pivot the multi-lumen stylet around the narrowed section 616 a number of different path options can be increased. Even though only illustrated for the system 600 comprising the multi-lumen stylet 608 the concept of having the narrowed section 616 such that pivoting is made possible is also applicable to for instance the system 100 illustrated in fig 1a-b.

    [0033] The multi-lumen stylet 608 may after the filaments 602 have been introduced be removed by carefully withdrawing the multi-lumen stylet 608 out from the brain via the cranial anchor 606 or, alternatively, the multi-lumen stylet 608 may be left in situ. Still an option is to partly remove the multi-lumen stylet, that is, withdrawing part of the multi-lumen stylet and leaving part of multi-lumen stylet in situ.

    [0034] Having the multi-lumen stylet 608 provided with individual grooves, or other channels, for the filaments 602 reduces a risk that the filaments stuck when introducing or removing these compared to when one and the same channel is used for multiple filaments.

    [0035] In order to be able to individually adapt the system 600, as well as the system 100, the different parts of the systems may come in different sizes and shapes. For instance, a child skull may require a small cranial anchor, in order to reach deep into the brain an elongated brain invasive launcher may be needed, in order to collect measurement data in the form of electric pulses filaments in the form of electrodes may be needed, in order to be able to follow a set path in the brain a steering tip with a rotational asymmetry making it possible to closely follow this set path may be chosen, etc. Thus, having a modular system, like the systems 100, 600 illustrated in fig 1a-b and fig 6a, makes it possible to provide a high degree of individual adjustment.

    [0036] Both the systems 100, 600 illustrated in fig 1 and fig 6, respectively, may form part of a system for determining a setup for collection of biological material, and/or a setup for collection of measurement data, and/or a setup of injection of at least one substance in a subsequent step. In addition to the brain interaction apparatus and the cranial anchor, the system may comprise a data receiving unit configured to receive the measurement data collected by the at least one of the plurality of filaments, and a data storing unit configured to store the measurement data received by the data receiving unit, and a data analyzing unit configured to analyze the measurement data in order to determine the setup for collection of biological material, and/or a setup for collection of measurement data, and/or a setup for injection of at least one substance. The set-up may in this context be related to any information directly or indirectly related to when, where and how collection of biological material can be made in a subsequent step in order to achieve a better understanding of a condition of the brain, or directly or indirectly related to when, where and how collection of measurement data can be made in a subsequent step in order to achieve a better understanding of a condition of the brain, or directly or indirectly related to when, where and how injection of at least one substance can be made in a subsequent step in order improve the condition of the brain.

    [0037] Fig 8 generally illustrates a general exemplary method 800 for reaching a pre-determined location of the brain in order to be able to collect measurement data or to inject substances, may comprise providing a cranial anchor in the skull 802, providing a brain interaction apparatus comprising a brain invasive launcher and filaments 804, connecting the brain invasive launcher to the cranial anchor 806, and feeding the at least one of the filaments from the brain invasive launcher into the brain to the pre-determined location 808.

    [0038] Having the possibility to reach a location of the brain with high accuracy makes it possible to collect reliable data from different parts of the brain during a period of time, which in turn provides for that this data can be compared with other data collected from other brains in order to suggest a likely diagnosis or a treatment plan likely to work, but also in the case a tumor is present in the brain a likely placement of the tumor and a likely evolvement of the tumor.

    [0039] Fig 9 generally illustrates an exemplary method for providing decision support. The method 900 may comprise collecting measurement data from the brain 902, e.g. by using any of the systems or methods described herein, transferring location data and measurement data to a data processing device 904, comparing the location data and the measurement data with location data and measurement data collected from other brains 906, and providing a location data for subsequent measurement or providing a diagnosis or providing location data for injection 908.

    [0040] In order to implement the method 900 illustrated in fig 9, a system 1000 generally illustrated in fig 10 may be used. In order to collect the location data and the measurement data a system 1002 attached to the skull of a patient may be used. The system 1002 may comprise the systems 100, 600 illustrated in fig 1a-b and fig 6a in order to collect the location and measurement data.

