(19)
(11)EP 3 419 929 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.11.2019 Bulletin 2019/48

(21)Application number: 17705900.3

(22)Date of filing:  20.02.2017
(51)Int. Cl.: 
C01B 3/38  (2006.01)
C25B 15/08  (2006.01)
C25B 1/00  (2006.01)
C01B 32/40  (2017.01)
(86)International application number:
PCT/EP2017/053765
(87)International publication number:
WO 2017/144403 (31.08.2017 Gazette  2017/35)

(54)

CARBON MONOXIDE PRODUCTION PROCESS OPTIMIZED BY SOEC

DURCH SOEC OPTIMIERTES VERFAHREN ZUR ERZEUGUNG VON KOHLENMONOXID

PROCÉDÉ DE PRODUCTION DE MONOXYDE DE CARBONE OPTIMISÉ PAR SOEC (CELLULE D'ÉLECTROLYSE À OXYDE SOLIDE)


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 26.02.2016 DK 201600122

(43)Date of publication of application:
02.01.2019 Bulletin 2019/01

(73)Proprietor: Haldor Topsøe A/S
2800 Kgs. Lyngby (DK)

(72)Inventor:
  • WENE, Henrik C.O.
    211 49 Malmö (SE)


(56)References cited: : 
EP-A1- 0 307 843
WO-A1-2013/064552
US-A1- 2009 235 587
EP-A1- 2 873 939
WO-A1-2014/154253
US-A1- 2014 076 213
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] This invention belongs to the field of electrolysis conducted in solid oxide electrolysis cell (SOEC) stacks. A solid oxide electrolysis cell is a solid oxide fuel cell (SOFC) run in reverse mode, which uses a solid oxide or ceramic electrolyte to produce e.g. oxygen and hydrogen gas by electrolysis of water. It comprises an SOEC core wherein the SOEC stack is housed together with inlets and outlets for process gases. The feed gas, often called the fuel gas, is led to the cathode part of the stack, from where the product gas from the electrolysis is taken out. The anode part of the stack is also called the oxygen side, because oxygen is produced on this side.

    [0002] The present invention relates carbon monoxide (CO) production in steam reforming based CO plants to a process for producing carbon monoxide (CO) from carbon dioxide (CO2) in a solid oxide electrolysis cell (SOEC) or SOEC stack, wherein CO2 is led to the fuel side of the stack with an applied current and excess oxygen is transported to the oxygen side of the stack, optionally using air or nitrogen to flush the oxygen side, and wherein the product stream from the SOEC, containing CO mixed with CO2, is subjected to a separation process.

    [0003] In the present invention, the SOEC stack or stacks is boosting CO production in existing steam reforming based CO producing facilities operating by means of steam reformed synthesis gas and subsequent cryogenic or membrane CO purification.

    [0004] CO production by steam reforming yields a co-production of hydrogen which can have high or low value depending on the local circumstances. In cases where hydrogen has a low value the hydrogen production can be suppressed by using feedstock with a high C/H ratio such a naphtha, operating the reformer at a low S/C ratio and/or high temperature, recycling CO2 from the CO2 removal unit and/or adding import CO2.

    [0005] However due to increasing carbon formation potential on the reforming catalysts it is widely known there is for any given feedstock a limit how low the H2/CO ratio can be pushed in a steam reformer applying the above tricks. Consequently nature sets a limit to how much CO a reformer of a given size can produce before carbon formation sets in or heat transfer limitations of the equipment are reached. In cases additional CO capacity is needed when this point has been reached the only option for producing additional CO is to add steam reforming capacity. Adding reforming capacity is typically only feasible in relatively large increments to achieve reasonable economy of scale, the load on the remaining sections of the syngas plant increases linearly (or more if hex reforming is applied) with the added reforming capacity adding cost, time and complication of revamping an existing facility. Accordingly incremental CO business opportunities have to be of sufficient size to gain the necessary economy of scale for feasibility of a new syngas plant or debottlenecking the existing facility.

    [0006] It is known that CO may be produced from CO2 by electrolysis. Thus, US 2007/0045125 A1 describes a method for preparing synthesis gas (syngas comprising carbon monoxide and hydrogen) from carbon dioxide and water using a sodium-conducting electrochemical cell. Syngas is also produced by co-electrolysis of carbon dioxide and steam in a solid oxide electrolysis cell.

