(19)
(11)EP 3 416 422 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
10.06.2020 Bulletin 2020/24

(21)Application number: 18185614.7

(22)Date of filing:  28.10.2016
(51)International Patent Classification (IPC): 
H04W 28/16(2009.01)
H04W 24/02(2009.01)

(54)

RADIO COMMUNICATION NETWORK WITH RE-CONFIGURABLE RADIO SCHEDULER

FUNKKOMMUNIKATIONSNETZWERK MIT REKONFIGURIERBAREM FUNKZEITPLANER

RÉSEAU DE RADIOCOMMUNICATION COMPRENANT UN PROGRAMMATEUR RADIO RECONFIGURABLE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
19.12.2018 Bulletin 2018/51

(62)Application number of the earlier application in accordance with Art. 76 EPC:
16196174.3 / 3316646

(73)Proprietor: Deutsche Telekom AG
53113 Bonn (DE)

(72)Inventors:
  • ARNOLD, Paul
    60389 Frankfurt/Main (DE)
  • BELSCHNER, Jakob
    60322 Frankfurt (DE)
  • VON HUGO, Dirk
    64285 Darmstadt (DE)

(74)Representative: Vossius & Partner Patentanwälte Rechtsanwälte mbB 
P.O. Box 86 07 67
81634 München
81634 München (DE)


(56)References cited: : 
US-A1- 2014 128 117
US-A1- 2015 092 704
US-A1- 2014 286 295
  
  • GRAMAGLIA MARCO ET AL: "Flexible connectivity and QoE/QoS management for 5G Networks: The 5G NORMA view", 2016 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC), IEEE, 23 May 2016 (2016-05-23), pages 373-379, XP032919894, DOI: 10.1109/ICCW.2016.7503816
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] The present disclosure relates to a radio communication network, in particular a 5G radio network, with a radio scheduler scheduling radio resources according to a scheduling metric. The disclosure particularly relates to applying a heterogeneous radio scheduler as a virtual network function (VNF) or a combination of multiple VNFs.

BACKGROUND



[0002] Within todays' mobile networks typically a unique vendor specific radio scheduler is implemented in the base stations' (BS) signal processing chain. Dependent on the network vendors' algorithms and the channel estimation information sent by the terminals, the scheduler decides adaptively which radio resources in frequency, time and space as well as which modulation and coding scheme (MCS) will be applied to transmit a data flow to a user equipment (UE). The scheduler is a homogeneous piece of software which supports several features, such as frequency selective scheduling (FSS), inter-cell interference coordination (ICIC) schemes, quality-of-service (QoS) awareness, etc. It may be updated with the next release when vendors offer software updates for their hardware. Today's radio scheduler can therefore only react on dynamic situations in the network, based on the actually distributed software schemes.

[0003] Document US 2014 / 0 286 295 A1 relates to a method for the coordinated scheduling of a downlink transmission flow from a first radio network node to a user device in a second wireless network node. The method includes scheduling the downlink transmission flow so that the in-sequence transfer of the received data blocks can be kept within an acceptable range in the UE by setting a scheduling priority of the downlink transmit flow in the second wireless network node.

[0004] Document "Gramaglia Marco et al: Flexible connectivity and QoE/QoS management for 5G Networks" relates to a 5G network architecture comprising: A) adaptive (de)composition and allocation of mobile network functions; B) software-defined mobile network control and orchestration; C) joint optimization of mobile access and core network functions; D) multi-service and context-aware adaptation of network functions; and E) mobile network multi-tenancy.

SUMMARY



[0005] It is the object of the invention to provide a concept for more flexible and high performance radio scheduling in radio communication networks, in particular in next generation mobile networks where network resources are dynamically provided.

[0006] This object is achieved by the features of the independent claims. Further implementation forms are apparent from the dependent claims, the description and the figures.

[0007] A basic idea of the invention is to have a data base for different flavored scheduling metrics which gives the opportunity to dynamically configure a scheduler. It includes a stack of scheduling metrics, synchronous and asynchronous ICIC schemes which can be configured individually for each BS or a BS cluster dependent on the requirements in terms of service level agreement (SLA), QoS, traffic demand and radio conditions of the active users. This will improve the overall performance of the system because scheduling and ICIC schemes can be flexibly and temporarily applied, when and where they are needed in the mobile network.

[0008] In order to describe the invention in detail, the following terms, abbreviations and notations will be used:
5G:
fifth generation mobile network
5G NR:
5G New Radio
LTE:
Long Term Evolution
BS, eNodeB:
Base Station or radio cell
MCS:
Modulation and Coding Scheme
UE:
User Equipment
FSS:
frequency selective scheduling
ICIC:
inter-cell interference coordination
elCIC:
enhanced inter-cell interference coordination
QoS:
quality-of-service
SLA:
service level agreement
CoMP:
Coordinated Multi-Point
TPB:
Transmission Point Blanking
CA:
Carrier Aggregation
JT:
Joint Transmission
HARQ:
Hybrid automatic repeat request
MAC:
Media Access Control layer
PHY:
Physical layer
VNF:
Virtual Network Function
DSP:
Digital Signal Processor
KPI:
Key Performance Indicator


[0009] According to a first aspect, the invention relates to a radio communication network, comprising: at least one base station configured to transmit a data flow to at least one user equipment (UE) by using radio resources scheduled to the at least one base station for transmission of the data flow; a radio scheduler configured to schedule the radio resources to the at least one base station according to a scheduling metric; a monitoring entity, configured to monitor performance information from the at least one base station; and a controller, configured to adjust the scheduling metric of the radio scheduler based on the monitored performance information of the monitoring entity.

[0010] By using a controller that adjusts the scheduling metric of the radio scheduler based on a monitored performance information of the monitoring entity such a radio communication network provides a highly flexible and high performance radio scheduling. The radio scheduler can be flexible implemented as software module inside the base station or as external network entity somewhere in the network. Lower layer parts of the scheduler may still be on DSPs (digital signal processors) not easy to vitualize, as mentioned in the text below.

[0011] In an implementation form, the radio communication network comprises a data base configured to store a plurality of scheduling metrics, wherein the controller is configured to replace the scheduling metric with one of the scheduling metrics stored in the data base or with a combination of scheduling metrics stored in the data base.

[0012] By using such a database with different scheduling metrics, the radio scheduler can provide flexible scheduling of radio resources. For example a first metric can be used for a first network where a specific service level agreement (SLA) is required or agreed upon while a second metric can be used for a second network where another kind of SLA is required or agreed upon, e.g. in the case that base station (BS) is shared among slices combined metric or overarching, mentioned in the text below as well.

[0013] In an implementation form of the radio communication network, the controller is configured to adjust the scheduling metric based on the plurality of scheduling metrics stored in the data base.

[0014] This provides the advantage that radio resources can be flexibly scheduled depending on the respective scheduling metrics applied to the respective network section. For example one network slice or logical network can be scheduled as to common mobile network while another slice or logical network can be scheduled as a ultra-reliable network.

[0015] In an implementation form of the radio communication network the controller is configured to replace the scheduling metric based on a geographic location of the at least one base station.

[0016] This provides the advantage of geographical flexibility in radio resource scheduling. Resources of a base station within an urban environment such as a city can be scheduled in another way than resources of a base station within a non-urban environment, such as in sub-urban or rural areas.

[0017] In an implementation form of the radio communication network the controller is configured to replace the scheduling metric based on monitored information and/or requirements of incoming data flows of different services.

[0018] This provides the advantage of high flexible scheduling of radio resources. By monitoring information from incoming data flows of different services of different slices a dynamic scheduling can be realized that is dynamic in time and space.

[0019] In an implementation form, the radio communication network comprises a network orchestration entity, configured to load scheduling metrics from the plurality of scheduling metrics based on a request for setting up a network slice.

[0020] This provides the advantage that the radio communication network can be flexibly set up and re-configured, e.g. by a request from an operator.

[0021] In an implementation form of the radio communication network, the data base comprises a plurality of basic scheduling schemes and/or a plurality of inter cell interference coordination (ICIC) schemes, and the controller is configured to select one or a combination of the basic scheduling schemes and/or one or a combination of the ICIC schemes from the data base for adjusting the radio scheduler.

[0022] This provides the advantage that the scheduling metric can be flexibly selected from a plurality of predetermined basic scheduling metrics stored in a data base and/or from a plurality of predetermined ICIC schemes stored in the database.