    [0041] After having collected the data this can be sent to a data processing device 1006, e.g. a server. In order to analyze the data collected from the brain, location data and measurement data collected from other brains can be downloaded and compared to the data collected from the brain. The data collected from other brains may be downloaded via a data communications network 1008 and the data collected from other brains may be stored on a data storage device 1010.

    [0042] The inventive concept has mainly been described above with reference to a few embodiments. However, as is readily appreciated by a person skilled in the art, other embodiments than the ones disclosed above are equally possible within the scope of the inventive concept, as defined by the appended patent claims.


    Claims

    1. A brain interaction apparatus (102) operatively connected to a cranial anchor (104), said brain interaction apparatus (102) comprising:

    a plurality of filaments (106);

    a brain invasive launcher having a plurality of launching channels (108) extending in a longitudinal direction between a proximal end and a distal end thereof, each launching channel (108) being configured for holding a filament (106) moveably arranged therein, the filament being one of the plurality of filaments (106);

    characterized in that

    at least one of the plurality of filaments (106) is provided with a steering tip (200) affixed to a distal end thereof, wherein the steering tip (200) comprises a portion tapering in a longitudinal direction of the at least one of the plurality of filaments (106) thereby narrowing toward a distal end of the steering tip (200), the tapered portion being rotationally asymmetrical about a longitudinal axis of the at least one of the plurality of filaments (106).


     
    2. The brain interaction apparatus (102) according to claim 1, wherein the distal end of the steering tip (200) is offset from the longitudinal axis of the at least one of the plurality of filaments (106).
     
    3. The brain interaction apparatus (102) according to any one of the preceding claims, wherein the brain invasive launcher comprises a launcher position indicator configured to determine a location of the brain invasive launcher in a brain of a subject.
     
    4. The brain interaction apparatus (102) according to any one of the preceding claims, wherein the at least one of the plurality of filaments (106) is configured to be in an installation state, in which the filament (106) is housed in the launching channel (108), and a working state, in which the filament (106) is extended beyond the distal end of the brain invasive launcher when the same is in a fixed position.
     
    5. The brain interaction apparatus (102) according to any one of the preceding claims, wherein the at least one of the plurality of filaments (106) comprises a plurality of apertures (202b).
     
    6. The brain interaction apparatus (102) according to any one of the preceding claims, wherein the steering tip (200) comprises a steering tip position indicator configured to determine a location of the steering tip (200) and/or the at least one of the plurality of filaments (106) in a brain of a subject.
     
    7. The brain interaction apparatus (102) according to any one of the preceding claims, wherein the at least one of the plurality of filaments (106) is configured to collect measurement data.
     
    8. The brain interaction apparatus (102) according to claim 7, wherein the at least one of the plurality of filaments (106) is an optical fibre.
     
    9. The brain interaction apparatus (102) according to claim 7, wherein the at least one of the plurality of filaments (106) is an electrical wire.
     
    10. The brain interaction apparatus (102) according to any one of the preceding claims, further comprising a multi-lumen stylet (608) connected to the brain invasive launcher, wherein the multi-lumen stylet (608) comprises a plurality of channels (610, 612) configured for holding the plurality of filaments (106), and wherein the plurality of channels (610, 612) is aligned with the plurality of launching channels (200) of the brain invasive launcher.
     
    11. A cranial anchor (104) operatively connected to a brain interaction apparatus (102), said brain interaction apparatus (102) comprising:
    a plurality of filaments (106); a brain invasive launcher having a plurality of launching channels (108) extending in a longitudinal direction between a proximal end and a distal end thereof, each launching channel (108) being configured for holding a filament (106) moveably arranged therein, the filament being one of the plurality of filaments (106); wherein at least one of the plurality of filaments (106) is provided with a steering tip (200) affixed to a distal end thereof, wherein the steering tip (200) comprises a portion tapering in a longitudinal direction of the at least one of the plurality of filaments (106) thereby narrowing toward a distal end of the steering tip (200), the tapered portion being rotationally asymmetrical about a longitudinal axis of the at least one of the plurality of filaments (106), the cranial anchor (104) being configured to be secured to a skull of a subject, the cranial anchor (104) comprising:

    a proximal end forming an outer flange;

    an elongated distal end for inserting into a skull aperture, wherein an axial lumen is provided, the axial lumen being tapered in a longitudinal direction of the cranial anchor (104) and narrowing toward the distal end;

    wherein the proximal end comprises at least one groove (108) extending from the circumference of the outer flange toward a central axis of the cranial anchor (104), and wherein the axial lumen is configured for receiving and guiding the brain invasive launcher of the brain interaction apparatus (102), and wherein the axial lumen provides a pivot point for directing the brain invasive launcher, wherein the pivot point is a narrowed section in the cranial anchor (104).


