(19)
(11)EP 3 428 449 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
02.09.2020 Bulletin 2020/36

(21)Application number: 18181923.6

(22)Date of filing:  05.07.2018
(51)International Patent Classification (IPC): 
F03D 80/70(2016.01)
F03D 13/10(2016.01)
F03D 80/50(2016.01)

(54)

DRIVETRAIN FOR A WIND TURBINE AND METHOD FOR POSITIONING A MAIN BEARING OF SAID DRIVETRAIN

ANTRIEBSSTRANG FÜR EINE WINDKRAFTANLAGE UND VERFAHREN ZUR POSITIONIERUNG EINES HAUPTLAGERS DES ANTRIEBSSTRANGS

TRAIN D'ENTRAÎNEMENT POUR UNE ÉOLIENNE ET PROCÉDÉ DE POSITIONNEMENT D'UN PALIER PRINCIPAL DUDIT TRAIN D'ENTRAÎNEMENT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 11.07.2017 US 201715646208

(43)Date of publication of application:
16.01.2019 Bulletin 2019/03

(73)Proprietor: General Electric Company
Schenectady, NY 12345 (US)

(72)Inventors:
  • VANDERWALKER, Darrick Adam
    Niskayuna, NY New York 12309 (US)
  • EHERTS, Kevin Tyler
    Niskayuna, NY New York 12309 (US)

(74)Representative: ZBM Patents - Zea, Barlocci & Markvardsen 
Rambla Catalunya, 123
08008 Barcelona
08008 Barcelona (ES)


(56)References cited: : 
EP-A1- 2 233 760
DE-A1-102005 061 498
US-A1- 2011 162 174
WO-A2-2010/035011
US-A1- 2010 098 368
US-A1- 2011 188 988
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present subject matter relates generally to wind turbines, and more particularly to a clamping apparatus for positioning and securing a main bearing of a wind turbine during an installation and/or repair procedure.

    [0002] Wind power is considered one of the cleanest, most environmentally friendly energy sources presently available, and wind turbines have gained increased attention in this regard. A modern wind turbine typically includes a tower, a generator, a gearbox, a nacelle, and one or more rotor blades. The nacelle includes a rotor assembly coupled to the gearbox and to the generator. The rotor assembly and the gearbox are mounted on a bedplate member support frame located within the nacelle. More specifically, in many wind turbines, the gearbox is mounted to the bedplate member via one or more torque supports or arms. The one or more rotor blades capture kinetic energy of wind using known airfoil principles. The rotor blades transmit the kinetic energy in the form of rotational energy so as to turn a shaft coupling the rotor blades to a gearbox, or if a gearbox is not used, directly to the generator. The generator then converts the mechanical energy to electrical energy that may be deployed to a utility grid.
    More specifically, the majority of commercially available wind turbines utilize multistage geared drivetrains to connect the turbine blades to electrical generators. The wind turns the rotor blades, which spin a low speed shaft, i.e. the main shaft. The main shaft is coupled to an input shaft of the gearbox, which has a higher speed output shaft connected to the generator. Thus, the geared drivetrain aims to increase the velocity of the mechanical motion. Further, the gearbox and the generator are typically supported by one or more bearings and mounted to the bedplate member via one or more torque arms or supports.

    [0003] Over time, the main shaft and associated bearings may become worn and/or damaged due to operating loads and forces from the wind acting on the wind turbine components. Unfortunately, repair of main shaft and the main bearings often requires the turbine head to be removed from atop the nacelle and transported to a manufacturing facility, which can be very time-consuming and labor intensive. In addition, when the main shaft must be replaced, the associated bearings must be reinstalled onto the new shaft.

    [0004] US2011/162174 discloses a method in which a pressurized fluid presses an axial abutment surface against a first machine element in the axial direction to thereby fix the axial position of the first machine element.

    [0005] US2011/188988 describes a plain bearing assembly for mounting a blade to a hub of a wind turbine.

    [0006] US 2010/098368 relates to an arrangement for axially supporting a shaft of a work machine. DE 102005061498 discloses a hydraulic tool which facilitates the removal during maintenance of a heavy bearing ring from a shaft.

    [0007] Thus, the art is continuously seeking new and improved systems and methods for improving repair and/or replacement of the main shaft and the main bearing, particularly uptower. Accordingly, the present disclosure is directed to a clamping apparatus for securing a main bearing of a wind turbine during an installation and/or repair procedure and methods of using same.