[0023] In an implementation form of the radio communication network, the basic scheduling schemes comprise at least one of the following: round robin, max/min, proportional fair, equal data rate, and the ICIC schemes comprise at least one of the following: enhanced inter-cell interference coordination (elCIC), carrier aggregation (CA) based ICIC, coordinated multi-point (CoMP) transmission point blanking (TPB), CoMP joint transmission (JT), coordinated beamforming, centralized scheduling, and/or the scheduling is based on at least one quality-of-service (QoS) class and/or a service level agreement (SLA).

[0024] This provides the advantage that the scheduling scheme can be selected from a plurality of common scheduling schemes such as elCIC, CA based ICIC, CoMP TPB, CoMP JT, coordinated beamforming, centralized and decentralized scheduling, etc. Each scheduling scheme may be selected based on QoS and/or SLA requirements and instantaneous status.

[0025] In an implementation form of the radio communication network the monitoring entity is configured to monitor at least one of the following performance information from the at least one base station: a Quality of Service (QoS) for the at least one UE, a service level agreement (SLA) for a logical network including the at least one BS, a traffic demand for the at least one UE, conditions of a radio link to the at least one UE.

[0026] This provides the advantage that a lot of different performance information can be used as input to the selection of a scheduling scheme. The scheduling decision may be influenced by existing QoS classes (QCI dedicated barer) as well. The metrics may be QoS aware and/or SLA aware.

[0027] In an implementation form of the radio communication network the communication network comprises a plurality of base stations, and the controller is configured to adjust the scheduling metric of the radio scheduler per base station or per base station cluster of the plurality of base stations.

[0028] This provides the advantage that the whole network can be grouped into clusters where different scheduling schemes can apply resulting in a flexible scheduling and hence high throughput.

[0029] In an implementation form of the radio communication network the network orchestration entity is configured to assign different radio schedulers to different groups according to specific scheduling metric requirements.

[0030] This provides the advantage that such radio schedulers may cooperate in scheduling radio resources.

[0031] In an implementation form of the radio communication network the network orchestration entity is adapted to configure the scheduling metrics based on a service function chain template which defines multiple combinations of metrics and ICIC schemes.

[0032] This provides the advantage that the network orchestration entity can be used for configureing the different scheduling metrics in order to provide a flexible number of scheduling metrics.

[0033] In an implementation form of the radio communication network, the controller is configured to activate or deactivate combinations of scheduling metrics.

[0034] This provides the advantage that different combinations of scheduling metrics can be applied in a dynamic framework.

[0035] In an implementation form of the radio communication network the radio scheduler is configured to apply a first scheduling metric to a cluster of base stations located in a first area of the radio communication network, and to apply a second scheduling metric to a cluster of base stations located in a second area of the radio communication network.

[0036] This provides the advantage that the scheduling metrics can be geographically flexible applied to the communication network.

[0037] In an implementation form of the radio communication network the radio communication network (100) comprises a network according to a fifth generation (5G) or according to a further generation, and at least a part of the radio scheduler is implemented as a virtual network function of an activation layer of the 5G network communicating with a physical layer of the 5G network.

[0038] This provides the advantage that the radio scheduler can be flexibly applied in at least one network slice of a 5G network providing fulfilment of conflicting KPIs (Key Performance Indicators) of different services.

[0039] In an implementation form of the radio communication network the radio scheduler is configured to schedule radio resources of a first network slice of the 5G network and radio resources of a second network slice of the 5G network according to a common scheduling metric.

[0040] This provides the advantage that different network slices can be formed and aggregated using the common scheduling metric.

[0041] In an implementation form of the radio communication network, the common scheduling metric is designed according to an optimization criterion to best fit requirements of the first network slice and the second network slice concurrently.

[0042] This provides the advantage that requirements of different network slices can be concurrently met.

BRIEF DESCRIPTION OF THE DRAWINGS



[0043] Further embodiments of the invention will be described with respect to the following figures, in which:

Fig. 1 shows a schematic diagram illustrating a radio communication network 100 according to the disclosure.

Fig. 2 shows a schematic diagram illustrating a radio communication network 200 according to the disclosure.

Fig. 3 shows a message sequence diagram 300 illustrating messaging between the entities of a radio communication network according to the disclosure.

Fig. 4 shows a schematic diagram illustrating an exemplary 5G system architecture 400 which radio resources can be scheduled by a radio scheduler according to the disclosure.

Fig. 5 shows a schematic diagram illustrating an exemplary 5G communication network 500 including a plurality of network slices which radio resources can be scheduled by a radio scheduler according to the disclosure.


DETAILED DESCRIPTION OF EMBODIMENTS



[0044] In the following detailed description, reference is made to the accompanying drawings, which form a part thereof, and in which is shown by way of illustration specific aspects in which the disclosure may be practiced. It is understood that other aspects may be utilized and structural or logical changes may be made without departing from the scope of the present disclosure. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present disclosure is defined by the appended claims.

[0045] It is understood that comments made in connection with a described method may also hold true for a corresponding device or system configured to perform the method and vice versa. For example, if a specific method step is described, a corresponding device may include a unit to perform the described method step, even if such unit is not explicitly described or illustrated in the figures. Further, it is understood that the features of the various exemplary aspects described herein may be combined with each other, unless specifically noted otherwise.

[0046] The radio communication network as described hereinafter may include a plurality of different network entities. A network entity may be a computer host, a computer server or some network node. A network entity may be a hardware unit, e.g. a computer server, a network node or device, a PC, a tablet, a smartphone, a router, a gateway or a whole computer network. A network entity may be a software unit, e.g. an application program or software module on a PC, tablet, smartphone or any other hardware device.

[0047] The radio communication network or radio communication system or wireless communication network may be implemented by various technologies, in particular as a communication network based on mobile communication standards such as LTE, in particular LTE-A and/or OFDM and successor standards such as 5G. The components and network nodes of such a communication network described below may be implemented as electronic devices or electronic network entities. The described devices and network entities may include integrated circuits and/or passives and may be manufactured according to various technologies. For example, the circuits may be designed as logic integrated circuits, analog integrated circuits, mixed signal integrated circuits, optical circuits, memory circuits and/or integrated passives.

[0048] The described network components, in particular the radio cells and user equipments may be configured to transmit and/or receive radio signals and performing associated signal processing. Radio signals may be or may include radio frequency signals radiated by a radio transmitting device (or radio transmitter or sender) with a radio frequency lying in a range of about 3 kHz to 300 GHz. The frequency range may correspond to frequencies of alternating current electrical signals used to produce and detect radio waves.

[0049] The communication networks described herein after may be designed in accordance to mobile communication standards such as e.g. the Long Term Evolution (LTE) standard or the advanced version LTE-A thereof. LTE (Long Term Evolution), marketed as 4G LTE and 5G NR (new radio), is a standard for wireless communication of high-speed data for mobile phones and data terminals. 5G NR is a 3GPP terminology.

[0050] Fig. 1 shows a schematic diagram illustrating a radio communication network 100 according to the disclosure.

[0051] The radio communication network 100 includes at least one base station 101, a radio scheduler 105, a monitoring entity 109 and a controller 111. The at least one base station 101 is configured to transmit a data flow 102 to at least one user equipment (UE) 103 by using radio resources 104, e.g. time-frequency resources scheduled to the at least one base station 101 for transmission of the data flow 102. The radio scheduler 105 schedules the radio resources 104 to the at least one base station 101 according to a scheduling metric 107. The monitoring entity 109 monitors performance information 106 from the at least one base station 101. The controller 111 adjusts 108 the scheduling metric 107 of the radio scheduler 105 based on the monitored performance information 106 of the monitoring entity 109. The radio scheduler 105 may be a network entity collocated to the base station 101 or integrated in the base station 101. Then, the radio resources may be scheduled by the base station. Alternatively the radio scheduler 105 may be located in a specific geographic distance to the base station. One radio scheduler 105 may schedule radio resources 104 for one or more base stations 101.