    [0007] EP 0307843 discloses how substantially pure hydrogen and high purity carbon monoxide are produced and recovered from a methane-rich gas composition, such as natural gas, by subjecting such composition to steam reforming in a first stage at relatively mild conditions, followed by secondary oxidative reforming of the thus obtained primary reformate effecting conversion of residual methane therein to carbon oxides. The secondary reformate, comprised chiefly of hydrogen, CO, and CO 2, is subjected to a novel sequence of operations for separation of these individual components. CO 2 is first removed by solvent absorption, followed by selective adsorption for separation of CO from the CO 2 - freed gas mixture with attendant recovery of hydrogen product of 98 + percent purity as an unsorbed effluent. Trace to small amounts of undesired carbon monoxide in the thus recovered hydrogen product can be converted by catalytic methanation.

    [0008] In EP 2873939 describes a process to produce at least carbon dioxide and carbon monoxide from a feed gas containing carbon dioxide, hydrogen and carbon monoxide; comprises separating at least part of the carbon dioxide from the compressed feed gas by partial condensation and/or distillation producing a carbon dioxide product and a carbon dioxide depleted stream, treating the carbon dioxide depleted stream in a treatment unit to produce a feed stream containing carbon monoxide and hydrogen, less rich in carbon dioxide than the carbon dioxide depleted stream and feeding at least part of the feed stream containing carbon monoxide and hydrogen to a separation unit operating at cryogenic temperatures to produce a carbon monoxide product.

    [0009] US 8,138,380 B2 describes an environmentally beneficial method of producing methanol by reductively converting carbon dioxide, said method including a step in which recycled carbon dioxide is reduced to carbon monoxide in an electrochemical cell.

    [0010] From US 2008/0023338 A1 a method for producing at least one syngas component by high temperature electrolysis is known. The syngas components hydrogen and carbon monoxide may be formed by decomposition of carbon dioxide and water or steam in a solid oxide electrolysis cell to form carbon monoxide and hydrogen, a portion of which may be reacted with carbon dioxide to form carbon monoxide utilizing the so-called reverse water gas shift (WGS) reaction.

    [0011] US 2012/0228150 A1 describes a method of decomposing CO2 into C/CO and O2 in a continuous process using electrodes of oxygen deficient ferrites (ODF) integrated with a YSZ electrolyte. The ODF electrodes can be kept active by applying a small potential bias across the electrodes. CO2 and water can also be electrolysed simultaneously to produce syngas (H2 + CO) and O2 continuously. Thereby, CO2 can be transformed into a valuable fuel source allowing a CO2 neutral use of hydrocarbon fuels.

    [0012] Finally, US 8,366,902 B2 describes methods and systems for producing syngas utilising heat from thermochemical conversion of a carbonaceous fuel to support decomposition of water and/or carbon dioxide using one or more solid oxide electrolysis cells. Simultaneous decomposition of carbon dioxide and water or steam by one or more solid oxide electrolysis cells can be employed to produce hydrogen and carbon monoxide.

    [0013] Besides the above-mentioned patents and patent applications, the concept of electrolysing CO2 in solid oxide electrolysis cells is described in "Modeling of a Solid Oxide Electrolysis Cell for Carbon Dioxide Electrolysis", a publication by Meng Ni of the Hong Kong Polytechnic University, and also by Sune Dalgaard Ebbesen and Mogens Mogensen in an article entitled "Electrolysis of Carbon Dioxide in Solid Oxide Electrolysis Cells", Journal of Power Sources 193, 349-358 (2009).

    [0014] Specifically the invention we claim is SOEC debottlenecking of steam reforming based CO plants enabling the operator/owner to exploit incremental CO business opportunities exceeding their current CO production capacity with relatively minor investment and down time. The SOEC operates on low pressure CO2 (preferably the CO2 removal unit exhaust as it is free from catalyst poisons while import CO2 could contain contaminants) and converts 5-99% of it into CO. Advantages is that CO2 compression and syngas generation load is unchanged, i.e. no modification or investment required.

    [0015] Load on CO2 removal unit increases, however much less compared to additional reforming capacity so only minor modifications/investment/downtime required. Load increase on dryer and CO purification unit is essentially limited to extra CO (+low levels of H2,N2 possibly in SOEC product) i.e. no or minor modifications/investments/downtime are likely required.

    [0016] The electrolysis process in the SOEC requires an operating temperature between 650 and 850°C. Depending on the specific operating conditions, stack configuration and the integrity of the stack, the overall operation can consume heat (i.e. be endothermic), it can be thermoneutral or it can generate heat (i.e. be exothermic). Any operation carried out at such high temperatures also leads to a significant heat loss. This means that typically it will require external heating to reach and maintain the desired operating temperature.