     
    12. A system (100) comprising;

    the brain interaction apparatus (102) according to any one of the claims 1 to 10; wherein the cranial anchor (104) is configured to be secured to a skull of a subject, the cranial anchor (104) comprising

    a proximal end forming an outer flange;

    an elongated distal end for inserting into a skull aperture,
    wherein an axial lumen is provided, the axial lumen being tapered in a longitudinal direction of the cranial anchor (104) and narrowing toward the distal end;

    wherein the proximal end comprises at least one groove (108) extending from the circumference of the outer flange toward a central axis of the cranial anchor (104), and wherein the axial lumen is configured for receiving and guiding the brain invasive launcher of the brain interaction apparatus (102), and wherein the axial lumen provides a pivot point for directing the brain invasive launcher, wherein the pivot point is a narrowed section in the cranial anchor (104).


     
    13. The system (1000) according to claim 12, further comprising

    a data receiving unit (1006) configured to receive measurement data collected by the at least one of the plurality of filaments;

    a data storing unit (1010) configured to store the measurement data received by the data receiving unit;

    a data analyzing unit configured to analyze the measurement data in order to determine a setup of collection of biological material, and/or a setup of collection of data, and/or a setup of injection of at least one substance.


     
    14. The system according to claim 12 or 13, wherein the elongated distal end of the cranial anchor is provided with a narrowed section having a diameter adjusted to a diameter of the multi-stylet (608) such that the plurality of filaments (106) is brought into the channels (610, 612).
     
    15. The system according to any one of the claims 12 to 14, wherein the narrowed section function provides a pivotal point for the multi-stylet (608).
     
    16. A kit of parts comprising:

    a brain interaction apparatus (102) according to any one of claims 1 to 10;

    wherein the kit of parts comprises at least two types of filaments (106), and wherein the kit of parts comprises at least two types of steering tips (200).


     
    17. The kit of parts according to claim 16, further comprising at least two types of cranial anchors (104) according to claim 11.
     


    Ansprüche

    1. Gehirninteraktionsvorrichtung (102), die betriebsfähig mit einem kranialen Anker (104) verbunden ist, wobei die Gehirninteraktionsvorrichtung (102) umfasst:

    eine Vielzahl von Filamenten (106);

    eine gehirninvasive Einführvorrichtung, die eine Vielzahl von Einführkanälen (108), die sich in einer Längsrichtung zwischen einem proximalen Ende und einem distalen Ende derselben erstrecken, aufweist, wobei jeder Einführkanal (108) konfiguriert ist, um ein Filament (106) zu enthalten, das darin beweglich angeordnet ist, wobei das Filament eines von der Vielzahl von Filamenten (106) ist;

    dadurch gekennzeichnet, dass mindestens eines der Vielzahl von Filamenten (106) mit einer Lenkspitze (200) versehen ist, die an einem distalen Ende desselben angebracht ist, wobei die Lenkspitze (200) einen Abschnitt umfasst, der in einer Längsrichtung des mindestens einen der Vielzahl von Filamenten (106) spitz zuläuft, wodurch er sich in Richtung auf ein distales Ende der Lenkspitze (200) verengt, wobei der spitz zulaufende Abschnitt um eine Längsache des mindestens einen der Vielzahl von Filamenten (106) rotationsasymmetrisch ist.


     
    2. Gehirninteraktionsvorrichtung (102) nach Anspruch 1, wobei das distale Ende der Lenkspitze (200) gegenüber der Längsachse des mindestens einen der Vielzahl von Filamenten (106) versetzt ist.
     