[0052] The radio communication network 100 may further include a data base storing a plurality of scheduling metrics, e.g. a data base 207 as described below with respect to Fig. 2. The controller 201 may replace the scheduling metric 107 with one of the scheduling metrics 208 stored in the data base or with a combination of scheduling metrics stored in the data base. The controller 111 may de-/activate the scheduling metrics 208 based on set set up given by orchestrator 205 as described below. The controller 111 may adjust 108 the scheduling metric 107 based on the plurality of scheduling metrics stored in the data base. The controller 111 may for example replace the scheduling metric 107 based on a geographic location of the at least one base station, e.g. as described below with respect to Fig. 2. The controller 111 may replace the scheduling metric 107 based on monitored information and/or requirements of incoming data flows of different services.

[0053] The radio communication network 100 may include a network orchestration entity, e.g. an orchestrator 205 as described below with respect to Fig. 2, configured to load scheduling metrics from the plurality of scheduling metrics based on a request for setting up a network slice or a logical network, e.g. a network slice 510b, 511b, 512b as described below with respect to Figs. 4 and 5.

[0054] The data base may include a plurality of basic scheduling schemes and/or a plurality of inter cell interference coordination (ICIC) schemes, e.g. schemes 208, 206 as described below with respect to Fig. 2. The controller 111 may select one or a combination of the basic scheduling schemes and/or one or a combination of the ICIC schemes from the data base for adjusting the radio scheduler 105.

[0055] The basic scheduling schemes may include: round robin, max/min, proportional fair, equal data rate, e.g. as described below with respect to Fig. 2. The ICIC schemes may include: enhanced inter-cell interference coordination (eICIC), carrier aggregation (CA) based ICIC, coordinated multi-point (CoMP) transmission point blanking (TPB), CoMP joint transmission (JT), coordinated beamforming, centralized scheduling, e.g. as described below with respect to Fig. 2. The scheduling may be based on at least one quality-of-service (QoS) class and/or at least one service level agreement (SLA).

[0056] The monitoring entity 109 may monitor the following performance information from the at least one base station: a Quality of Service (QoS) for the at least one UE 103, a service level agreement (SLA) for a logical network including the at least one base station, a traffic demand for the at least one UE 103, conditions of a radio link to the at least one UE 103, etc.

[0057] The communication network 100 may include a plurality of base stations. The controller 111 may adjust the scheduling metric 107 of the radio scheduler 105 per base station or per base station cluster. The network orchestration entity 205 may assign different radio schedulers to different groups of base stations according to specific scheduling metric requirements.

[0058] The network orchestration entity 205 may configure the scheduling metrics based on a service function chain template, for example. The controller 111 may activate or deactivate combinations of scheduling metrics. For example, the radio scheduler 105 may apply a first scheduling metric to a cluster of base stations located in a first area of the radio communication network 100, and a second scheduling metric to a cluster of base stations located in a second area of the radio communication network 100.

[0059] The radio communication network 100 may include a network 400, 500 according to a fifth generation (5G) or according to a further generation, e.g. a network 400, 500 described below with respect to Figures 4 and 5. At least a part of the radio scheduler 105 may be implemented as a virtual network function of an activation layer of the 5G network communicating with a physical layer of the 5G network, e.g. as described below with respect to Figs. 4 and 5.

[0060] The radio scheduler 105 may be configured to schedule radio resources 104 of a first network slice, e.g. a first network slice 510b shown below with respect to Fig. 5, of the 5G network and radio resources of a second network slice, e.g. a second network slice 511b shown below with respect to Fig. 5, of the 5G network according to a common scheduling metric. This common scheduling metric may be designed according to an optimization criterion to best fit requirements of the first network slice 510b and the second network slice 511b concurrently.

[0061] A method for scheduling radio resources may be implemented in the radio communication network 100. The method may include: transmitting, by at least one base station, a data flow 102 to at least one user equipment 103 by using radio resources 104 scheduled to the at least one base station 101 for transmission of the data flow 102; scheduling, by a radio scheduler 105 the radio resources 104 to the at least one base station 101 according to a scheduling metric 107; monitoring, by a monitoring entity 109, performance information 106 from the at least one base station 101; and adjusting, by a controller 111, the scheduling metric 107 of the radio scheduler 105 based on the monitored performance information 106 of the monitoring entity 109.

[0062] Fig. 2 shows a schematic diagram illustrating a radio communication network 200 according to the disclosure. The radio communication network 200 is a specific implementation of the radio communication network 100 described above with respect to Fig. 1.

[0063] As shown in Fig. 2, the idea is to have a data base 207 with all kinds of scheduling schemes 208 which can be flexibly combined or exchanged at the base station when necessary based on SDN and NFV principles. During some situations in the network 200 it makes sense to create temporarily, e.g. a BS cluster where a proportional fair (PF) based, QoS aware, joint transmission coordinated multi point (JT CoMP) flavored scheduler is applied (right cluster within the radio access network 210 with elements 213, 226, 227, 228). While for another area in the network 210 a smaller cluster is created where a PF and QoS flavored scheduler is applied at each BS of the cluster. In addition a centralized entity 212 which perfoms CoMP Transmission point blanking (TPB) may be formed (middle cluster within the network 210 of Fig. 2 including elements 212, 217, 218, 223, 224) satisfying the QoS of each specific user. Another base station 225 (with collocated radio scheduler 218) schedules radio resources for its own based on a combination of a PF, SLA and QoS aware with carrier aggregation based ICIC scheme. The systems gains from the flexibility to react on locally dynamic changes in the network (e.g. a lot of cell edge UEs got active and centralized scheduling should be applied to improve cell edge performance without decreasing the spectral efficiency of the system).

[0064] To adapt the scheduling scheme in a dynamic way as described above, a centralized software controller 201 as well as a live monitoring entity 203 is provided which observes the current performance at each individual BS or radio cell. The monitor 203 provides frequently the status and the controller 201 derives a critical situation (e.g. SLA of a network slice or QoS of a specific flow cannot be fulfilled), as an alternative. Then, the controlling entity 201 takes a decision what kind of scheduling algorithms and metrics should be used at the problematic area within the network 210. For instance, a lot of cell edge users are active and the cell edge performance of a certain BS cluster needs to be increased, then it may make sense to load temporarily a centralized scheduler which interacts with the BS local proportional fair and QoS aware flavored scheduler. The controller 201 loads an individualized scheduler for that specific issue to improve the performance of that part of the network 210. The controller 201 can access the data base 207 via the orchestrator 205 or in in alternative implementation (not shown in Fig. 2), the controller 201 can directly access the data base 207 without the orchestrator 205.

[0065] The radio communication network 200 shown in Fig. 2 includes a plurality of radio cells 221, 222, 223, 224, 225, 226, 227, 228, for example base stations or WiFi Hotspots or other small cells, a plurality of radio schedulers 214, 215, 216, 217, 219, 224 and other network schedulers 211, 212, 213, a monitor 203, e.g. for monitoring service level agreements and/or QoS and a controller 201, e.g. a software controller. The plurality of radio cells 221, 222, 223, 224, 225, 226, 227, 228, the plurality of radio schedulers 214, 215, 216, 217, 219, 224 and other network schedulers 211, 212, 213 are arranged in an orchestrated radio access network 210 that may be controlled by the software controller 201 and monitored by the SLA/QoS monitor 203. The radio communication network 200 further includes an orchestrator 205 for setting-up or initializing the radio access network 210. The radio communication network 200 further includes a data base 207 for storing basis scheduling schemes 208 and a data base 209 for storing ICIC schemes, e.g. as virtual network functions.

[0066] The radio cells 221, 222, 223, 224, 225, 226, 227, 228 may transmit data flows to corresponding user equipments (not shown in Fig. 2) by using radio resources, e.g. time-frequency resources scheduled to the radio cells by radio schedulers 214, 215, 216, 217, 224, 213 for transmission of the data flows, e.g. as described above with respect to Fig. 1.

[0067] The radio schedulers 214, 215, 216, 217, 219, 224 may be collocated to the corresponding radio cells 221, 222, 223, 224, 225, 226, 227, 228 and may schedule radio resources, e.g. time-frequency space resources to the corresponding radio cells according to a respective scheduling metric, e.g. as described above with respect to Fig. 1.

[0068] The SLA/QoS monitor 203 monitors performance information from the radio cells 221, 222, 223, 224, 225, 226, 227, 228 of the radio access network 210 and the controller 201 adjusts/adapts the respective scheduling metric of the corresponding radio scheduler 214, 215, 216, 217, 219, 224 based on the monitored performance information.