    [0008] Various aspects and advantages of the invention will be set forth in part in the following description, or may be clear from the description, or may be learned through practice of the invention.

    [0009] In one aspect, the present disclosure is directed to a drivetrain assembly for a wind turbine according to claim 1 comprising a clamping apparatus for positioning a main bearing of a wind turbine. The main bearing may include a tapered roller bearing, a spherical roller bearing, a ball bearing, or any other suitable bearing type. Further, the clamping apparatus may include a push component arranged between a main flange of a main shaft of the wind turbine and a cover of the main bearing. Further, the clamping apparatus may include a spacer plate located within a gap between the cover and the main bearing. As such, the push component may be configured to apply a force to the cover so as to push the spacer plate against the main bearing such that the main bearing is pushed into and secured in place.
    In one embodiment, the push component includes a push member at least partially enclosed within a housing. In certain embodiments, the push member may include a piston, a jacking fastener or screw, or any other suitable push member capable of applying the desired force to the cover of the main bearing.

    [0010] In another embodiment, the spacer plate may include one or more locating features for locating the spacer plate within the gap. For example, in several embodiments, the locating features may include dowel pins, fasteners, studs, or similar. In additional embodiments, the spacer plate may include an arcuate shape corresponding to a profile of the main bearing.

    [0011] In further embodiments, the spacer plate may include a recess configured to receive a portion of the cover of the main bearing. In another embodiment, the spacer plate further may include one or more securing features for securing the spacer plate within the gap. For example, the securing feature(s) may include magnets, set screws, or similar. In particular embodiments, the securing feature(s) may be arranged within the recess so as to secure the spacer plate to the cover of the main bearing.

    [0012] In another aspect, the present disclosure is directed to a method for securing a main bearing of a wind turbine according to claim 11. The method includes installing a push component of a clamping apparatus between a main flange of a main shaft of the wind turbine and a cover of the main bearing. Further, the method may include installing a spacer plate of the clamping apparatus within a gap between the cover and the main bearing. The method also includes applying a force to the cover via the push component so as to push the spacer plate against the main bearing such that the main bearing is pushed into and secured in place. It should be understood that the method may further include any of the additional features and/or steps as described herein.

    [0013] In yet another aspect, the present disclosure is directed to a drivetrain assembly for a wind turbine. The drivetrain assembly includes a main shaft having a main flange, a main bearing assembly having a main bearing and a cover, and a clamping apparatus for securing the main bearing. The main bearing includes an inner race, an outer race, and a plurality of roller elements configured therebetween. The clamping apparatus includes a push component positioned between the main flange and the cover and a spacer plate positioned within a gap between the cover and the main bearing. As such, the push component is configured to apply a force to the cover so as to push the spacer plate against the main bearing such that the main bearing is pushed into and secured in place. It should be understood that the drivetrain assembly may further include any of the additional features as described herein.

    [0014] Various features, aspects and advantages of the present invention will be further supported and described with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.

    [0015] In the drawings:

    FIG. 1 illustrates a perspective view of one embodiment of a wind turbine according to the present disclosure;

    FIG. 2 illustrates a perspective view of a simplified, internal view of one embodiment of a nacelle of a wind turbine according to the present disclosure, particularly illustrating a drivetrain assembly having a single main bearing unit;

    FIG. 3 illustrates a cross-sectional view of one embodiment of certain drivetrain components of a wind turbine according to the present disclosure, particularly illustrating a drivetrain assembly having a dual main bearing unit;

    FIG. 4 illustrates a detailed cross-sectional view of the embodiment of FIG. 3;

    FIG. 5 illustrates a partial, cross-sectional view of the main shaft and the main bearing with the clamping apparatus installed thereon according to the present disclosure;

    FIG. 6 illustrates a detailed view of the clamping apparatus of FIG. 5;

    FIG. 7 illustrates a perspective view of one embodiment of the spacer plate of the clamping apparatus according to the present disclosure; and

    FIG. 8 illustrates a flow diagram of one embodiment of a method for positioning and securing the main bearing of the wind turbine during installation and/or repair thereof. Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope of the appended claims.