    3. Gehirninteraktionsvorrichtung (102) nach einem der vorhergehenden Ansprüche, wobei die gehirninvasive Einführvorrichtung einen Einführvorrichtungspositionsindikator umfasst, der konfiguriert ist, um eine Stelle der gehirninvasiven Einführvorrichtung in einem Gehirn einer Versuchsperson zu bestimmen.
     
    4. Gehirninteraktionsvorrichtung (102) nach einem der vorhergehenden Ansprüche, wobei das mindestens eine der Vielzahl von Filamenten (106) konfiguriert ist, um sich in einem Installationszustand, in dem das Filament (106) in dem Einführkanal (108) aufgenommen ist, und in einem Arbeitszustand, in dem das Filament (106) über das distale Ende der gehirninvasiven Einführvorrichtung hinaus verlängert ist, wenn diese in einer festgelegten Position ist, zu befinden.
     
    5. Gehirninteraktionsvorrichtung (102) nach einem der vorhergehenden Ansprüche, wobei das mindestens eine der Vielzahl von Filamenten (106) eine Vielzahl von Öffnungen (202b) umfasst.
     
    6. Gehirninteraktionsvorrichtung (102) nach einem der vorhergehenden Ansprüche, wobei die Lenkspitze (200) einen Lenkspitzenpositionsindikator umfasst, der konfiguriert ist, um eine Stelle der Lenkspitze (200) und/oder des mindestens einen der Vielzahl von Filamenten (106) in einem Gehirn einer Versuchsperson zu bestimmen.
     
    7. Gehirninteraktionsvorrichtung (102) nach einem der vorhergehenden Ansprüche, wobei das mindestens eine der Vielzahl von Filamenten (106) konfiguriert ist, um Messdaten zu erheben.
     
    8. Gehirninteraktionsvorrichtung (102) nach Anspruch 7, wobei das mindestens eine der Vielzahl von Filamenten (106) eine Lichtleitfaser ist.
     
    9. Gehirninteraktionsvorrichtung (102) nach Anspruch 7, wobei das mindestens eine der Vielzahl von Filamenten (106) ein elektrischer Draht ist.
     
    10. Gehirninteraktionsvorrichtung (102) nach einem der vorhergehenden Ansprüche, ferner umfassend einen Multilumen-Führungsstab (608) ist, der mit der gehirninvasiven Einführvorrichtung verbunden ist, wobei der Multilumen-Führungsstab (608) eine Vielzahl von Kanälen (610, 612) umfasst, die konfiguriert ist, um die Vielzahl von Filamenten (106) zu enthalten, und wobei die Vielzahl von Kanälen (610, 612) auf die Vielzahl von Einführkanälen (200) der gehirninvasiven Einführvorrichtung ausgerichtet ist.
     
    11. Kranialer Anker (104), der betriebsfähig mit einer Gehirninteraktionsvorrichtung (102) verbunden ist, wobei die Gehirninteraktionsvorrichtung (102) umfasst:

    eine Vielzahl von Filamenten (106); eine gehirninvasive Einführvorrichtung, die eine Vielzahl von Einführkanälen (108) umfasst, die sich in einer Längsrichtung zwischen einem proximalen Ende und einem distalen Ende derselben erstrecken, wobei jeder Einführkanal (108) konfiguriert ist, um ein Filament (106) zu enthalten, das darin beweglich angeordnet ist, wobei das Filament eines der Vielzahl von Filamenten (106) ist; wobei mindestens eines der Vielzahl von Filamenten (106) mit einer Lenkspitze (200) versehen ist, die an einem distalen Ende desselben angebracht ist, wobei die Lenkspitze (200) einen Abschnitt umfasst, der in einer Längsrichtung des mindestens einen der Vielzahl von Filamenten (106) spitz zuläuft, wodurch er sich in Richtung auf ein distales Ende der Lenkspitze (200) verengt, wodurch er sich in Richtung auf ein distales Ende der Lenkspitze (200) verengt, wobei der spitz zulaufende Abschnitt um eine Längsache des mindestens einen der Vielzahl von Filamenten (106) rotationsasymmetrisch ist, wobei der kraniale Anker (104) konfiguriert ist, um an einem Schädel einer Versuchsperson befestigt zu sein,