[0069] The software controller 201 may for example adjust a respective scheduling metric based on the scheduling metrics 208 stored in the data base 207. The software controller 201 may for example adjust a respective scheduling metric by replacing the respective scheduling metric with one of the scheduling metrics 208 stored in the data base 207 or with a combination of scheduling metrics 208 stored in the data base 207. The replacing of a respective scheduling metric may depend on a geographic location of the radio cell 221, 222, 223, 224, 225, 226, 227, 228 and/or the radio scheduler 214, 215, 216, 217, 219, 224. The software controller 201 may for example replace a respective scheduling metric based on monitored information and/or requirements of incoming data flows of different services.

[0070] The radio cells 221, 222, 223, 224, 225, 226, 227, 228 and radio schedulers 214, 215, 216, 217, 219, 224 of the radio access network 210 may be grouped in different clusters as shown in Fig. 2. For example, a first cluster (or first logical network) may include a coordinated beamforming network entity 211 coordinating an elCIC QoS round-robin (RR) radio scheduler 214 collocated with a small radio cell 220, an elCIC QoS proportional fair (PF) radio scheduler 215 collocated with a base station 221 and an elCIC QoS round robin radio scheduler 216 collocated with a small radio cell 222.

[0071] A second cluster (or second logical network) may include a coordinated multipoint (CoMP) TPS network entity 212 coordinating a QoS PF radio scheduler 217 collocated with a base station 223 and a QoS PF radio scheduler 218 collocated with a base station 224. A slice, however, can also consist of different clusters.

[0072] A third cluster (or third logical network) may include a service level agreement (SLA) QoS PF radio scheduler 219 collocated with a base station 225.

[0073] A fourth cluster (or fourth logical network) may include a stand-alone CoMP joint transmission (JT) QoS PF radio scheduler 213 scheduling three base stations 226, 227, 228.

[0074] The orchestrator 205 may load scheduling metrics from the plurality of scheduling metrics 208 stored in the data base 207, e.g. based on a request for setting up a network slice, e.g. a network slice 510b, 511b, 512b as described below with respect to Figures 4 and 5. The network slice may include the whole orchestrated radio access network 210 or alternatively one or more clusters or logical networks as described above.

[0075] The orchestrator 205 may assign different radio schedulers 214, 215, 216, 217, 219, 224 to different groups of radio cells 220, 221, 222, 223, 224, 225, 226, 227, 228 according to their specific scheduling metric requirements. The orchestrator 205 may for example configure the scheduling metrics 208 based on a service function chain template which defines multiple combinations of metrics and ICIC schemes.

[0076] The software controller 201 may select one or a combination of the basic scheduling schemes 208 and/or one or a combination of the ICIC schemes 206 via the orchestrator 205 from the data base 207, 209 for adjusting a respective radio scheduler schedulers 214, 215, 216, 217, 219, 224. The basic scheduling schemes 208 may include for example the schemes round robin, max/min, proportional fair, equal data rate, etc. The ICIC schemes 206 may for example include the schemes enhanced inter-cell interference coordination (elCIC), carrier aggregation (CA) based ICIC, coordinated multi-point (CoMP) transmission point blanking (TPB), CoMP joint transmission (JT), coordinated beamforming, centralized scheduling, etc. The scheduling may be based on a quality-of-service (QoS) class and/or a service level agreement (SLA). The SLA/QoS monitor 203 may for example monitor performance information from the radio cells 220, 221, 222, 223, 224, 225, 226, 227, 228, such as: QoS, SLA for a logical network 210, a traffic demand for a UE and conditions radio links to the UEs.

[0077] The software controller 201 may adjust the scheduling metrics of the radio schedulers 214, 215, 216, 217, 219, 224 per radio cell or per radio cell cluster. The software controller 201 may activate or deactivate combinations of scheduling metrics (208). A radio scheduler (or the radio schedulers) of a specific logical network (e.g. network 210) may apply a first scheduling metric to a cluster of radio cells 220, 221, 222 located in a first area of the radio communication network 200, and a second scheduling metric to a cluster of base stations 223, 224 located in a second area of the radio communication network 200.

[0078] The radio communication network 200 may include a network 400, 500 according to a fifth generation (5G) or according to a further generation, e.g. as described below with respect to Figures 4 and 5. A part of the radio schedulers 214, 215, 216, 217, 219, 224 or all of them may be implemented as a virtual network function 522 of an activation layer 404 of the 5G network 400, 500 communicating with a physical layer 405 of the 5G network 400, 500, e.g. as described below with respect to Figures 4 and 5.

[0079] The radio schedulers may schedule radio resources of a first network slice 510b of the 5G network 400, 500 and radio resources of a second network slice 511b of the 5G network 400, 500 according to a common scheduling metric which may be designed according to an optimization criterion to best fit requirements of the first network slice 510b and the second network slice 511b concurrently.

[0080] Fig. 3 shows a message sequence diagram 300 illustrating messaging between the entities of a radio communication network according to the disclosure. A possible function split between an orchestrator 301 that may correspond to the orchestrator 205 depicted in Fig. 2, a QoS/SLA monitoring entity 302 that may correspond to the SLA/QoS monitor 203 depicted in Fig. 2 or to the monitoring entity 109 depicted in Fig. 1, a software controller 303 that may correspond to the software controller 201 depicted in Fig. 2 or to the controller 111 depicted in Fig. 1, a lower MAC scheduler 304 that may correspond to a respective radio scheduler 214, 215, 216, 217, 218, 219 depicted in Fig. 2 or to the radio scheduler 105 depicted in Fig. 1 and a UE 305 that may correspond to the UE 103 depicted in Fig. 1 is shown in Fig. 3. The radio scheduling functions may be implemented at a lower MAC layer which gets information from PHY layer.

[0081] The messages as described in the following are examples, other implementations are possible as well. In the example of Fig. 3, the orchestrator 301 transmits a "Service (QoS/SLA) policies of NS" message 310 to QoS/SLA monitoring entity 302 that answers with an "Ack or Nack" message 311. Then, the orchestrator 301 transmits a "Service (QoS/SLA) policies of NS" message 312 to software controller 303 that answers with an "Ack or Nack" message 313. Then, the orchestrator 301 transmits a "vNF to node mapping table" message 314 to software controller 303 that answers with an "Ack or Nack" message 315.

[0082] The software controller 303 transmits a "Radio resource scheduling decision" message 316 to the lower MAC scheduler 304 that answers with an "Ack or Nack" message 317. Then, the lower MAC scheduler 304 transmits a "scheduling grant" message 318 to the UE 305 that answers with an "HARQ Ack or Nack" message 319. Then, the lower MAC scheduler 304 transmits an "Ack/Nack" message 320 to the software controller 303 and transmits a "Flow based QoS information" message 321 to the QoS/SLA monitoring entity 302 upon which message 321 the QoS/SLA monitoring entity 302 answers with a "QoS/SLA status indicator" message 322. Then, a "radio resource scheduling decision" message 323 is sent to the lower MAC scheduler 304 which forwards a "Scheduling grant" message 324 to the UE 305. The UE 305 answers with a "HARQ Ack/Nack" message 325.

[0083] The lower MAC scheduler 304 transmits a "Flow based QoS information" message 326 to the QoS/SLA monitoring entity 302 upon which message 326 the QoS/SLA monitoring entity 302 answers to the software controller 303 with a "QoS/SLA satus indicator" message 327. Then, a "radio resource scheduling decision" message 328 is sent to the lower MAC scheduler 304 which forwards a "Scheduling grant" message 329 to the UE 305. The UE 305 answers with a "HARQ Ack/Nack" message 330.

[0084] The lower MAC scheduler 304 transmits a "Flow based QoS information" message 331 to the QoS/SLA monitoring entity 302 upon which message 331 the QoS/SLA monitoring entity 302 answers to the software controller 303 with a "QoS/SLA status indicator" message 332. Then, a "Scheduler modification request" message 333 is sent to the orchestrator 301 upon which message 333 the orchestrator 301 chooses different service function chain template and performs reorchestration (switch scheduling strategy) 334.

[0085] The message sequence diagram 300 represents a possible implementation of a method for scheduling radio resources in a radio communication network as described above with respect to Fig. 1.

[0086] Fig. 4 shows a schematic diagram illustrating an exemplary 5G system architecture 400 which radio resources can be scheduled by a radio scheduler according to the disclosure.

