(19)
(11)EP 3 419 136 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
17.06.2020 Bulletin 2020/25

(21)Application number: 17773236.9

(22)Date of filing:  29.03.2017
(51)Int. Cl.: 
H02J 1/00  (2006.01)
H02J 1/14  (2006.01)
(86)International application number:
PCT/CN2017/078626
(87)International publication number:
WO 2017/167206 (05.10.2017 Gazette  2017/40)

(54)

DIRECT CURRENT POWER GRID VOLTAGE CONTROL METHOD

SPANNUNGSREGELVERFAHREN FÜR GLEICHSTROMNETZ

PROCÉDÉ DE COMMANDE DE TENSION DE RÉSEAU ÉLECTRIQUE EN COURANT CONTINU


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 30.03.2016 CN 201610190067

(43)Date of publication of application:
26.12.2018 Bulletin 2018/52

(73)Proprietors:
  • NR Electric Co., Ltd.
    Jiangsu 211102 (CN)
  • NR Engineering Co., Ltd
    Nanjing, Jiangsu 211102 (CN)

(72)Inventors:
  • DING, Jiudong
    Nanjing, Jiangsu 211102 (CN)
  • LU, Yu
    Nanjing, Jiangsu 211102 (CN)
  • DONG, Yunlong
    Nanjing, Jiangsu 211102 (CN)
  • LI, Gang
    Nanjing, Jiangsu 211102 (CN)
  • HU, Zhaoqing
    Nanjing, Jiangsu 211102 (CN)

(74)Representative: Herrmann, Uwe 
Lorenz Seidler Gossel Rechtsanwälte Patentanwälte Partnerschaft mbB Widenmayerstraße 23
80538 München
80538 München (DE)


(56)References cited: : 
WO-A1-2014/071742
CN-A- 102 969 733
CN-A- 104 022 522
CN-A- 105 870 909
WO-A1-2015/131602
CN-A- 103 178 539
CN-A- 104 104 102
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    Field of the Invention



    [0001] The present invention relates to the field of direct current power grids, and in particular, to a direct current power grid voltage control method.

    Related Art



    [0002] With continuous development of electrical and electronics technology, flexible direct current power transmission and distribution technology is the new-generation direct current power transmission and distribution technology and can resolve various problems that exist in current alternating current power transmission and distribution technology. As the scale of direct current power transmission increases, a direct current power grid becomes possible.

    [0003] In a direct current power grid, the role of direct current voltage may be equivalent to the role of frequency in an alternating current power grid. The stability of direct current voltage directly determines the stability of a direct current load flow, and determines the safe and stable operation of the direct current power grid. Therefore, it is very important to control direct current voltage in the direct current power grid. In a conventional two-terminal flexible direct current system, one converter station controls direct current voltage, and another converter station controls another variable such as active power, alternating current frequency or alternating current voltage. If the converter station for controlling direct current voltage fails and a direct current voltage control capability is consequently lost, direct current voltage becomes unstable and results in the outage of the two-terminal flexible direct current system. Therefore, the system has relatively low reliability. A plurality of converter stations usually have a direct current voltage control capability in the direct current power grid. According to a quantity of converter stations that participate in control of direct current voltage at a same moment, current common direct current voltage control methods may include a single-point voltage control method and a multi-point voltage control method.

    [0004] The single-point voltage control method uses a single converter station as a direct current voltage control station. Only one converter station controls direct current voltage at a same moment. Therefore, accurate control of the direct current voltage can be implemented. If the converter station fails or power exceeds the limits to lose a direct current voltage control capability, another converter station having a direct current voltage control capability takes over direct current voltage control right. On the basis of whether there is dependence on communication, takeover methods are categorized into a communication-based deviation-less control method and non-communication-based deviation control method. The deviation-less control method depends on rapid inter-station communication to implement transfer of direct current voltage control right. When the direct current voltage control station fails and stops operating, a backup converter station implements the takeover of direct current voltage control right by using rapid inter-station communication. However, this method requires very high speed and reliability of inter-station communication. If there is a relatively long delay in communication, the takeover of direct current voltage control right may fail to be implemented in time after the direct current voltage control station fails, resulting in the outage of the entire direct current system. Moreover, when the scale of the direct current power grid gradually increases, the quantity of backup converter stations keeps growing. In this case, it becomes very complex to set priorities for direct current voltage control, and a high-speed communications network gradually becomes more complex. These defects make it particularly difficult to promote and apply the communication-based deviation-less control method in direct current power grids.