    [0016] Generally, the present disclosure is directed to a clamping apparatus for positioning a main bearing of a wind turbine. The clamping apparatus includes a push component arranged between a main flange of a main shaft of the wind turbine and a cover of the main bearing and a spacer plate located within a gap between the cover and the main bearing. Thus, the push component is configured to apply a force to the cover so as to push the spacer plate against the main bearing (e.g. the outer race of the main bearing) so as to maintain the main bearing in place during and installation and/or repair procedure.

    [0017] Thus, the present disclosure provides many advantages not present in the prior art. For example, the system and method of the present disclosure provides easy alignment and accurate installation of a new or repaired main bearing. Further, the clamping apparatus described herein secures the main bearing such that repairs of the bearing or main shaft can be easily made uptower or downtower. As used herein, the term "uptower" is intended to be representative of any location of the wind turbine that is above a top portion of a wind turbine tower, for example, any location within or outside of the nacelle while the nacelle is coupled to the top portion of the wind turbine tower.

    [0018] Referring now to the drawings, FIG. 1 illustrates a perspective view of one embodiment of a wind turbine 10 according to the present disclosure. As shown, the wind turbine 10 generally includes a tower 12 extending from a support surface 14, a nacelle 16 mounted on the tower 12, and a rotor 18 coupled to the nacelle 16. The rotor 18 includes a rotatable hub 20 and at least one rotor blade 22 coupled to and extending outwardly from the hub 20. For example, in the illustrated embodiment, the rotor 18 includes three rotor blades 22. However, in an alternative embodiment, the rotor 18 may include more or less than three rotor blades 22. Each rotor blade 22 may be spaced about the hub 20 to facilitate rotating the rotor 18 to enable kinetic energy to be transferred from the wind into usable mechanical energy, and subsequently, electrical energy. For instance, the hub 20 may be rotatably coupled to an electric generator 24 (FIG. 2) positioned within the nacelle 16 to permit electrical energy to be produced.
    The wind turbine 10 may also include a wind turbine controller 26 centralized within the nacelle 16. However, in other embodiments, the controller 26 may be located within any other component of the wind turbine 10 or at a location outside the wind turbine 10. Further, the controller 26 may be communicatively coupled to any number of the components of the wind turbine 10 in order to control the components. As such, the controller 26 may include a computer or other suitable processing unit. Thus, in several embodiments, the controller 26 may include suitable computer-readable instructions that, when implemented, configure the controller 26 to perform various different functions, such as receiving, transmitting and/or executing wind turbine control signals.

    [0019] Referring now to FIGS. 2-4, various views of the drivetrain assembly of a wind turbine, such as the wind turbine 10 of FIG. 1, are illustrated. FIG. 2 illustrates a simplified, internal view of one embodiment of the nacelle 16 of the wind turbine 10 shown in FIG. 1, particularly illustrating certain drivetrain components of a drivetrain assembly having a single main bearing unit. FIG. 3 illustrates a cross-sectional view of one embodiment of several drivetrain components of a dual-bearing drivetrain assembly of the wind turbine 10 according to the present disclosure. FIG. 4 illustrates a detailed cross-sectional view of the embodiment of FIG. 3. As shown in FIG. 2, the generator 24 may be coupled to the rotor 18 for producing electrical power from the rotational energy generated by the rotor 18. Further, as shown in FIGS. 2 and 3, the rotor 18 may include a main shaft 34 having a main shaft 35 rotatable via a main bearing 54 coupled to the hub 20 for rotation therewith. The main shaft 34 may, in turn, be rotatably coupled to a gearbox output shaft 36 of the generator 24 through a gearbox 30. More specifically, as shown in FIGS. 3 and 4, the main shaft 34 is typically supported by one or more bearings 54, 58. For example, as shown, a upwind end of the shaft 34 may be supported by a first or main bearing 54 and a downwind end of the shaft 34 may be supported by a second bearing 58. More specifically, as shown, the main bearing 54 generally corresponds to a tapered roller bearing having an inner race 56, an outer race 55, and a plurality of roller elements 57 arranged therebetween. In further embodiments, the main bearing 54 may be any suitable bearing in addition to tapered roller bearings, including for example, a spherical roller bearing, a ball bearing, or any other suitable bearing. In addition, as shown, the main bearing 54 may be secured in place via a bearing cover 60 that is mounted at the upwind end of the shaft 34, as well as a seal ring 59 configured between the cover 60 and the main bearing 54. For example, in certain embodiments, the seal ring 59 may correspond to a labyrinth seal that prevents leakage of bearing fluids. Further, as shown, the bearings 54, 58 may be mounted to the bedplate member 48 of the nacelle 16 via one or more torque supports 50.