[0087] The 5G system architecture 400 includes an area with 5G communication terminals 401 which are connected via different access technologies 402 to a multilayered communication structure. This multilayered communication structure includes an Infrastructure & Resources layer 405, an activation layer 404 and an application layer 403 which are managed by a management & Instrumentation plane 406.

[0088] The Infrastructure & Resources layer 405 includes the physical resources of a converged network structure of fixed and mobile network components ("Fixed-Mobile Convergence") with access point, cloud nodes (consisting of processing and storage node), 5G devices such as mobile phones, portable devices, CPEs, machine communication modules and other network nodes and related links. 5G devices can include multiple and configurable capabilities and act, for example, as a relay or hub or can operate depending on the particular context as a computer or memory resource. These resources are provided to the higher layers 404, 403 and the management & Instrumentation layer 406 via corresponding APIs (application program interfaces). Monitoring the performance and the configurations are inherent to such APIs.

[0089] The activation layer 404 includes a library of functions that are needed within a converged network in the form of blocks of a modular architecture. These include functions that are implemented in software modules that can be retrieved from a storage location of the desired location, and a set of configuration parameters for specific parts of the network, for example, the radio access. These features and capabilities can be accessed on demand by the management & Instrumentation layer 406 by using the provided APIs. Certain functions may exist in multiple variants, for example, different implementations of the same functionality having different performance or characteristic.

[0090] The application layer 403 includes specific applications and services of the network operator, the company, the vertical operator or by third parties who use the 5G network. The interface to the management & Instrumentation layer 406 allows to use certain dedicated network slices for an application, or to assign an application to an existing network slice.

[0091] The management & Instrumentation layer 406 is the contact point for the required use cases (use cases, business models) to put into actual network functions and slices. It defines the network slices for a given application scenario, concetenates the relevant modular network functions, assigns the relevant performance configurations and maps all to the resources of the infrastructure & resources layer 405. The management & Instrumentation layer 406 also manages the scaling of the capacity of these functions as well as their geographical distribution. In certain applications, the management & Instrumentation layer 406 may also have skills that allow third parties to produce and manage their own network slices by the use of APIs. Because of the numerous tasks of the management & Instrumentation layer 406, these are not a monolithic block of functionality but rather a collection of modular functions, integrating progresses that have been achieved in different network domains, such as NFV (network function virtualization), SDN (software-defined networking) or SON (self-organizing networks). The management & Instrumentation Layer 106 utilizes data assisted intelligence to optimize all aspects of service assembly and deployment.

[0092] The radio scheduler 105 described above with respect to Fig. 1 may be used to schedule radio and/or network resources of the communication network 400. The radio scheduler 105 may be a part of the network 400 or may be arranged outside the network 400. The radio scheduler 105 may for example be implemented in the activation layer 404, e.g. as a virtual network function 522 in a network slice or alternatively located at the management & Instrumentation level 406. Alternatively, each network slice or slice instance may include a radio scheduler 105. Network entities requesting resources of the communication network 400 may for example be network nodes of the infrastructure and resources layer 405, or network nodes of the activation layer 404 or network slices or slice instances of the application layer 403. Network entities requesting resources of the communication network 400 may also be mobile devices 401, base stations, base station controllers, radio network controllers etc. requesting resources for initiating a communication channel over the communication network 400.

[0093] The 5G network 400 increases the efficiency of communication and provides in particular a higher data throughput, lower latency, particularly high reliability, a much higher connection density and a larger mobility area. The 5G network 400 increases the operational flexibility and provides tailored features and functions while saving network resources. This increased performance is accompanied by the ability to control highly heterogeneous environments and the ability to secure trust, identity and privacy of users.

[0094] The presented devices, systems and methods are provided for the purpose to improve the efficiency of communication and charging in communication networks, in particular in 5G communications networks with multiple network slices, as described below.

[0095] Fig. 5 shows a schematic diagram illustrating an exemplary 5G communication network 500 including a plurality of network slices which radio resources can be scheduled by a radio scheduler according to the disclosure.

[0096] The 5G-communication network 500 includes an infrastructure & resources layer 405, an activation layer 404 and an application layer 403, as described above with respect to Figure 4.

[0097] The Infrastructure & Resources layer 405 includes all physical assets that are associated with a network operator, i.e., locations, cable, network nodes, etc. This layer 405 forms the basis for all network slices. It is structured as generic as possible without too many specialized engineering units. The Infrastructure & Resources layer 405 conceals any kind of user-specific implementation towards the upper layers, so that the remaining systems can be used optimally for different slices. Components of the infrastructure and resources layer 405 are based on hardware and software or firmware that is needed for each operation and that is provided to the overlying layers as resource objects. Objects of infrastructure & resources layer 405, for example, include virtual machines, virtual links or connections and virtual networks, for example, virtual access node 531, 532, 533, virtual network nodes 534, 535, 536, 537 and virtual computer nodes 538, 539, 540. As the term "virtual" implies, the infrastructure and resources layer 405 provides the objects in the form of an "infrastructure as a service " 551, i.e. in an abstracted, virtualized form to the next higher layer 404.

[0098] The activation layer 404 is arranged above the infrastructure & resources layer 405. It uses the objects of the infrastructure & resources layer 405 and adds additional functionality to these objects, for example in the form of (non-physical) software objects / VNFs (virtual network functions) to enable generation of any type of network slices and hence to provide a platform as a service to the next higher layer 403.

[0099] Software objects can exist in any granularity, and may include a tiny or a very large fragment of a network slice. In order to be able to allow the generation of network slices on a suitable level of abstraction in the activation layer 404 different abstract objects 521 can be combined with other abstracted objects and virtual network functions 522 to form combined objects 523, which can be converted into aggregated objects 524 which can be provided in an object library 525 to the next higher level. Thus, the complexity can be hidden behind the network slices. For example, a user can create a mobile broadband slice and define merely a KPI (Key Performance Indicator) without having to specify specific features such as individual local antenna cover, backhaul links and specific parameterization degrees. Supporting an open environment, allowing to add or delete network functions on demand, is an important skill of the activation layer 404 that supports the dynamic rearrangement of functions and connectivities in a network slice, for example, by using SFC (Service Function Chaining) or modifying software so that the functionality of a slice can be completely pre-defined and can include both approximately static software modules and dynamically addable software modules.

[0100] A network Slice can be regarded as software-defined entity that is based on a set of objects that define a complete network. The activation layer 404 plays in the success of this concept a key role since it can include all software objects that are necessary to provide the network slices and the appropriate skills to handle the objects. The activation layer 404 may be considered as a type of network operating system complemented by a network production environment. An important task of the activation layer 404 is defining the appropriate levels of abstraction. So network operators have sufficient freedom to design their network slices while the platform operator can still keep maintaining and optimizing the physical nodes. For example, the execution of everyday tasks such as adding or replacing NodeBs, etc. is supported without the intervention of the network client. The definition of suitable objects that model a complete telecommunications network, is one of the essential tasks of the activation layer 104 in developing the network slices environment.

[0101] A network slice, also known as 5G Slice, supports communication services of a certain type of connection with a particular type of handling of the C (Control) and U (User Data) layer. A 5G slice is composed of a collection of different 5G network functions and specific radio access technology (RAT) settings that are combined together for the benefit of the specific use case. Therefore, a 5G Slice spans all domains of the network, for example, software modules that run on a cloud node, specific configurations of the transport network that support a flexible location of functions, a particular radio configuration or even a particular access technology as well as a configuration of 5G devices. Not all slices contain the same features, some features that today seem to be essential for a mobile network can even not occur in some slices. The intention of the 5G Slice is to provide only the functions that are necessary for the specific use case and to avoid any other unnecessary functionalities. The flexibility behind the slice concept is the key to both the widening of existing applications as well as for creating new applications. Third party devices can thus be granted permission to control certain aspects of slicing through appropriate APIs to provide such customized services.

[0102] The application layer 403 includes all generated network Slices 510b, 511b, 512b and offers these as "network as a service" to different network users, for example, different customers. The concept allows the reuse of defined network slices 510b, 511b, 512b for different users, for example as a new network instance 510a, 511a, 512a. A network slice 510b, 511b, 512b, which is associated, for example, with an automotive application can also be used for applications in various other industrial applications. The slices instances 510a, 511a, 512a, generated by a first user, can for example be independent of the slices instances that were generated by a second user, although the entire network slice functionality may be the same.