    [0005] Direct current voltage deviation control is a control manner that does not require inter-station communication. After a direct current voltage control station fails and stops operating, a backup direct current voltage control station can detect a relatively large deviation in a direct current voltage and turns to the fixed-direct current voltage control mode, to ensure the stability of direct current voltage. However, a plurality of backup converter stations need a plurality of priorities, and therefore complexity of controller design is increased. The quantity of backup converter stations grows as the scale of the direct current power grid gradually increases. Direct current voltage in the direct current power grid is restricted to a particular operation range. Therefore, a deviation cannot exceed the operation range of direct current voltage. This restricts a stage difference and a stage quantity in deviation control. These defects make it particularly difficult to promote and apply the deviation control method in direct current power grids.

    [0006] In the multi-point voltage control method, a plurality of converter stations control direct current voltage in a direct current power grid at a same moment. A common multi-point voltage control method is a slope voltage control method. In this method, active power outputs of a plurality of slope voltage control converter stations are related to the impedance in a direct current transmission line and respective slopes of the slope voltage control converter stations. Neither direct current voltage nor active power can be accurately controlled.

    [0007] WO 2014/071742 A1 discloses a coordination control method of a multi-terminal flexible direct current power transmission system including different converter stations implementing different control modes. A similar system is disclosed in WO 2015/131602 A1.

    SUMMARY OF THE INVENTION



    [0008] An objective of the present invention is to provide a direct current power grid voltage control method, so that a direct current voltage can be accurately controlled in a steady state, and direct current voltage deviation can be suppressed in a transient state.

    [0009] To achieve the above objective, the present invention provides a voltage control method according to claim 1 which is reflected by the following features:
    In a direct current power grid voltage control method, control of a direct current power grid voltage is divided into three processes, namely natural voltage regulation, first voltage regulation and second voltage regulation; the converter stations in the direct current power grid are divided into three types, namely power regulation converter stations, auxiliary voltage regulation converter stations, and voltage regulation converter stations, on the basis of whether the converter station has a voltage regulation capacity, the power regulation converter stations operating in a fixed power control mode, the voltage regulation converter stations operating in a fixed voltage control mode or an auxiliary voltage control mode, and the auxiliary voltage control converter stations operating in the auxiliary voltage control mode; all the converter stations in the direct current power grid participate in natural voltage regulation, the auxiliary voltage regulation converter stations and the voltage regulation converter stations participate in first voltage regulation, and the voltage regulation converter stations participate in second voltage regulation.

    [0010] In the natural voltage regulation, capacitor energy storage in the converter stations in the direct current power grid is used to bear change of load of the direct current power grid first, when power in the direct current power grid is unbalanced, direct current voltage deviation gradually increases with time, and a process of the natural voltage regulation is naturally completed and does not need any adjustment measure.

    [0011] In the first voltage regulation, the converter stations operating in the auxiliary voltage control mode is used to participate in adjustment of direct current voltage, to eventually enable direct current voltage to form deviation, and the first voltage regulation is automatically completed depending on a controller of a converter station and does not need intervention of an external regulation department.

    [0012] In the second voltage regulation, the converter stations operating in the fixed-direct current voltage control mode or the converter stations operating in the auxiliary voltage control mode are used to participate in adjustment of direct current voltage, to eventually implement accurate control of the direct current voltage, and a controller of the second voltage regulation is mounted inside a converter station or at an external regulation department.

    [0013] An implementation method of the auxiliary voltage control mode is:
    1. (1) detecting direct current voltage Udc;
    2. (2) calculating deviation ΔU=Udc-Urate between the direct current voltage Udc and rated direct current voltage Urate;
    3. (3) comparing ΔU with fixed voltage deviation values UsetH and UsetL (UsetH>UsetL), where when UsetL<ΔU<UsetH, ΔUmod=0, when ΔU>UsetH, ΔUmod=ΔU-UsetH, and when ΔU<UsetL, ΔUmod=ΔU-UsetL;
    4. (4) calculating a power instruction deviation value ΔP=KΔUmod; and
    5. (5) calculating a power instruction Pref=Porder-ΔP of a power controller according to a power instruction Porder delivered by an upper-layer controller and the power instruction deviation value ΔP.