    wobei der kraniale Anker (104) umfasst:

    ein proximales Ende, das einen äußeren Flansch bildet;

    ein längliches distales Ende zum Einfügen in eine Schädelöffnung, wobei ein axiales Lumen bereitgestellt wird, wobei das axiale Lumen in einer Längsrichtung des kranialen Ankers (104) spitz zuläuft und sich in Richtung auf das distale Ende verengt;

    wobei das proximale Ende mindestens eine Rille (108) umfasst, die sich vom Umfang des äußeren Flansches in Richtung auf eine Mittelachse des kranialen Ankers (104) erstreckt, und wobei das axiale Lumen konfiguriert ist, um die gehirninvasive Einführvorrichtung der Gehirninteraktionsvorrichtung (102) aufzunehmen und zu führen, und wobei das axiale Lumen einen Schwenkpunkt zum Leiten der gehirninvasiven Einführvorrichtung bereitstellt, wobei der Schwenkpunkt ein verengtes Teilstück in dem kranialen Anker (104) ist.


     
    12. System (100) umfassend;

    die Gehirninteraktionsvorrichtung (102) nach einem der Ansprüche 1 bis 10; wobei der kraniale Anker (104) konfiguriert ist, um an einem Schädel einer Versuchsperson befestigt zu sein, wobei der kraniale Anker (104) umfasst

    ein proximales Ende, das einen äußeren Flansch bildet;

    ein längliches distales Ende zum Einfügen in eine Schädelöffnung, wobei ein axiales Lumen bereitgestellt wird, wobei das axiale Lumen in einer Längsrichtung des kranialen Ankers (104) spitz zuläuft und sich in Richtung auf das distale Ende verengt;

    wobei das proximale Ende mindestens eine Rille (108) umfasst, die sich vom Umfang des äußeren Flansches in Richtung auf eine Mittelachse des kranialen Ankers (104) erstreckt, und wobei das axiale Lumen konfiguriert ist, um die gehirninvasive Einführvorrichtung der Gehirninteraktionsvorrichtung (102) aufzunehmen und zu führen, und wobei das axiale Lumen einen Schwenkpunkt zum Leiten der gehirninvasiven Einführvorrichtung bereitstellt, wobei der Schwenkpunkt ein verengtes Teilstück in dem kranialen Anker (104) ist.


     
    13. System (1000) nach Anspruch 12, ferner umfassend

    eine Datenempfangseinheit (1006), die konfiguriert ist, um Messdaten zu empfangen, die von dem mindestens einen der Vielzahl von Filamenten erhoben werden;

    eine Datenspeichereinheit (1010), die konfiguriert ist, um die Messdaten zu speichern, die von der Datenempfangseinheit empfangen werden;

    eine Datenanalyseeinheit, die konfiguriert ist, um die Messdaten zu analysieren, um eine Einrichtung zur Erhebung von biologischem Material und/oder eine Einrichtung zur Erhebung von Daten und/oder eine Einrichtung zum Injizieren mindestens einer Substanz zu bestimmen.


     
    14. System nach Anspruch 12 oder 13, wobei das längliche distale Ende des kranialen Ankers mit einem verengten Teilstück versehen ist, das einen Durchmesser aufweist, der an einen Durchmesser des Multiführungsstabs (608) angepasst ist, so dass die Vielzahl von Filamenten (106) in die Kanäle (610, 612) gebracht wird.
     
    15. System nach einem der Ansprüche 12 bis 14, wobei die verengte Teilstückfunktion einen Schwenkpunkt für den Multiführungsstab (608) bereitstellt.
     
    16. Ausrüstungssatz, umfassend:

    eine Gehirninteraktionsvorrichtung (102) nach einem der Ansprüche 1 bis 10;

    wobei der Ausrüstungssatz mindestens zwei Arten von Filamenten (106) umfasst, und wobei der Ausrüstungssatz mindestens zwei Arten von Lenkspitzen (200) umfasst.


     
    17. Ausrüstungssatz nach Anspruch 16, ferner umfassend mindestens zwei Arten von kranialen Ankern (104) nach Anspruch 11.
     