[0103] By using the radio scheduler described above with respect to Figs. 1 and 2, radio resources of the communication network 400 can be scheduled. The radio scheduler 105 may be a part of the network 500 or may be arranged outside the network 500, for example in a foreign network. The radio scheduler 105 may for example be located in a network slice 510b or slice instance 510a. Network entities requesting resources of the communication network 500 may for example be network nodes of the infrastructure and resources layer 405, or network nodes of the activation layer 404 or network slices or slice instances of the application layer 403. Network entities requesting resources of the communication network 500 may also be mobile devices, base stations, base station controllers, radio network controllers etc. requesting resources for initiating a communication channel over the communication network.

[0104] The methods, systems and devices described herein may be implemented as electrical and/or optical circuit within a chip or an integrated circuit or an application specific integrated circuit (ASIC). The invention can be implemented in digital and/or analogue electronic and optical circuitry.

[0105] The methods, systems and devices described herein may be implemented as software in a Digital Signal Processor (DSP), in a micro-controller or in any other side-processor or as hardware circuit within an application specific integrated circuit (ASIC) of a Digital Signal Processor (DSP).

[0106] The invention can be implemented in digital electronic circuitry, or in computer hardware, firmware, software, or in combinations thereof, e.g. in available hardware of conventional optical transceiver devices or in new hardware dedicated for processing the methods described herein.

[0107] The present disclosure also supports a computer program product including computer executable code or computer executable instructions that, when executed, causes at least one computer to execute the performing and computing steps described herein, in particular the method 300 as described above with respect to Fig. 3 and the techniques described above with respect to Figs. 1 to 5. Such a computer program product may include a readable non-transitory storage medium storing program code thereon for use by a computer. The program code may perform the methods as described above with respect to Figures 1 to 3.

[0108] While a particular feature or aspect of the disclosure may have been disclosed with respect to only one of several implementations, such feature or aspect may be combined with one or more other features or aspects of the other implementations as may be desired and advantageous for any given or particular application. Furthermore, to the extent that the terms "include", "have", "with", or other variants thereof are used in either the detailed description or the claims, such terms are intended to be inclusive in a manner similar to the term "comprise". Also, the terms "exemplary", "for example" and "e.g." are merely meant as an example, rather than the best or optimal. The terms "coupled" and "connected", along with derivatives may have been used. It should be understood that these terms may have been used to indicate that two elements cooperate or interact with each other regardless whether they are in direct physical or electrical contact, or they are not in direct contact with each other.

[0109] Although specific aspects have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a variety of alternate and/or equivalent implementations may be substituted for the specific aspects shown and described without departing from the scope of the present disclosure. This application is intended to cover any adaptations or variations of the specific aspects discussed herein.

[0110] Although the elements in the following claims are recited in a particular sequence with corresponding labeling, unless the claim recitations otherwise imply a particular sequence for implementing some or all of those elements, those elements are not necessarily intended to be limited to being implemented in that particular sequence.

[0111] Many alternatives, modifications, and variations will be apparent to those skilled in the art in light of the above teachings. Of course, those skilled in the art readily recognize that there are numerous applications of the invention beyond those described herein. While the present invention has been described with reference to one or more particular embodiments, those skilled in the art recognize that many changes may be made thereto without departing from the scope of the present invention. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.


Claims

1. A radio communication network (100), comprising:

at least one base station (101) configured to transmit a data flow (102) to at least one user equipment, UE (103) by using radio resources (104) scheduled to the at least one base station (101) for transmission of the data flow (102);

a radio scheduler (105) configured to schedule the radio resources (104) to the at least one base station (101) according to a scheduling metric (107);

a monitoring entity (109), configured to monitor performance information (106) from the at least one base station (101);

a controller (111), configured to adjust (108) the scheduling metric (107) of the radio scheduler (105) based on the monitored performance information (106) of the monitoring entity (109); and

a data base (207) configured to store a plurality of scheduling metrics (208),

wherein the controller (201) is configured to replace the scheduling metric (107) with one of the scheduling metrics (208) stored in the data base (207) or with a combination of scheduling metrics (208) stored in the data base (207),

characterized in that the data base (207, 209) comprises a plurality of inter cell interference coordination, ICIC, schemes (206), and

wherein the controller (201) is configured to select one or a combination of the ICIC schemes (206) from the data base (207, 209) for adjusting the radio scheduler (105).


 
2. The radio communication network (100, 200) of claim 1,
wherein the controller (201) is configured to adjust (108) the scheduling metric (107) for a first network based on a Service Level Agreement, SLA required or agreed upon for the first network and for a second network based on a Service Level Agreement, SLA required or agreed upon for the second network.
 
3. The radio communication network (100, 200) of claim 1 or 2,
wherein the controller (201) is configured to replace the scheduling metric (107) based on a geographic location of the at least one base station (220, 221, 222).
 
4. The radio communication network (100, 200) of one of the preceding claims,
wherein the controller (201) is configured to replace the scheduling metric (107) based on monitored information and/or requirements of incoming data flows of different services.
 
5. The radio communication network (100, 200) of one of the preceding claims, comprising:
a network orchestration entity (205), configured to load scheduling metrics from the plurality of scheduling metrics (208) based on a request for setting up a network slice (510b, 511b, 512b).
 
6. The radio communication network (100, 200) of one of the preceding claims,
wherein the data base (207, 209) comprises a plurality of basic scheduling schemes (208), and
wherein the controller (201) is configured to select one or a combination of the basic scheduling schemes (208) and/or one or a combination of the ICIC schemes (206) from the data base (207, 209) for adjusting the radio scheduler (105).
 
7. The radio communication network (100, 200) of claim 6,
wherein the basic scheduling schemes (208) comprise at least one of the following: round robin, max/min, proportional fair, equal data rate,
wherein the ICIC schemes (206) comprise at least one of the following: enhanced inter-cell interference coordination, elCIC, carrier aggregation, CA based ICIC, coordinated multi-point, CoMP transmission point blanking, TPB, CoMP joint transmission, CoMP JT, coordinated beamforming, centralized scheduling, and/or
wherein the scheduling is based on a quality-of-service, QoS class and/or a service level agreement, SLA.
 
8. The radio communication network (100, 200) of one of the preceding claims,
wherein the monitoring entity (109, 203) is configured to monitor at least one of the following performance information from the at least one base station (220, 221, 222, 223, 224, 225, 226, 227, 228):

a Quality of Service, QoS for the at least one UE (103),

a service level agreement, SLA for a logical network (210) including the at least one base station (220, 221, 222, 223, 224, 225, 226, 227, 228),

a traffic demand for the at least one UE (103),

conditions of a radio link to the at least one UE (103).


 
9. The radio communication network (100, 200) of one of the preceding claims,
wherein the communication network (100, 200) comprises a plurality of base stations (220, 221, 222, 223, 224, 225, 226, 227, 228), and
wherein the controller (201) is configured to adjust the scheduling metric (107) of the radio scheduler (105) per base station or per base station cluster (220, 221, 222) of the plurality of base stations (220, 221, 222, 223, 224, 225, 226, 227, 228).
 
10. The radio communication network (100, 200) of claim 5,
wherein the network orchestration entity (205) is configured to assign different radio schedulers (214, 215, 216, 217, 219, 224) to different groups of base stations (220, 221, 222, 223, 224, 225, 226, 227, 228) according to specific scheduling metric requirements.
 
11. The radio communication network (100, 200) of claim 10,
wherein the network orchestration entity (205) is adapted to configure the scheduling metrics (208) based on a service function chain template which defines multiple combinations of metrics and ICIC schemes.
 
12. The radio communication network (100, 200) of claim 11,
wherein the controller (201) is configured to activate or deactivate combinations of scheduling metrics (208).
 
13. The radio communication network (100, 200) of one of the preceding claims,
wherein the radio scheduler (105) is configured to apply a first scheduling metric to a cluster of base stations (220, 221, 222) located in a first area of the radio communication network (200), and to apply a second scheduling metric to a cluster of base stations (226, 227, 228) located in a second area of the radio communication network (200).
 