    [0014] By means of the above solution, the present invention is advantageous in the following aspects:
    1. (1) Direct current voltage and power can be accurately controlled in a steady state.
    2. (2) Direct current voltage change can be suppressed in a transient state.
    3. (3) A high-speed communications channel does not need to be configured.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0015] 

    FIG. 1 shows typical control modes of a direct current power grid converter, where FIG. (a) is a fixed power control mode, FIG. (b) is an auxiliary voltage control mode, and FIG. (c) is a fixed voltage control mode;

    FIG. 2 is Implementation Solution 1 of direct current power grid voltage control; and

    FIG. 3 is Implementation Solution 2 of direct current power grid voltage control.


    DETAILED DESCRIPTION OF THE INVENTION



    [0016] The technical solution of the present invention is described below in detail with reference to the accompanying drawings and specific embodiments.

    [0017] In a direct current power grid voltage control method, control of a direct current power grid voltage is divided into three processes, namely natural voltage regulation, first voltage regulation and second voltage regulation; the converter stations in the direct current power grid are divided into three types, namely power regulation converter stations, auxiliary voltage regulation converter stations, and voltage regulation converter stations, on the basis of whether the converter station has a voltage regulation capacity, the power regulation converter stations operating in a fixed power control mode, the voltage regulation converter stations operating in a fixed voltage control mode or an auxiliary voltage control mode, and the auxiliary voltage control converter stations operating in the auxiliary voltage control mode; all the converter stations in the direct current power grid participate in natural voltage regulation, the auxiliary voltage regulation converter stations and the voltage regulation converter stations participate in first voltage regulation, and the voltage regulation converter stations participate in second voltage regulation.

    [0018] In the natural voltage regulation, capacitor energy storage in the converter stations in the direct current power grid is used to bear change of load of the direct current power grid first, when power in the direct current power grid is unbalanced, direct current voltage deviation gradually increases with time, and a process of the natural voltage regulation is naturally completed and does not need any adjustment measure.

    [0019] In the first voltage regulation, the converter stations operating in the auxiliary voltage control mode is used to participate in adjustment of direct current voltage, to eventually enable direct current voltage to form deviation, and the first voltage regulation is automatically completed depending on a controller of a converter station and does not need intervention of an external regulation department.

    [0020] In the second voltage regulation, the converter stations operating in the fixed-direct current voltage control mode or the converter stations operating in the voltage auxiliary control mode are used to participate in adjustment of direct current voltage, to eventually implement accurate control of the direct current voltage, and a controller of the second voltage regulation is mounted inside a converter station or at an external regulation department.

    [0021] An implementation method of the auxiliary voltage control mode is:
    1. (1) detecting direct current voltage Udc;
    2. (2) calculating deviation ΔU=Udc-Urate between the direct current voltage Udc and rated direct current voltage Urate;
    3. (3) comparing ΔU with fixed voltage deviation values UsetH and UsetL (UsetH>UsetL), where when UsetL<ΔU<UsetH, ΔUmod=0, when ΔU>UsetH, ΔUmod=ΔU-UsetH, and when ΔU<UsetL, Δ Umod=ΔU-UsetL;
    4. (4) calculating a power instruction deviation value ΔP=KΔUmod; and
    5. (5) calculating a power instruction Pref=Porder-ΔP of a power controller according to a power instruction Porder delivered by an upper-layer controller and the power instruction deviation value ΔP.


    [0022] FIG. 1 shows typical control modes of a direct current power grid converter, where FIG. (a) is a fixed power control mode, FIG. (b) is an auxiliary voltage control mode, and FIG. (c) is a fixed voltage control mode.