    [0020] Referring back to FIG. 2, the gearbox 30 may include a gearbox housing 38 that is connected to the bedplate 48 by one or more torque arms 50. As is generally understood, the main shaft 34 provides a low speed, high torque input to the gearbox 30 in response to rotation of the rotor blades 22 and the hub 20. Thus, the gearbox 30 thus converts the low speed, high torque input to a high speed, low torque output to drive the gearbox output shaft 36 and, thus, the generator 24.

    [0021] Each rotor blade 22 may also include a pitch adjustment mechanism 32 configured to rotate each rotor blade 22 about its pitch axis 28. Further, each pitch adjustment mechanism 32 may include a pitch drive motor 40 (e.g., any suitable electric, hydraulic, or pneumatic motor), a pitch drive gearbox 42, and a pitch drive pinion 44. In such embodiments, the pitch drive motor 40 may be coupled to the pitch drive gearbox 42 so that the pitch drive motor 40 imparts mechanical force to the pitch drive gearbox 42. Similarly, the pitch drive gearbox 42 may be coupled to the pitch drive pinion 44 for rotation therewith. The pitch drive pinion 44 may, in turn, be in rotational engagement with a pitch bearing 46 coupled between the hub 20 and a corresponding rotor blade 22 such that rotation of the pitch drive pinion 44 causes rotation of the pitch bearing 46. Thus, in such embodiments, rotation of the pitch drive motor 40 drives the pitch drive gearbox 42 and the pitch drive pinion 44, thereby rotating the pitch bearing 46 and the rotor blade 22 about the pitch axis 28. Similarly, the wind turbine 10 may include one or more yaw drive mechanisms 52 communicatively coupled to the controller 26, with each yaw drive mechanism(s) 52 being configured to change the angle of the nacelle 16 relative to the wind (e.g., by engaging a yaw bearing 53 of the wind turbine 10).

    [0022] Referring now to FIGS. 5-7, various views of a clamping apparatus 62 for positioning and securing an outer race 55 of the main bearing 54 of the wind turbine 10 during installation and/or repair of the main bearing 54 are illustrated. For example, in the event that the main bearing 54 becomes damaged and needs to be replaced, the clamping apparatus 62 may be used to secure and position a new main bearing 54 after the new bearing 54 is mounted around the main shaft 34. More specifically, FIG. 5 illustrates a partial, cross-sectional view of the main shaft 34 and the outer race 55 of the main bearing 54 with the clamping apparatus 62 installed thereon according to the present disclosure. FIG. 6 illustrates a detailed view of the clamping apparatus 62 of FIG. 5. FIG. 7 illustrates a perspective view of one embodiment of the spacer plate 66 of the clamping apparatus 62 according to the present disclosure.

    [0023] More specifically, as shown, the clamping apparatus 62 includes a push component 64 positioned between the main flange 35 and the cover 60 of the main bearing 54. Further, as shown, the clamping apparatus 62 includes a spacer plate 66 positioned within a gap 68 between the cover 60 and the main bearing 54. As such, the push component 64 is configured to apply a force to the cover 60 so as to push the spacer plate 66 against the outer race 55 of the main bearing 54 such that the main bearing 54 is pushed into and secured in place during installation and/or repair thereof.

    [0024] As shown particularly in FIGS. 5 and 6, the push component 64 includes a push member 65 at least partially enclosed within a housing 67. Further, in certain embodiments, the push member 65 may include a piston, a jacking fastener or screw, or any other suitable push member capable of applying the desired force to the cover of the main bearing 54. For example, as shown in the illustrated embodiment, the push member 65 corresponds to a hydraulic piston driven by a hydraulic system 69. In addition to hydraulics, the push member 65 may also be driven by any suitable type of motor, pump, electrical power, and/or batteries or combinations thereof.