14. The radio communication network (100, 200) of one of the preceding claims,
wherein the radio communication network (100) comprises a network (400, 500) according to a fifth generation, 5G or according to a further generation, and
wherein at least a part of the radio scheduler (105) is implemented as a virtual network function (522) of an activation layer (404) of the 5G network (400, 500) communicating with a physical layer (405) of the 5G network (400, 500),
wherein the radio scheduler (105) is configured to schedule radio resources (104) of a first network slice (510b) of the 5G network (400, 500) and radio resources of a second network slice (511b) of the 5G network (400, 500) according to a common scheduling metric.
 
15. The radio communication network (100, 200) of claim 14,
wherein the common scheduling metric is designed according to an optimization criterion with respect to concurrent requirements of the first network slice (510b) and the second network slice (511b).
 


Ansprüche

1. Funkkommunikationsnetzwerk (100), mit:

mindestens einer Basisstation (101), die konfiguriert ist, einen Datenstrom (102) an mindestens eine Benutzereinrichtung, UE (103) unter Verwendung von Funkressourcen (104) zu senden, die für mindestens eine Basisstation (101) zur Übertragung des Datenstroms (102) eingeplant sind;

einer Funkplanungseinrichtung (105), die konfiguriert ist, die Funkressourcen (104) für die mindestens eine Basisstation (101) gemäß einer Planungsmetrik (107) zu planen;

einer Überwachungsentität (109), die konfiguriert ist, Leistungsinformationen (106) von der mindestens einen Basisstation (101) zu überwachen;

einer Steuereinrichtung (111), die konfiguriert ist, die Planungsmetrik (107) der Funkplanungseinrichtung (105) beruhend auf den überwachten Leistungsinformationen (106) der Überwachungsentität (109) einzustellen (108); und

einer Datenbank (207), die konfiguriert ist, mehrere Planungsmetriken (208) zu speichern,

wobei die Steuereinrichtung (201) konfiguriert ist, die Planungsmetrik (107) durch eine der in der Datenbank (207) gespeicherten Planungsmetriken (208) oder durch eine Kombination von in der Datenbank (207) gespeicherten Planungsmetriken (208) zu ersetzen,

dadurch gekennzeichnet, dass die Datenbank (207, 209) mehrere Zwischenzellen-Interferenzkoordination, ICIC, Schemata (206) aufweist, und

wobei die Steuereinrichtung (201) konfiguriert ist, ein oder eine Kombination der ICIC-Schemata (206) aus der Datenbank (207, 209) zum Einstellen der Funkplanungseinrichtung (105) auszuwählen.


 
2. Funkkommunikationsnetzwerk (100, 200) nach Anspruch 1,
wobei die Steuereinrichtung (201) konfiguriert ist, die Planungsmetrik (107) für ein erstes Netzwerk beruhend auf eine Dienstgütevereinbarung, SLA, die für das erste Netzwerk erforderlich oder vereinbart ist, und für ein zweites Netzwerk beruhend auf einer Dienstgütevereinbarung, SLA, einzustellen (108), die für das zweite Netzwerk erforderlich oder vereinbart ist.
 
3. Funkkommunikationsnetzwerk (100, 200) nach Anspruch 1 oder 2,
wobei die Steuereinrichtung (201) konfiguriert ist, die Planungsmetrik (107) beruhend auf einem geographischen Ort der mindestens einen Basisstation (220, 221, 222) zu ersetzen.
 
4. Funkkommunikationsnetzwerk (100, 200) nach einem der vorhergehenden Ansprüche, wobei die Steuereinrichtung (201) konfiguriert ist, die Planungsmetrik (107) beruhend auf überwachten Informationen und/oder Anforderungen von eingehenden Datenströmen von unterschiedlichen Diensten zu ersetzen.
 
5. Funkkommunikationsnetzwerk (100, 200) nach einem der vorhergehenden Ansprüche, das aufweist:
eine Netzwerk-Orchestrierungsentität (205), die konfiguriert ist, Planungsmetriken aus den mehreren Planungsmetriken (208) beruhend auf einer Anforderung zum Aufbauen eines Netzwerk-Slice (510b, 511b, 512b) zu laden.
 
6. Funkkommunikationsnetzwerk (100, 200) nach einem der vorhergehenden Ansprüche, wobei die Datenbank (207, 209) mehrere Grundplanungsschemata (208) aufweist, und wobei die Steuereinrichtung (201) konfiguriert ist, ein oder eine Kombination der Grundplanungsschemata (208) und/oder ein oder eine Kombination der ICIC-Schemata (206) aus der Datenbank (207, 209) zum Einstellen der Funkplanungseinrichtung (105) auszuwählen.
 
7. Funkkommunikationsnetzwerk (100, 200) nach Anspruch 6,
wobei die Grundplanungsschemata (208) mindestens eines der folgenden Schemata aufweisen: Rundlauf-Verfahren, Maximum/Minimum, Proportional Fair, gleiche Datenrate,
wobei die ICIC-Schemata (206) mindestens eines der folgenden Schemata aufweisen: verbesserte Zwischenzellen-Interferenzkoordination, eICIC, Trägerzusammenfassung, CA-basierte ICIC, koordinierte Mehrpunkt, CoMP, Übertragungspunktaustastung, TPB, CoMP-Verbundübertragung, CoMP JT, koordinierte Strahlformung, zentralisierte Planung, und/oder
wobei die Planung auf einer Dienstqualitäts-, QoS Klasse und/oder einer Dienstgütevereinbarung, SLA, beruht.
 
8. Funkkommunikationsnetzwerk (100, 200) nach einem der vorhergehenden Ansprüche, wobei die Überwachungsentität (109, 203) konfiguriert ist, mindestens eine der folgenden Leistungsinformationen von der mindestens einen Basisstation (220, 221, 222, 223, 224, 225, 226, 227, 228) zu überwachen:

eine Dienstqualität, QoS für die mindestens eine UE (103),

eine Dienstgütevereinbarung, SLA für ein logisches Netzwerk (210), das die mindestens eine Basisstation (220, 221, 222, 223, 224, 225, 226, 227, 228) enthält,

einen Verkehrsbedarf für die mindestens eine UE (103),

Bedingungen einer Funkverbindung zu der mindestens einen UE (103).


 
9. Funkkommunikationsnetzwerk (100, 200) nach einem der vorhergehenden Ansprüche, wobei das Kommunikationsnetzwerk (100, 200) mehrere Basisstationen (220, 221, 222, 223, 224, 225, 226, 227, 228) aufweist, und
wobei die Steuereinrichtung (201) konfiguriert ist, die Planungsmetrik (107) der Funkplanungseinrichtung (105) pro Basisstation oder pro Basisstationscluster (220, 221, 222) der mehreren Basisstationen (220, 221, 222, 223, 224, 225, 226, 227, 228) einzustellen.
 
10. Funkkommunikationsnetzwerk (100, 200) nach Anspruch 5,
wobei die Netzwerk-Orchestrierungsentität (205) konfiguriert ist, unterschiedliche Funkplanungseinrichtungen (214, 215, 216, 217, 219, 224) unterschiedlichen Gruppen von Basisstationen (220, 221, 222, 223, 224, 225, 226, 227, 228) gemäß spezifischen Planungsmetrik-Anforderungen zuzuweisen.
 
11. Funkkommunikationsnetzwerk (100, 200) nach Anspruch 10,
wobei die Netzwerk-Orchestrierungsentität (205) eingerichtet ist, die Planungsmetriken (208) beruhend auf einer Dienstfunktionskettenschablone zu konfigurieren, die mehrere Kombinationen von Metriken und ICIC Schemata definiert.
 
12. Funkkommunikationsnetzwerk (100, 200) nach Anspruch 11,
wobei die Steuereinrichtung (201) konfiguriert ist, Kombinationen von Planungsmetriken (208) zu aktivieren oder zu deaktivieren.
 
13. Funkkommunikationsnetzwerk (100, 200) nach einem der vorhergehenden Ansprüche, wobei die Funkplanungseinrichtung (105) konfiguriert ist, eine erste Planungsmetrik auf ein Cluster von Basisstationen (220, 221, 222) anzuwenden, die in einem ersten Bereich des Funkkommunikationsnetzwerks (200) angeordnet sind, und eine zweite Planungsmetrik auf ein Cluster von Basisstationen (226, 227, 228) anzuwenden, die in einem zweiten Bereich des Funkkommunikationsnetzwerks (200) angeordnet sind.
 