    [0023] There can only be one fixed voltage controller in a direct current network. The controller may be mounted in an upper-layer controller such as power dispatch or may be mounted inside a converter station. In a direct current power grid shown in FIG. 2, a voltage controller is mounted in a power dispatch system. A converter station 1 and a converter station 2 are voltage regulation converter stations. The voltage regulation converter stations operate in the auxiliary voltage control mode and receive a power instruction delivered by the voltage controller. A converter station 3 is an auxiliary voltage regulation converter station, operates in the auxiliary voltage control mode, and receives a power instruction of power dispatch. A converter station 4 is a power regulation converter station, operates in the fixed power control mode, and receives a power instruction of power dispatch. When load of the direct current power grid changes, capacitor energy storage of the four converter stations first redresses power imbalance, and as a result direct current voltage gradually deviates. Such a process is a process of the natural voltage regulation. If the voltage controller has a relatively slow adjustment speed or a relatively long communication delay, when direct current voltage deviation reaches a particular degree, the converter station 1, the converter station 2, and the converter station 3 operating in the auxiliary voltage control mode automatically adjust respective power reference values Pref, to keep power balance to suppress further direct current voltage deviation. Such a process is a process of the first voltage regulation. The first voltage regulation cannot implement accurate control of the direct current voltage. After a period of time, the voltage controller starts to automatically change power instructions of the converter station 1 and the converter station 2, to implement accurate control of the direct current voltage. At the same time, a power reference value Pref3 of the converter station 3 returns to Porder3. Such a process is a process of the second voltage regulation. If the adjustment speed of the voltage controller is sufficiently fast and the communication delay is sufficiently short, the process of the second voltage regulation exerts an effect before the process of the first voltage regulation does. The voltage controller changes Porder1 and Porder2 to keep power balance, so as to implement accurate control of the direct current voltage.

    [0024] In a direct current power grid shown in FIG. 3, a voltage controller is mounted inside a converter station. A converter station 1 and a converter station 2 are voltage regulation converter stations. The converter station 1 operates in a fixed voltage control mode. The converter station 2 operates in an auxiliary voltage control mode. The converter station 2 receives a power instruction of a power dispatch. A converter station 3 is an auxiliary voltage regulation converter station, operates in the auxiliary voltage control mode, and receives a power instruction of power dispatch. A converter station 4 is a power regulation converter station, operates in a fixed power control mode, and receives a power instruction of power dispatch. When load of the direct current power grid changes, capacitor energy storage of the four converter stations first redresses power imbalance, and as a result direct current voltage gradually deviates. Such a process is a process of the natural voltage regulation. The voltage controller mounted inside the converter station has a relatively short communication delay and a relatively fast adjustment speed. The voltage controller changes Porder1 and Porder2 to keep power balance, so as to implement accurate control of the direct current voltage. When the converter station 1 fails and stops operating, power of the direct current power grid may be no longer balanced. The capacitor energy storage of the four converter stations first redresses power imbalance, and as a result direct current voltage gradually deviates. Such a process is a process of the natural voltage regulation. The converter station 2 takes over voltage control right by means of communication. If a communication delay is relatively long, when direct current voltage deviation reaches a particular degree, the converter station 2 and the converter station 3 operating in the auxiliary voltage control mode automatically adjust respective power reference values Pref to keep power balance, so as to suppress further direct current voltage deviation. Such a process is a process of the first voltage regulation. The first voltage regulation cannot implement accurate control of the direct current voltage. After a period of time, the converter station 2 takes over voltage control right and switches to the fixed voltage control mode, so as to implement accurate control of the direct current voltage. At the same time, a power reference value Pref3 of the converter station 3 returns to Porder3 again. Such a process is a process of the second voltage regulation. If the communication delay is sufficiently short, the converter station 2 already takes over voltage control right before the process of the first voltage regulation exerts an effect, and the process of the second voltage regulation already exerts an effect, so as to implement accurate control of the direct current voltage.

    [0025] The foregoing embodiments are only used to describe the technical concept of the present invention and cannot be used to limit the protection scope of the present invention.


    Claims

    1. A direct current power grid voltage control method, wherein converter stations in the direct current power grid are divided into three types: power regulation converter stations, auxiliary voltage regulation converter stations, and voltage regulation converter stations, on the basis of whether the converter station has a voltage regulation capacity;
    the power regulation converter stations operating in a fixed power control mode, the auxiliary voltage regulation converter stations operating in an auxiliary voltage control mode, and the voltage regulation converter stations operating in a fixed voltage control mode or the auxiliary voltage control mode;
    wherein control of a direct current power grid voltage is divided into three processes being a natural voltage regulation in which a capacitor energy storage in the converter stations in the direct current power grid is used to adjust a direct current voltage in the direct current power grid, a first voltage regulation in which the converter stations operating in the auxiliary voltage control mode are used to adjust the direct current voltage in the direct current power grid, to enable the direct current voltage to form deviation, and the first voltage regulation is completed depending on a controller of a converter station and a second voltage regulation in which the converter stations operating in the fixed voltage control mode or the converter stations operating in the voltage auxiliary control mode are used to adjust the direct current voltage in the direct current power grid, to implement accurate control of the direct current voltage, wherein a controller of the second voltage regulation is mounted inside a converter station or at an external regulation department; all the converter stations in the direct current power grid participate in natural voltage regulation, the auxiliary voltage regulation converter stations and the voltage regulation converter stations participate in first voltage regulation, and the voltage regulation converter stations participate in second voltage regulation;
    wherein during the regulation the voltage regulation converter stations are switched between the fixed voltage control mode and the auxiliary voltage control mode; characterized in that an implementation method of the auxiliary voltage control mode is:

    (1) detecting direct current voltage Udc;

    (2) calculating deviation ΔU=Udc-Urate between the direct current voltage Udc and rated direct current voltage Urate;

    (3) setting two different fixed voltage deviation values UsetH and UsetL, UsetH>UsetL, and comparing ΔU with UsetH and UsetL, wherein when UsetL<ΔU<UsetH, ΔUmod=0, when ΔU>UsetH, ΔUmod=ΔU-USetH, and when ΔU<UsetL, ΔUmod=ΔU-UsetL;

    (4) calculating a power instruction deviation value ΔP=KΔUmod, wherein K is a proportional coefficient; and

    (5) calculating a power instruction Pref=Porder-ΔP of a power controller according to a power instruction Porder delivered by an upper-layer controller and the power instruction deviation value ΔP.


     


    Ansprüche

    1. Spannungsregelungsverfahren für ein Gleichstromnetz, wobei Wandlereinheiten in dem Gleichstromnetz auf Grundlage dessen, ob die Wandlereinheit eine Spannungsregelungskapazität aufweist, in drei Typen unterteilt werden:

    Leistungsregelungs-Wandlereinheiten, Hilfsspannungsregelungs-Wandlereinheiten und Spannungsregelungs- Wandlereinheiten;

    wobei die Leistungsregelungs-Wandlereinheiten in einem festen Leistungsregelungsmodus arbeiten, die Hilfsspannungsregelungs-Wandlereinheiten in einem Hilfsspannungsregelungsmodus arbeiten, und die Spannungsregelungs-Wandlereinheiten in einem festen Spannungsregelungsmodus oder dem Hilfsspannungsregelungsmodus arbeiten;

    wobei die Regelung einer Spannung des Gleichstromnetzes in drei Prozesse unterteilt wird, bei denen es sich um eine Eigenspannungsregelung, bei der ein Kondensatorenergiespeicher in den Wandlereinheiten in dem Gleichstromnetz verwendet wird, um eine Gleichspannung in dem Gleichstromnetz anzupassen, eine erste Spannungsregelung, bei der die Wandlereinheiten, die in dem Hilfsspannungsregelungsmodus arbeiten, verwendet werden, um die Gleichspannung in dem Gleichstromnetz anzupassen, um es der Gleichspannung zu ermöglichen, eine Abweichung zu bilden, und die erste Spannungsregelung abhängig von einem Controller einer Wandlereinheit abgeschlossen wird, sowie eine zweite Spannungsregelung handelt, bei der die Wandlereinheiten, die in dem festen Spannungsregelungsmodus arbeiten, oder die Wandlereinheiten, die in dem Hilfsspannungsregelungsmodus arbeiten, dazu verwendet werden, um eine exakte Regelung der Gleichspannung zu verwirklichen, wobei ein Controller der zweiten Spannungsregelung im Inneren einer Wandlereinheit oder einer externen Regelungsstelle montiert ist;

    alle Wandlereinheiten in dem Gleichstromnetz bei einer Eigenspannungsregelung teilnehmen, die Hilfsspannungsregelungs-Wandlereinheiten und die Spannungs-Wandlereinheiten bei der ersten Spannungsregelung teilnehmen und die Spannungsregelungs-Wandlereinheiten bei der zweiten Spannungsregelung teilnehmen;

    wobei während der Regelung die Spannungsregelungs-Wandlereinheiten zwischen dem festen Spannungsregelungsmodus und dem Hilfsspannungsregelungsmodus umgeschaltet werden;

    dadurch gekennzeichnet, dass

    es sich bei einem Implementierungsverfahren des Hilfsspannungsregelungsmodus handelt um:

    (1) Detektieren einer Gleichspannung Udc;

    (2) Berechnen einer Abweichung ΔU=Udc-Urate zwischen der Gleichspannung Udc und einer Nenngleichspannung Urate;