    [0025] Referring now to FIG. 7, the spacer plate 66 may include one or more locating features 70 for locating the spacer plate 66 within the gap 68. For example, as shown, the locating features 70 are dowel pins. In additional embodiments, the locating features 70 may correspond to fasteners, studs, or similar. In addition, as shown, the spacer plate 66 may include an arcuate shape corresponding to a profile of the outer race 55 of the main bearing 54. As such, the curvature of the spacer plate 66 may generally align with the curvature of the main bearing 54.

    [0026] In addition, as shown, the spacer plate 66 may include a recess 72 configured to receive a portion of the cover 60 of the main bearing 54 when secured within the gap 68. In another embodiment, the spacer plate 66 further may include one or more securing features 74 for securing the spacer plate 66 within the gap 68. More specifically, in certain embodiments, the securing feature(s) 74 may include one or more magnets 76, one or more set screws 78, or similar, and/or combinations thereof. In addition, as shown, the securing feature(s) 74 may be located at any suitable location on the spacer plate 66. For example, as shown, a set screw 78 is located within the recess 72 so as to secure the spacer plate 66 to the cover 60 of the main bearing. Further, as shown, a plurality of magnets 76 are located on an exterior surface of the spacer plate 66 so as to further secure the plate 66 to the cover 60.

    [0027] Referring now to FIG. 8, a flow diagram of one embodiment of a method 100 for securing the main bearing 54 of the wind turbine 10 during installation and/or repair thereof is illustrated. As shown at 102, the method 100 includes installing the push component 64 of the clamping apparatus 62 between the main flange 35 of the main shaft 34 and the cover 60 of the main bearing 54. As shown at 104, the method 100 includes installing the spacer plate 66 of the clamping apparatus 64 within a gap 68 between the cover 60 and an outer race 55 of the main bearing 54. As shown at 106, the method 100 applying a force to the cover 60 via the push component 64 so as to push the spacer plate 66 against the outer race 55 of the main bearing 54 such that the main bearing 54 is pushed into and secured in place.

    [0028] In one embodiment, the method 100 may also include locating the spacer plate 66 via one or more locating features 70 (e.g. dowel pins) mounted thereon. For example, in certain embodiments, the locating features 70 may be configured to fit within an existing location on the cover 60. Alternatively, one or more locations on the cover 60 can be prepped to receive the locating features 70.

    [0029] In another embodiment, the method 100 may include securing a portion of the cover 60 of the main bearing 54 in the recess 72 of the spacer plate 66 (FIG. 7). In addition, as mentioned, the method 100 may include securing the spacer plate 66 within the gap 68 between the cover 60 and the outer race 55 of the main bearing 54 via the securing feature(s) 74.

    [0030] This written description uses examples to disclose the invention, including the preferred mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the appended claims.


    Claims

    1. A drivetrain assembly for a wind turbine, comprising:

    a main shaft comprising a main flange;

    a main bearing assembly comprising a main bearing and a cover, the main bearing comprising an inner race, an outer race, and a plurality of roller elements configured therebetween; and

    a clamping apparatus (62) for positioning the main bearing (54), the clamping apparatus (62) comprising:

    a push component (64) arranged between the main flange (35) of the main shaft (34) and the cover (60) of the main bearing assembly and,

    a spacer plate (66) located within a gap (68) between the cover (60) and the main bearing (54),

    wherein the push component (64) is configured to apply a force to the cover (60) so as to push the spacer plate (66) against the main bearing (54) such that the main bearing (54) is pushed into and secured in place during an installation and / or repair procedure of the main bearing or the main shaft.


     
    2. The drivetrain assembly of claim 1, wherein the push component (64) of the clamping apparatus comprises a push member (65) at least partially enclosed within a housing (67), the push member (65) comprising at least one of a piston or jacking fastener.
     
    3. The drivetrain assembly claim 1 or 2, wherein the spacer plate (66) of the clamping apparatus further comprises one or more locating features (70) for locating the spacer plate (66) within the gap (68).
     
    4. The drivetrain assembly of claim 3, wherein the one or more locating features (70) comprise dowel pins, fasteners, or studs.
     
    5. The drivetrain assembly of any of the preceding claims, wherein the spacer plate (66) of the clamping apparatus comprises an arcuate shape corresponding to a profile of the main bearing (54).
     
    6. The drivetrain assembly of any of the preceding claims, wherein the spacer plate (66) of the clamping apparatus comprises a recess (72) configured to receive a portion of the cover (60) of the main bearing (54).
     