14. Funkkommunikationsnetzwerk (100, 200) nach einem der vorhergehenden Ansprüche, wobei das Funkkommunikationsnetzwerk (100) ein Netzwerk (400, 500) gemäß einer fünften Generation, 5G oder gemäß einer weiteren Generation aufweist, und
wobei mindestens ein Teil der Funkplanungseinrichtung (105) als eine virtuelle Netzwerkfunktion (522) einer Aktivierungsschicht (404) der 5G-Netzwerks (400, 500) ausgeführt ist, die mit einer physikalischen Schicht (405) der 5G-Netzwerks (400, 500) kommuniziert,
wobei die Funkplanungseinrichtung (105) konfiguriert ist, Funkressourcen (104) eines ersten Netzwerk-Slice (510b) des 5G-Netzwerk (400, 500) und Funkressourcen eines zweiten Netzwerk-Slice (511b) des 5G-Netzwerks (400, 500) gemäß einer gemeinsamen Planungsmetrik zu planen.
 
15. Funkkommunikationsnetzwerk (100, 200) nach Anspruch 14,
wobei die gemeinsame Planungsmetrik gemäß einem Optimierungskriterium bezüglich konkurrierender Anforderungen der ersten Netzwerk-Slice (510b) und der zweiten Netzwerk-Slice (511b) gestaltet ist.
 


Revendications

1. Réseau de communication radio (100), comprenant :

au moins une station de base (101) prévue pour transmettre un flux de données (102) à au moins un équipement d'utilisateur UE (103) au moyen de ressources radio (104) programmées sur ladite au moins une station de base (101) pour la transmission du flux de données (102) ;

un programmateur radio (105) prévu pour programmer les ressources radio (104) sur ladite au moins une station de base (101) en fonction d'une métrique de programmation (107) ;

une entité de surveillance (109) prévue pour surveiller des informations de performance (106) de ladite au moins une station de base (101) ;

un contrôleur (111) prévu pour régler (108) la métrique de programmation (107) du programmateur radio (105) sur la base des informations de performance surveillées (106) de l'entité de surveillance (109) ; et

une base de données (207) prévue pour stocker une pluralité de métriques de programmation (208),

où le contrôleur (201) est prévu pour remplacer la métrique de programmation (107) par une des métriques de programmation (208) stockées dans la base de données (207) ou par une combinaison de métriques de programmation (208) stockées dans la base de données (207),

caractérisé en ce que la base de données (207, 209) comprend une pluralité de schémas de coordination d'interférence inter-cellules ICIC (206), et

où le contrôleur (201) est prévu pour sélectionner un schéma ou une combinaison de schémas ICIC (206) dans la base de données (207, 209) pour régler le programmateur radio (105).


 
2. Réseau de communication radio (100, 200) selon la revendication 1,
où le contrôleur (201) est prévu pour régler (108) la métrique de programmation (107) pour un premier réseau sur la base d'un accord de niveau de service SLA exigé ou convenu pour le premier réseau et pour un deuxième réseau sur la base d'un accord de niveau de service SLA exigé ou convenu pour le deuxième réseau.
 
3. Réseau de communication radio (100, 200) selon la revendication 1 ou la revendication 2,
où le contrôleur (201) est prévu pour remplacer la métrique de programmation (107) sur la base d'une localisation géographique de ladite au moins une station de base (220, 221, 222).
 
4. Réseau de communication radio (100, 200) selon l'une des revendications précédentes, où le contrôleur (201) est prévu pour remplacer la métrique de programmation (107) sur la base d'informations surveillées et/ou d'exigences de flux de données entrants de différents services.
 
5. Réseau de communication radio (100, 200) selon l'une des revendications précédentes, comprenant :
une entité d'orchestration de réseau (205) prévue pour charger des métriques de programmation de la pluralité de métriques de programmation (208) sur la base d'une demande de configuration d'une tranche de réseau (510b, 511b, 512b).
 
6. Réseau de communication radio (100, 200) selon l'une des revendications précédentes, où la base de données (207, 209) comprend une pluralité de schémas de programmation de base (208), et
où le contrôleur (201) est prévu pour sélectionner un schéma ou une combinaison des schémas de programmation de base (208) et/ou un schéma ou une combinaison des schémas ICIC (206) dans la base de données (207, 209) pour régler le programmateur radio (105).
 
7. Réseau de communication radio (100, 200) selon la revendication 6,
où les schémas de programmation de base (208) comprennent au moins un des éléments suivants : un débit de données à permutation circulaire, maximum/minimum, équitable proportionnel, égal,
où les schémas ICIC (206) comprennent au moins un des éléments suivants : une coordination d'interférence inter-cellules améliorée eICIC, une agrégation de porteuses CA basée sur ICIC, une suppression de points de transmission TPB multipoints coordonnés CoMP, une transmission conjointe CoMP JT CoMP, une formation de faisceau coordonnée, une programmation centralisée et/ou
où la programmation est basée sur une classe de qualité de service QoS et/ou un accord de niveau de service SLA.
 
8. Réseau de communication radio (100, 200) selon l'une des revendications précédentes, où l'entité de surveillance (109, 203) est prévue pour surveiller au moins une des informations de performance suivantes de ladite au moins une station de base (220, 221, 222, 223, 224, 225, 226, 227, 228) :

une qualité de Service QoS pour ledit au moins un UE (103),

un accord de niveau de service SLA pour un réseau logique (210) comprenant ladite au moins une station de base (220, 221, 222, 223, 224, 225, 226, 227, 228),

une demande de trafic pour ledit au moins un UE (103), des conditions de liaison radio avec ledit au moins un UE (103).


 
9. Réseau de communication radio (100, 200) selon l'une des revendications précédentes, où le réseau de communication (100, 200) comprend une pluralité de stations de base (220, 221, 222, 223, 224, 225, 226, 227, 228), et
où le contrôleur (201) est prévu pour régler la métrique de programmation (107) du programmateur radio (105) par station de base ou par grappe de stations de base (220, 221, 222) de la pluralité de stations de base (220, 221, 222, 223, 224, 225, 226, 227, 228).
 
10. Réseau de communication radio (100, 200) selon la revendication 5,
où l'entité d'orchestration de réseau (205) est prévue pour attribuer différents programmateurs radio (214, 215, 216, 217, 219, 224) à différents groupes de stations de base (220, 221, 222, 223, 224, 225, 226, 227, 228) en fonction d'exigences de métrique de programmation spécifiques.
 
11. Réseau de communication radio (100, 200) selon la revendication 10,
où l'entité d'orchestration de réseau (205) est apte à configurer les métriques de programmation (208) sur la base d'un modèle de chaîne de fonctions de service définissant plusieurs combinaisons de métriques et de schémas ICIC.
 
12. Réseau de communication radio (100, 200) selon la revendication 11,
où le contrôleur (201) est prévu pour activer ou désactiver des combinaisons de métriques de programmation (208).
 
13. Réseau de communication radio (100, 200) selon l'une des revendications précédentes, où le programmateur radio (105) est prévu pour appliquer une première métrique de programmation à une grappe de stations de base (220, 221, 222) située dans une première zone du réseau de communication radio (200), et pour appliquer une deuxième métrique de programmation à une grappe de stations de base (226, 227, 228) située dans une deuxième zone de réseau de communication radio (200).
 
14. Réseau de communication radio (100, 200) selon l'une des revendications précédentes, où ledit réseau de communication radio (100) comprend un réseau (400, 500) selon une cinquième génération 5G ou selon une nouvelle génération, et
où au moins une partie du programmateur radio (105) est mise en Ĺ“uvre en tant que fonction de réseau virtuel (522) d'une couche d'activation (404) du réseau 5G (400, 500) communiquant avec une couche physique (405) du réseau 5G (400, 500),
où le programmateur radio (105) est prévu pour programmer des ressources radio (104) d'une première tranche (510b) du réseau 5G (400, 500) et des ressources radio d'une deuxième tranche (511b) du réseau 5G (400, 500) en fonction d'une métrique de programmation commune.
 
15. Réseau de communication radio (100, 200) selon la revendication 14,
où la métrique de programmation commune est conçue en fonction d'un critère d'optimisation par rapport à des exigences simultanées de la première tranche de réseau (510b) et de la deuxième tranche de réseau (511b).
 




Drawing




















Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description