    (3) Festlegen zweier unterschiedlicher, fester Spannungsabweichungswerte UsetH und UsetL, UsetH>UsetL, und Vergleichen von ΔU mit UsetH und UsetL, wobei dann, wenn UsetL<ΔU<UsetH, ΔUmod=0, wenn ΔU>UsetH, ΔUmod=ΔU-UsetH, und wenn ΔU<UsetL, ΔUmod=ΔU-UsetL,

    (4) Berechnen eines Leistungsbefehlsabweichungswerts ΔP=KΔUmod, wobei K ein proportionaler Koeffizient ist; und

    (5) Berechnen eines Leistungsbefehls Pref=Porder-AP eines Leistungscontrollers gemäß eines Leistungsbefehls Porder, der von einem Controller höherer Ordnung geliefert wird, und dem Leistungsbefehlsabweichungswert ΔP.


     


    Revendications

    1. Procédé de commande de tension de réseau électrique à courant continu, dans lequel des stations de conversion dans le réseau électrique à courant continu sont divisées en trois types : les stations de conversion de régulation de puissance, les stations de conversion de régulation de tension auxiliaire, et les stations de conversion de régulation de tension, selon que la station de conversion possède ou non une capacité de régulation de tension ;
    les stations de conversion de régulation de puissance fonctionnant en mode de commande de puissance fixe, les stations de conversion de régulation de tension auxiliaire fonctionnant en mode de commande de tension auxiliaire, et les stations de conversion de régulation de tension fonctionnant en mode de commande de tension fixe ou en mode de commande de tension auxiliaire ;
    dans lequel la commande d'une tension de réseau électrique à courant continu est divisée en trois processus qui sont une régulation de tension naturelle dans laquelle un stockage d'énergie par condensateur dans les stations de conversion dans le réseau électrique à courant continu est utilisé pour ajuster une tension de courant continu dans le réseau électrique à courant continu,
    une première régulation de tension dans laquelle les stations de conversion fonctionnant en mode de commande de tension auxiliaire sont utilisées pour ajuster la tension de courant continu dans le réseau électrique à courant continu, pour permettre à la tension de courant continu de former un écart, et la première régulation de tension est effectuée en fonction d'un dispositif de commande d'une station de conversion et une deuxième régulation de tension dans laquelle les stations de conversion fonctionnant en mode de commande de tension fixe ou les stations de conversion fonctionnant en mode de commande de tension auxiliaire sont utilisées pour ajuster la tension de courant continu dans le réseau électrique à courant continu, pour mettre en œuvre une commande précise de la tension de courant continu, dans lequel un dispositif de commande de la deuxième régulation de tension est monté à l'intérieur d'une station de conversion ou au niveau d'un service de régulation externe ;
    toutes les stations de conversion dans le réseau électrique à courant continu participent à la régulation de tension naturelle, les stations de conversion de régulation de tension auxiliaire et les stations de conversion de régulation de tension participent à la première régulation de tension, et les stations de conversion de régulation de tension participent à la deuxième régulation de tension ;
    dans lequel, pendant la régulation, les stations de conversion de régulation de tension sont commutées entre le mode de commande de tension fixe et le mode de commande de tension auxiliaire ;
    caractérisé en ce que
    un procédé de mise en œuvre du mode de commande de tension auxiliaire est :

    (1) la détection d'une tension de courant continu Udc ;

    (2) le calcul d'un écart ΔU = Udc - Urate entre la tension de courant continu Udc et la tension de courant continu nominale Urate ;

    (3) la définition de deux valeurs d'écart de tension fixe différentes UsetH et UsetL, UsetH > UsetL, et la comparaison de ΔU avec UsetH et UsetL, dans lequel, lorsque UsetL < ΔU < UsetH, ΔUmod = 0, lorsque ΔU > UsetH, ΔUmod = ΔU - UsetH, et lorsque ΔU < UsetL, ΔUmod = ΔU - UsetL ;

    (4) le calcul d'une valeur d'écart d'instruction de puissance ΔP = K ΔUmod, dans lequel K est un coefficient proportionnel ; et

    (5) le calcul d'une instruction de puissance Pref = Porder - ΔP d'un dispositif de commande de puissance en fonction d'une instruction de puissance Porder délivrée par un dispositif de commande de couche supérieure et de la valeur d'écart d'instruction de puissance ΔP.


     




    Drawing









    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description