    7. The drivetrain assembly of any preceding claim, wherein the spacer plate (66) of the clamping apparatus further comprises one or more securing features (74) for securing the spacer plate (66) within the gap (68).
     
    8. The drivetrain assembly of claim 7, wherein the one or more securing features (74) comprise at least one of one or magnets (76) or one or more set screws (78).
     
    9. The drivetrain assembly of any of claims 7 - 8, wherein the one or more securing features (74) are arranged within the recess (72) so as to secure the spacer plate (66) to the cover (60) of the main bearing (54).
     
    10. The drivetrain assembly of any of the preceding claims, wherein roller elements of the main bearing assembly (54) comprise at least one of a tapered roller bearing, a spherical roller bearing, or a ball bearing.
     
    11. A method (100) for positioning a main bearing (54) of a drivetrain assembly according to claim 1, the method (100) comprising:

    installing a push component (64) of a clamping apparatus (62) between a main flange (35) of a main shaft (34) of the wind turbine (10) and a cover (60) of the main bearing (54);

    installing a spacer plate (66) of the clamping apparatus (62) within a gap (68) between the cover (60) and the main bearing (54); and,

    applying a force to the cover (60) via the push component (64) so as to push the spacer plate (66) against the main bearing (54) such that the main bearing (54) is pushed into and secured in place during an installation and / or repair procedure of the main bearing or the main shaft.


     
    12. The method (100) of claim 11, wherein the push component (64) comprises a push member (65) at least partially enclosed within a housing (67), the push member (65) comprising at least one of a piston or jacking fastener.
     
    13. The method (100) of claim 11 or claim 12, further comprising locating the spacer plate (66) via one or more locating features (70) mounted thereon.
     
    14. The method (100) of claim 13, wherein the one or more locating features (70) comprise dowel pins, fasteners, studs.
     
    15. The method (100) of any of claims 11 to 14, further comprising securing a portion of the cover (60) of the main bearing (54) in a recess (72) of the spacer plate (66).
     


    Ansprüche

    1. Eine Antriebsstranganordnung für eine Windturbine umfassend:

    eine Hauptwelle umfassend einen Hauptflansch;

    eine Hauptlageranordnung umfassend ein Hauptlager und einen Deckel, wobei das Hauptlager einen inneren Lagerring, einen äußeren Lagerring und eine Vielzahl von dazwischen konfigurierten Rollkörpern umfasst; und

    eine Klemmvorrichtung (62) zur Platzierung des Hauptlagers (54), wobei die Klemmvorrichtung (62) folgendes umfasst:

    ein Druckbauteil (64), das zwischen dem Hauptflansch (35) der Hauptwelle (34) und dem Deckel (60) der Hauptlageranordnung angeordnet ist und,

    eine innerhalb eines Spalts (68) zwischen dem Deckel (60) und dem Hauptlager (54) angeordnete Abstandplatte (66),

    wobei das Druckbauteil (64) konfiguriert ist, um eine Kraft auf den Deckel (60) auszuüben, um die Abstandplatte (66) gegen das Hauptlager (54) zu drücken, so dass das Hauptlager (54) während eines Montage- und/oder Reparaturverfahrens des Hauptlagers oder der Hauptwelle hineingedrückt und

    gesichert wird.


     
    2. Die Antriebsstranganordnung des Anspruchs 1, wobei das Druckbauteil (64) der Klemmvorrichtung ein Druckelement (65) umfasst, das mindestens teilweise innerhalb eines Gehäuses (67) enthalten ist, wobei das Druckelement (65) mindestens einen Kolben oder ein Aufbockbefestigungsteil umfasst.
     
    3. Die Antriebsstranganordnung des Anspruchs 1 oder 2, wobei die Abstandplatte (66) der Klemmvorrichtung weiterhin eine oder mehrere Platzierelemente (70) zur Platzierung der Abstandplatte (66) innerhalb des Spalts (68) umfasst.
     
    4. Die Antriebsstranganordnung des Anspruchs 3, wobei die eine oder die mehreren Platzierelemente (70) Passstifte, Befestigungselemente oder Bolzen umfasst.
     
    5. Die Antriebsstranganordnung von einem der vorhergehenden Ansprüche, wobei die Abstandplatte (66) der Klemmvorrichtung eine Bogenform entsprechend einem Profil des Hauptlagers (54) umfasst.
     