    [0017] When the operation is carried out at a sufficiently large current in the SOEC stack, the necessary heat will eventually be generated, but at the same time the degradation of the stack will increase. Therefore, in another embodiment of the process external heaters are used to heat the inlet gas on the oxygen side and the fuel side in order to supply heat to the SOEC stack, thereby mitigating this issue. Such external heaters are also useful during start-up as they can provide heat to help the SOEC reach its operating temperature. Suitable feed gas temperatures would be around 700 to 850°C. The external heaters can be electrical, but gas or liquid fuelled external heaters may also be used.

    [0018] In addition to using inlet gas heaters to obtain the necessary operating temperature, the hot exhaust gas on the oxygen side and the fuel side may be utilized to heat the inlet gas. This is another way to maintain a suitable operating temperature for the SOEC and at the same time reduce the load on the heaters. Thus, by incorporating a feed effluent heat exchanger on both the oxygen side and the fuel side, the issues related to high temperature operation and heat loss are further mitigated. In accordance with the nature of the SOEC operation, mass (O2) is transferred from the fuel side to the oxygen side, which leads to a limitation on the maximum temperature that can be reached in the feed effluent heat exchanger on the fuel side alone. As a consequence of this, there will be an increase of mass through the SOEC on the oxygen side, which leads to the creation of an excess of heat in the SOEC oxygen outlet stream. This in turn leads to a surplus of heat in the outlet stream from the feed effluent heat exchanger on the oxygen side also. Thus, in order to utilize this excess heat on the oxygen side, a third feed effluent heat exchanger is implemented, said third heat exchanger transferring heat from the hot outlet side of the feed effluent heat exchanger on the oxygen side to the cold inlet of the feed effluent heat exchanger on the fuel side. By using electrical tracing in combination with high-temperature insulation on the connecting pipes between the heaters and the heat exchangers as well as between the heat exchangers, the heaters and the stack, the desired temperature level in the SOEC stack can be further conserved.

    Features of the invention



    [0019] The present invention provides a process for producing carbon dioxide according to claim 1. Further embodiments of the invention are disclosed in dependent claims 2 to 13.

    Description of the drawings



    [0020] The invention is further illustrated by the accompanying drawings showing examples of embodiments of the invention.

    Fig. 1 shows a diagram of the process according to an embodiment of the invention, and

    Fig. 2 shows a diagram of the process according to another embodiment of the invention.


    Position numbers



    [0021] 
    01.
    Feed stream
    02.
    Syngas generation step
    03.
    First syngas stream.
    04.
    CO2 removal step.
    05.
    CO2 recycle stream.
    06.
    Second syngas stream.
    07.
    CO purification step.
    08.
    SOEC unit.
    09.
    CO2 stream.
    10.
    CO2 import stream.


    [0022] The diagram in Fig. 1 shows the CO production process according to an embodiment of the invention. A feed stream, 01 comprising natural gas and/or naphtha feed is led to the syngas generation step, 02, where it is transformed to syngas by a catalytic reaction. The thereby generated first syngas stream, 03 is then led to the CO2 removal step, which generates a CO2 recycle stream which is recycled back into the feed stream by means of a CO2 recycle compressor and a second syngas stream, 06, which is passed further on to the CO purification step, 07 via the syngas dryer. A CO product stream is formed from the second syngas stream by the reaction taking place in the CO purification step.

    [0023] To increase the efficiency of this known process, an SOEC unit is added to the process, which generates CO from CO2. In the present embodiment, the SOEC unit is fed by at least a part of the CO2 recycle stream which is generated in the CO2 removal step. The CO generated in the SOEC is then fed back into the first syngas stream, thereby increasing the CO concentration of this stream and increasing the overall CO production capacity of the existing process. As the capacity of the existing process is increased, it may be feasible to apply a CO2 import stream, 10 to the system, which may be fed into the CO2 recycle stream. Accordingly the present invention is well suited for revamping existing CO-production plants, increasing their CO production capacity without major equipment replacement.

    [0024] In the embodiment of the invention according to Fig. 2, the SOEC unit is fed directly by the CO2 import stream. This embodiment may be advantageous as it requires a minimum of piping and revamping of the existing plant.