    Revendications

    1. Appareil d'interaction cérébrale (102) connecté de manière fonctionnelle à une ancre crânienne (104), ledit appareil d'interaction cérébrale (102) comprenant :

    une pluralité de filaments (106) ;

    un lanceur invasif cérébral ayant une pluralité de canaux de lancement (108) s'étendant dans une direction longitudinale entre une extrémité proximale et une extrémité distale de celui-ci, chaque canal de lancement (108) étant configuré pour comporter un filament (106) disposé de manière mobile dans celui-ci, le filament étant l'un de la pluralité des filaments (106) ;

    caractérisé en ce que

    au moins l'un de la pluralité des filaments (106) est doté d'une pointe de guidage (200) fixée à une extrémité distale de celui-ci, dans lequel la pointe de guidage (200) comprend une partie s'effilant dans une direction longitudinale de l'au moins un de la pluralité des filaments (106) en rétrécissant ainsi vers une extrémité distale de la pointe de guidage (200), la partie effilée étant asymétrique en rotation autour d'un axe longitudinal de l'au moins un de la pluralité des filaments (106).


     
    2. Appareil d'interaction cérébrale (102) selon la revendication 1, dans lequel l'extrémité distale de la pointe de guidage (200) est décalée par rapport à l'axe longitudinal de l'au moins un de la pluralité des filaments (106).
     
    3. Appareil d'interaction cérébrale (102) selon l'une quelconque des revendications précédentes, dans lequel le lanceur invasif cérébral comprend un indicateur de position de lanceur configuré pour déterminer un emplacement du lanceur invasif cérébral dans un cerveau d'un sujet.
     
    4. Appareil d'interaction cérébrale (102) selon l'une quelconque des revendications précédentes, dans lequel l'au moins un de la pluralité des filaments (106) est configuré pour être dans un état d'installation où le filament (106) est logé dans le canal de lancement (108), et un état de travail où le filament (106) s'étend au-delà de l'extrémité distale du lanceur invasif cérébral lorsque ce même est dans une position fixe.
     
    5. Appareil d'interaction cérébrale (102) selon l'une quelconque des revendications précédentes, dans lequel l'au moins un de la pluralité des filaments (106) comprend une pluralité d'ouvertures (202b).
     
    6. Appareil d'interaction cérébrale (102) selon l'une quelconque des revendications précédentes, dans lequel la pointe de guidage (200) comprend un indicateur de position de pointe de guidage configuré pour déterminer un emplacement de la pointe de guidage (200) et/ou de l'au moins un de la pluralité des filaments (106) dans un cerveau d'un sujet.
     
    7. Appareil d'interaction cérébrale (102) selon l'une quelconque des revendications précédentes, dans lequel l'au moins un de la pluralité des filaments (106) est configuré pour collecter des données de mesure.
     
    8. Appareil d'interaction cérébrale (102) selon la revendication 7, dans lequel l'au moins un de la pluralité des filaments (106) est une fibre optique.
     
    9. Appareil d'interaction cérébrale (102) selon la revendication 7, dans lequel l'au moins un de la pluralité des filaments (106) est un fil électrique.
     
    10. Appareil d'interaction cérébrale (102) selon l'une quelconque des revendications précédentes, comprenant en outre un stylet à lumières multiples (608) connecté au lanceur invasif cérébral, dans lequel le stylet à lumières multiples (608) comprend une pluralité de canaux (610, 612) configurés pour comporter la pluralité des filaments (106), et dans lequel la pluralité des canaux (610, 612) sont alignés avec la pluralité des canaux de lancement (200) du lanceur invasif cérébral.
     