    6. Die Antriebsstranganordnung von einem der vorhergehenden Ansprüche, wobei die Abstandplatte (66) der Klemmvorrichtung eine Vertiefung (72) umfasst, die konfiguriert ist, um einen Teil des Deckels (60) des Hauptlagers (54) zu empfangen.
     
    7. Die Antriebsstranganordnung von einem der vorhergehenden Ansprüche, wobei die Abstandplatte (66) der Klemmvorrichtung weiterhin eine oder mehrere Sicherungselemente (74) zur Sicherung der Abstandplatte (66) innerhalb des Spalts (68) umfasst.
     
    8. Die Antriebsstranganordnung des Anspruchs 7, wobei die eine oder die mehreren Sicherungselemente (74) mindestens eine von einer oder mehreren Magneten (76) oder einer oder mehreren Einstellschrauben (78) umfasst.
     
    9. Die Antriebsstranganordnung von einem der Ansprüche 7 - 8, wobei die eine oder die mehreren Sicherungselemente (74) innerhalb der Vertiefung (72) angeordnet sind, um die Abstandplatte (66) an dem Deckel (60) des Hauptlagers (54) zu sichern.
     
    10. Die Antriebsstranganordnung von einem der vorhergehenden Ansprüche, wobei Rollelemente der Hauptlageranordnung (54) mindestens eines von den folgenden umfasst: einem verjüngtem Rollenlager, einem sphärischen Rollenlager oder einem Kugellager.
     
    11. Ein Verfahren (100) zur Platzierung von einem Hauptlager (54) einer Antriebsstranganordnung nach Anspruch 1, wobei das Verfahren (100) folgendes umfasst:

    montieren von einem Druckbauteil (64) einer Klemmvorrichtung (62) zwischen einem Hauptflansch (35) von einer Hauptwelle (34) der Windturbine (10) und einem Deckel (60) des Hauptlagers (54);

    montieren von einer Abstandplatte (66) der Klemmvorrichtung (62) innerhalb eines Spalts (68) zwischen dem Deckel (60) und dem Hauptlager (54); und,

    ausüben von einer Kraft auf den Deckel (60) über das Druckbauteil (64), um die Abstandplatte (66) gegen das Hauptlager (54) zu drücken, so dass das Hauptlager (54) während eines Montage- und/oder Reparaturverfahrens des Hauptlagers oder der Hauptwelle hineingedrückt und gesichert wird.


     
    12. Das Verfahren (100) des Anspruchs 11, wobei das Druckbauteil (64) ein Druckelement (65) umfasst, das mindestens teilweise innerhalb eines Gehäuses (67) enthalten ist, wobei das Druckelement (65) mindestens einen Kolben oder ein Aufbockbefestigungsteil umfasst.
     
    13. Das Verfahren (100) des Anspruchs 11 oder des Anspruchs 12, weiterhin umfassend das Anordnen der Abstandplatte (66) durch ein oder mehrere darauf montierte Platzierelemente (70).
     
    14. Das Verfahren (100) des Anspruchs 13, wobei die eine oder die mehreren Platzierelemente (70) Passstifte, Befestigungselemente, Bolzen umfasst.
     
    15. Das Verfahren (100) von einem der Ansprüche 11 bis 14, weiterhin umfassend das Sichern von einem Teil des Deckels (60) des Hauptlagers (54) in einer Vertiefung (72) der Abstandplatte (66).
     


    Revendications

    1. Un ensemble de train d'entraînement pour une éolienne, comprenant :

    un arbre principal comprenant une bride principale ;

    un ensemble de palier principal comprenant un palier principal et un couvercle, le palier principal comprenant une bague de roulement intérieure, une bague de roulement extérieure, et une pluralité d'éléments de roulement configurés entre elles ; et

    un appareil de serrage (62) pour positionner le palier principal (54), l'appareil de serrage (62) comprenant :

    un composant poussoir (64) disposé entre la bride principale (35) de l'arbre principal (34) et le couvercle (60) de l'ensemble de palier principal et,

    une plaque d'écartement (66) située dans un écart (68) entre le couvercle (60) et le palier principal (54),

    dans lequel le composant poussoir (64) est configuré pour appliquer une force au couvercle (60) de manière à pousser la plaque d'écartement (66) contre le palier principal (54) de manière que le palier principal (54) est poussé dans et fixé en place pendant un procédé d'installation et/ou de réparation du palier principal ou de l'arbre principal.