    Claims

    1. A process for producing carbon monoxide (CO) from a feed stream (01) comprising carbon dioxide (CO2) and natural gas and/or naphtha, the process comprising

    • a syngas generation step (02) comprising steam reforming where a first syngas stream (03) is generated from the feed stream,

    • a CO2 removal step (04) where at least a part of the CO2 is removed from the first syngas stream and the thereby generated CO2 recycle stream (05) is recycled back to the syngas generation step, and a second syngas stream (06) is generated in said CO2 removal step, and

    • a CO purification step (07) where CO is generated from the second syngas stream,

    wherein the process further comprises a solid oxide electrolysis cell (SOEC) unit (08) which is fed by a CO2 stream (09), the SOEC unit generates CO which is fed back into the first syngas stream, thereby raising the CO concentration in the first syngas stream.
     
    2. A process according to claim 1, wherein the CO2 stream which is fed to the SOEC unit is a recycle by-pass stream comprising at least a part of said CO2 recycle stream.
     
    3. A process according to any of the preceding claims, comprising a CO2 import stream (10) which is fed to the syngas generation step.
     
    4. A process according to any of the preceding claims, comprising a CO2 import stream which is fed to the SOEC unit.
     
    5. A process according to claim 2, wherein the SOEC unit comprises a compressor adapted to enable the CO2 recycle by-pass stream to overcome the pressure difference from the CO2 recycle stream, through the SOEC unit and piping and back into the first syngas stream.
     
    6. A process according to claim 5, wherein the SOEC unit comprises a pressure reduction valve downstream of the CO2 recycle stream to protect the SOEC unit from exceed pressure.
     
    7. A process according to any of the preceding claims, wherein the SOEC unit converts 5 - 99 % of the CO2 fed to the SOEC unit to CO.
     
    8. A process according to any of the preceding claims, wherein the SOEC unit converts 20 - 60 % of the CO2 fed to the SOEC unit to CO.
     
    9. A process according to any of the preceding claims, wherein the pressure of the first syngas stream is 2 - 25 Bar (g) .
     
    10. A process according to any of the preceding claims, wherein the pressure of the first syngas stream is 15 - 25 Bar(g).
     
    11. A process according to any of the preceding claims, wherein the pressure of the CO2 recycle stream is 0 - 5 Bar(g) .
     
    12. A process according to any of the preceding claims, wherein the syngas generation step comprises hydrogenation, desulphurization, pre-reforming and reforming.
     
    13. A process according to any of the preceding claims, wherein the CO purification step comprises cryogenic or membrane CO purification.
     


    Ansprüche

    1. Verfahren zur Herstellung von Kohlenmonoxid (CO) aus einem Zustrom (01), enthaltend Kohlendioxid (CO2) und Erdgas und/oder Rohbenzin, wobei das Verfahren umfasst:

    • einen Synthesegas-Erzeugungsschritt (02), der ein Dampfreformieren umfasst, mit dem ein erster Synthesegasstrom aus dem Zustrom erzeugt wird,

    • einen CO2-Entfernungsschritt (04), in dem mindestens ein Teil des CO2 aus dem ersten Synthesegasstrom entfernt wird und der dadurch erzeugte CO2-Rückführstrom (05) in den Synthesegas-Erzeugungsschritt zurückgeführt wird und wobei in dem CO2-Entfernungsschritt ein zweiter Synthesegasstrom (06) erzeugt wird, und

    • einen CO-Reinigungsschritt (07), in dem CO aus dem zweiten Synthesegasstrom erzeugt wird,

    wobei das Verfahren weiter eine Festoxidelektrolysezellen(SOEC)-Einheit (08) umfasst, die von einem CO2-Strom (09) gespeist wird, wobei die SOEC-Einheit CO erzeugt, das in den ersten Synthesegasstrom zurückgeführt wird, wodurch die CO-Konzentration in dem Synthesegasstrom erhöht wird.
     
    2. Verfahren gemäß Anspruch 1, wobei der der SOEC-Einheit zugeführte CO2-Strom ein Rückführ-Umgehungsstrom ist, der mindestens einen Teil des CO2-Rückführstroms umfasst.
     
    3. Verfahren gemäß einem der vorhergehenden Ansprüche, umfassend einen CO2-Importstrom (10), der dem Synthesegas-Erzeugungsschritt zugeführt wird.
     
    4. Verfahren gemäß einem der vorhergehenden Ansprüche, umfassend einen CO2-Importstrom, der der SOEC-Einheit zugeführt wird.
     
    5. Verfahren gemäß Anspruch 2, wobei die SOEC-Einheit einen Kompressor umfasst, der so angepasst ist, dass der CO2-Rückführ-Umgehungsstrom die Druckdifferenz zum CO2-Rückführstrom durch die SOEC-Einheit und die Rohrleitung und zurück in den ersten Synthesegasstrom überwinden kann.
     