    11. Ancre crânienne (104) connectée de manière fonctionnelle à un appareil d'interaction cérébrale (102), ledit appareil d'interaction cérébrale (102) comprenant :
    une pluralité de filaments (106) ; un lanceur invasif cérébral ayant une pluralité de canaux de lancement (108) s'étendant dans une direction longitudinale entre une extrémité proximale et une extrémité distale de celui-ci, chaque canal de lancement (108) étant configuré pour comporter un filament (106) disposé de manière mobile dans celui-ci, le filament étant l'un parmi la pluralité des filaments (106) ; dans laquelle au moins l'un de la pluralité des filaments (106) est doté d'une pointe de guidage (200) fixée à l'extrémité distale de celui-ci, dans laquelle la pointe de guidage (200) comprend une partie s'effilant dans une direction longitudinale de l'au moins un de la pluralité des filaments (106) en rétrécissant ainsi vers une extrémité distale de la pointe de guidage (200), la partie effilée étant asymétrique en rotation autour d'un axe longitudinal de l'au moins un de la pluralité des filaments (106), l'ancre crânienne (104) étant configurée pour être fixée à un crâne d'un sujet, l'ancre crânienne (104) comprenant :

    une extrémité proximale formant une collerette extérieure ;

    une extrémité distale allongée pour l'insertion dans une ouverture du crâne, dans laquelle une lumière axiale est fournie, la lumière axiale étant effilée dans une direction longitudinale de l'ancre crânienne (104) et rétrécissant vers l'extrémité distale ;

    dans laquelle l'extrémité proximale comprend au moins une gorge (108) s'étendant à partir de la circonférence de la collerette extérieure vers un axe central de l'ancre crânienne (104), et dans laquelle la lumière axiale est configurée pour recevoir et guider le lanceur invasif cérébral de l'appareil d'interaction cérébrale (102), et dans laquelle la lumière axiale fournit un point de pivotement pour diriger le lanceur invasif cérébral, dans laquelle le point de pivotement est une section rétrécie dans l'ancre crânienne (104).


     
    12. Système (100) comprenant :

    l'appareil d'interaction cérébrale (102) selon l'une quelconque des revendications 1 à 10, dans lequel

    l'ancre crânienne (104) est configurée pour être fixée à un crâne d'un sujet, l'ancre crânienne (104) comprenant :

    une extrémité proximale formant une collerette extérieure ;

    une extrémité distale allongée pour l'insertion dans une ouverture du crâne, dans lequel une lumière axiale est fournie, la lumière axiale étant effilée dans une direction longitudinale de l'ancre crânienne (104) et rétrécissant vers l'extrémité distale ;

    dans lequel l'extrémité proximale comprend au moins une gorge (108) s'étendant à partir de la circonférence de la collerette extérieure vers un axe central de l'ancre crânienne (104), et dans lequel la lumière axiale est configurée pour recevoir et guider le lanceur invasif cérébral de l'appareil d'interaction cérébrale (102), et dans lequel la lumière axiale fournit un point de pivotement pour diriger le lanceur invasif cérébral, dans lequel le point de pivotement est une section rétrécie dans l'ancre crânienne (104).


     
    13. Système (1000) selon la revendication 12, comprenant en outre :

    une unité de réception de données (1006) configurée pour recevoir des données de mesure collectées par l'au moins un de la pluralité des filaments ;

    une unité de stockage de données (1010) configurée pour stocker les données de mesure reçues par l'unité de réception de données ;

    une unité d'analyse de données configurée pour analyser les données de mesure afin de déterminer une configuration de collecte de matière biologique, et/ou une configuration de collecte de données, et/ou une configuration d'injection d'au moins une substance.


     
    14. Système selon la revendication 12 ou 13, dans lequel l'extrémité distale allongée de l'ancre crânienne est dotée d'une section rétrécie ayant un diamètre ajusté à un diamètre du stylet multiple (608) de sorte que la pluralité des filaments (106) est amenée dans les canaux (610, 612).
     
    15. Système selon l'une quelconque des revendications 12 à 14, dans lequel la fonctionnalité de section rétrécie offre un point de pivotement pour le stylet multiple (608).
     
    16. Kit de pièces comprenant :

    un appareil d'interaction cérébrale (102) selon l'une quelconque des revendications 1 à 10 ;

    dans lequel le kit de pièces comprend au moins deux types de filaments (106), et dans lequel le kit de pièces comprend au moins deux types de pointes de guidage (200).


     
    17. Kit de pièces selon la revendication 16, comprenant en outre au moins deux types d'ancres crâniennes (104) selon la revendication 11.
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description