     
    2. L'ensemble de train d'entraînement de la revendication 1, dans lequel le composant poussoir (64) de l'appareil de serrage comprend un élément poussoir (65) enfermé au moins en partie dans un boîtier (67), l'élément poussoir (65) comprenant au moins un parmi un piston ou un élément de fixation de levage.
     
    3. L'ensemble de train d'entraînement de la revendication 1 ou 2, dans lequel la plaque d'écartement (66) de l'appareil de serrage comprend en outre une ou plusieurs caractéristiques (70) de placement pour placer la plaque d'écartement (66) dans l'écart (68).
     
    4. L'ensemble de train d'entraînement de la revendication 3, dans lequel l'une ou les plusieurs caractéristiques de placement (70) comprennent des goupilles de serrage, des éléments de fixation ou des boulons.
     
    5. L'ensemble de train d'entraînement de l'une quelconque des revendications précédentes, dans lequel la plaque d'écartement (66) de l'appareil de serrage comprend une forme arquée correspondant à un profil du palier principal (54).
     
    6. L'ensemble de train d'entraînement de l'une quelconque des revendications précédentes, dans lequel la plaque d'écartement (66) de l'appareil de serrage comprend une encoche (72) configurée pour recevoir une partie du couvercle (60) du palier principal (54).
     
    7. L'ensemble de train d'entraînement de l'une quelconque des revendications précédentes, dans lequel la plaque d'écartement (66) de l'appareil de serrage comprend en outre une ou plusieurs caractéristiques de fixation (74) pour fixer la plaque d'écartement (66) dans l'écart (68).
     
    8. L'ensemble de train d'entraînement de la revendication 7, dans lequel l'une ou les plusieurs caractéristiques de fixation (74) comprennent au moins un parmi un ou plusieurs aimants (76) ou une ou plusieurs vis de réglage (78).
     
    9. L'ensemble de train d'entraînement de l'une quelconque des revendications 7 - 8, dans lequel l'une ou les plusieurs caractéristiques de fixation (74) sont disposées dans l'encoche (72) de manière à fixer la plaque d'écartement (66) au couvercle (60) du palier principal (54).
     
    10. L'ensemble de train d'entraînement de l'une quelconque des revendications précédentes, dans lequel des éléments à rouleaux de l'ensemble de palier principal (54) comprennent au moins un parmi un roulement à rouleaux effilé, un roulement à rouleaux sphérique, ou un roulement à billes.
     
    11. Un procédé (100) pour positionner un palier principal (54) d'un ensemble de train d'entraînement selon la revendication 1, le procédé (100) comprenant :

    installer un composant poussoir (64) d'un appareil de serrage (62) entre une bride principale (35) d'un arbre principal (34) de l'éolienne (10) et un couvercle (60) du palier principal (54) ;

    installer une plaque d'écartement (66) de l'appareil de serrage (62) dans un écart (68) entre le couvercle (60) et le palier principal (54) ; et,

    appliquer une force au couvercle (60) par le biais du composant poussoir (64) de manière à pousser la plaque d'écartement (66) contre le palier principale (54) de manière que le palier principal (54) est poussé dans et fixé en place pendant un procédé d'installation et/ou de réparation du palier principal ou de l'arbre principal.


     
    12. Le procédé (100) de la revendication 11, dans lequel le composant poussoir (64) comprend un élément poussoir (65) enfermé au moins en partie dans un boîtier (67), l'élément poussoir (65) comprenant au moins un parmi un piston ou un élément de fixation de levage.
     
    13. Le procédé (100) de la revendication 11 ou la revendication 12, comprenant en outre placer la plaque d'écartement (66) par le biais d'une ou de plusieurs caractéristiques de placement (70) montées sur celle-ci.
     
    14. Le procédé (100) de la revendication 13, dans lequel l'une ou les plusieurs caractéristiques de placement (70) comprennent des goupilles de serrage, des éléments de fixation, des boulons.
     
    15. Le procédé (100) de l'une quelconque des revendications 11 à 14, comprenant en outre fixer une partie du couvercle (60) du palier principal (54) dans une encoche (72) de la plaque d'écartement (66).
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description