    6. Verfahren gemäß Anspruch 5, wobei die SOEC-Einheit ein Druckreduzierventil stromabwärts des CO2-Rückführstroms umfasst, um die SOEC-Einheit vor Überdruck zu schützen.
     
    7. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die SOEC-Einheit 5 bis 99 % des der SOEC-Einheit zugeführten CO2 in CO umwandelt.
     
    8. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die SOEC-Einheit 20 bis 60 % des der SOEC-Einheit zugeführten CO2 in CO umwandelt.
     
    9. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei der Druck des ersten Synthesegasstroms 2 bis 25 bar(g) beträgt.
     
    10. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei der Druck des ersten Synthesegasstroms 15 bis 25 bar(g) beträgt.
     
    11. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei der Druck des CO2-Rückführstroms 0 bis 5 bar(g) beträgt.
     
    12. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei der Synthesegas-Erzeugungsschritt die Hydrierung, Entschwefelung, Vorreformierung und Reformierung umfasst.
     
    13. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei der CO-Reinigungsschritt eine Tieftemperatur- oder Membran-CO-Reinigung umfasst.
     


    Revendications

    1. Procédé pour produire du monoxyde de carbone (CO) à partir d'un flux d'alimentation (01) comprenant du dioxyde de carbone (CO2) et du gaz naturel et/ou du naphta, le procédé comprenant

    • une étape d'engendrement de gaz de synthèse (02) comprenant un reformage à la vapeur où un premier flux de gaz de synthèse (03) est engendré à partir du flux d'alimentation,

    • une étape de retrait de CO2 (04) où au moins une partie du CO2 est retirée du premier flux de gaz de synthèse et le flux de recyclage de CO2 engendré de ce fait (05) est recyclé vers l'étape d'engendrement de gaz de synthèse, et un deuxième flux de gaz de synthèse (06) est engendré dans ladite étape de retrait de CO2, et

    • une étape de purification de CO (07) où du CO est engendré à partir du deuxième flux de gaz de synthèse,

    le procédé comprenant en outre une unité de cellule d'électrolyse à oxyde solide (SOEC) (08) qui est alimentée par un flux de CO2 (09), l'unité de SOEC engendrant du CO qui est réintroduit dans le premier flux de gaz de synthèse, élevant de ce fait la concentration en CO dans le premier flux de gaz de synthèse.
     
    2. Procédé selon la revendication 1, dans lequel le flux de CO2 qui est introduit dans l'unité de SOEC est un flux de dérivation de recyclage comprenant au moins une partie dudit flux de recyclage de CO2.
     
    3. Procédé selon l'une quelconque des revendications précédentes, comprenant un flux d'importation de CO2 (10) qui est introduit dans l'étape d'engendrement de gaz de synthèse.
     
    4. Procédé selon l'une quelconque des revendications précédentes, comprenant un flux d'importation de CO2 qui est introduit dans l'unité de SOEC.
     
    5. Procédé selon la revendication 2, dans lequel l'unité de SOEC comprend un compresseur adapté à permettre au flux de dérivation de recyclage de CO2 de surmonter la différence de pression depuis le flux de recyclage de CO2, à travers l'unité de SOEC et la tuyauterie, pour revenir dans le premier flux de gaz de synthèse.
     
    6. Procédé selon la revendication 5, dans lequel l'unité de SOEC comprend une soupape de réduction de pression en aval du flux de recyclage de CO2 afin de protéger l'unité de SOEC d'une pression excessive.
     
    7. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'unité de SOEC convertit de 5 à 99 % du CO2 introduit dans l'unité de SOEC en CO.
     
    8. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'unité de SOEC convertit de 20 à 60 % du CO2 introduit dans l'unité de SOEC en CO.
     
    9. Procédé selon l'une quelconque des revendications précédentes, dans lequel la pression du premier flux de gaz de synthèse va de 2 à 25 Bar(g).
     
    10. Procédé selon l'une quelconque des revendications précédentes, dans lequel la pression du premier flux de gaz de synthèse va de 15 à 25 Bar(g).
     
    11. Procédé selon l'une quelconque des revendications précédentes, dans lequel la pression du flux de recyclage de CO2 va de 0 à 5 Bar(g).
     
    12. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'étape d'engendrement de gaz de synthèse comprend une hydrogénation, une désulfurisation, un pré-reformage et un reformage.
     
    13. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'étape de purification de CO comprend une purification cryogénique ou membranaire de CO.
     




    Drawing









    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description