(19)
(11)EP 3 430 506 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.12.2021 Bulletin 2021/52

(21)Application number: 16795207.6

(22)Date of filing:  31.10.2016
(51)International Patent Classification (IPC): 
G06F 3/06(2006.01)
G06F 9/445(2018.01)
(52)Cooperative Patent Classification (CPC):
G06F 3/067; G06F 3/0607; G06F 3/0632
(86)International application number:
PCT/US2016/059758
(87)International publication number:
WO 2017/160347 (21.09.2017 Gazette  2017/38)

(54)

PERFORMING A NON-DISRUPTIVE UPGRADE OF DATA IN A STORAGE SYSTEM

DURCHFÜHRUNG EINER UNTERBRECHUNGSFREIEN AKTUALISIERUNG VON DATEN IN EINEM SPEICHERSYSTEM

RÉALISATION D'UNE MISE À NIVEAU NON PERTURBATRICE DE DONNÉES DANS UN SYSTÈME DE STOCKAGE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 16.03.2016 US 201615071663

(43)Date of publication of application:
23.01.2019 Bulletin 2019/04

(73)Proprietor: Pure Storage, Inc.
Mountain View, California 94041 (US)

(72)Inventors:
  • CAO, Jianting
    Mountain View, CA 94041 (US)
  • CUI, Wentian
    Mountain View, CA 94041 (US)
  • GOLDEN, Christopher
    Mountain View, CA 94041 (US)
  • GRUNWALD, David
    Mountain View, CA 94041 (US)
  • SMITH, Scott
    Mountain View, CA 94041 (US)
  • ZHOU, Qi
    Mountain View, CA 94041 (US)

(74)Representative: FRKelly 
27 Clyde Road
Dublin D04 F838
Dublin D04 F838 (IE)


(56)References cited: : 
EP-A2- 0 738 980
US-A1- 2008 005 146
US-A- 5 359 730
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The field of the invention is data processing, or, more specifically, methods, apparatus, and products for performing a non-disruptive upgrade of data in a storage system that includes a plurality of storage devices and a storage controller.

    BACKGROUND ART



    [0002] Modern storage systems may be used to store large amounts of data. Such data may occasionally need to be transformed into a different format in order to be utilized by software applications, especially when such software applications are updated. In such situations, an updated software application may typically be incapable of executing until the data transformation is complete, which may be a very time consuming process for storage systems that include very large amounts of data that must be transformed.

    [0003] European Patent Application EP 0 738 980 A2 relates to a multiprocessing system, in which data which is stored on an external storage media and shared by a plurality of processors is converted from an old format to a new format without bringing the multiprocessing system down. One processor at a time is provided the capability to view the data in the new format, while the other processors view the data in the old format. After all of the processors are capable of viewing the data in the new format, the data is converted from the old format to the new format and the data in the new format is stored on the external storage media. If for some reason the new format turns out to be unacceptable, procedures are also in place for falling back to the old format without disrupting system availability.

    [0004] United States Patent US 5,359,730 A relates to a dynamic software update facility (DSUF) which is installed in a data processing system for the purpose of non-disruptively replacing old operating system programs or modules with new updated versions thereof while providing continuous availability and operation of the system. The new versions are loaded into the system along with change instructions providing information controlling the update. Task or process control blocks contain markers indicating the corresponding tasks are safe or unsafe to run the new programs. The markers are set initially to unsafe. A change descriptor table is stored and contains control information derived from the change instructions. When the DSUF is activated, an interrupt handler is installed and traps are stored in the old programs at entry points and safety points therein. Entry point traps are tripped when a task or process enters the old program and interrupts are generated that are handled by the interrupt handler to route tasks which are unsafe to the old program and tasks which are safe to a new program. When all tasks are safe, the new programs replace the old programs. When safety point traps are tripped, a task or process may change its state from unsafe to safe when predetermined conditions are met.

    SUMMARY OF INVENTION



    [0005] The invention sets out a method of performing a non-disruptive upgrade of data in a storage system that includes a plurality of storage devices and a storage controller according to claim 1, an apparatus for performing a non-disruptive upgrade of data in a storage system that includes a plurality of storage devices according to claim 7 and a computer program product for performing a non-disruptive upgrade of data in a storage system that includes a plurality of storage devices and a storage controller according to claim 13.

    BRIEF DESCRIPTION OF DRAWINGS



    [0006] 

    Figure 1 sets forth a block diagram of a storage system configured for performing a non-disruptive upgrade of data according to embodiments of the present disclosure.

    Figure 2 sets forth a block diagram of a storage array controller (202) useful in performing a non-disruptive upgrade of data in a storage system according to embodiments of the present disclosure.

    Figure 3 sets forth a flow chart illustrating an example method for performing a non-disruptive upgrade of data in a storage system that includes a plurality of storage devices and a storage array controller according to embodiments of the present disclosure.

    Figure 4 sets forth a flow chart illustrating an additional example method for performing a non-disruptive upgrade of data in a storage system that includes a plurality of storage devices and a storage array controller according to embodiments of the present disclosure.

    Figure 5 sets forth a flow chart illustrating an additional example method for performing a non-disruptive upgrade of data in a storage system that includes a plurality of storage devices and a storage array controller according to embodiments of the present disclosure.

    Figure 6 sets forth a flow chart illustrating an additional example method for performing a non-disruptive upgrade of data in a storage system that includes a plurality of storage devices and a storage array controller according to embodiments of the present disclosure.

    Figure 7 sets forth a flow chart illustrating an additional example method for performing a non-disruptive upgrade of data in a storage system that includes a plurality of storage devices and a storage array controller according to embodiments of the present disclosure.

    Figure 8 sets forth a flow chart illustrating an additional example method for performing a non-disruptive upgrade of data in a storage system that includes a plurality of storage devices and a storage array controller according to embodiments of the present disclosure.


    DESCRIPTION OF EMBODIMENTS



    [0007] Example methods, apparatuses, and products for performing a non-disruptive upgrade of data in a storage system in accordance with the present disclosure are described with reference to the accompanying drawings, beginning with Figure 1. Figure 1 sets forth a block diagram of a storage system configured for performing a non-disruptive upgrade of data according to embodiments of the present disclosure. The storage system of Figure 1 includes a number of computing devices (164, 166, 168, 170). Such computing devices may be implemented in a number of different ways. For example, a computing device may be a server in a data center, a workstation, a personal computer, a notebook, or the like.

    [0008] The computing devices (164, 166, 168, 170) in the example of Figure 1 are coupled for data communications to a number of storage arrays (102, 104) through a storage area network ('SAN') (158) as well as a local area network (160) ('LAN'). The SAN (158) may be implemented with a variety of data communications fabrics, devices, and protocols. Example fabrics for such a SAN (158) may include Fibre Channel, Ethernet, Infiniband, Serial Attached Small Computer System Interface ('SAS'), and the like. Example data communications protocols for use in such a SAN (158) may include Advanced Technology Attachment ('ATA'), Fibre Channel Protocol, SCSI, iSCSI, HyperSCSI, and others. Readers of skill in the art will recognize that a SAN is just one among many possible data communications couplings which may be implemented between a computing device (164, 166, 168, 170) and a storage array (102, 104). For example, the storage devices (146, 150) within the storage arrays (102, 104) may also be coupled to the computing devices (164, 166, 168, 170) as network attached storage ('NAS') capable of facilitating file-level access, or even using a SAN-NAS hybrid that offers both file-level protocols and block-level protocols from the same system. Any other such data communications coupling is well within the scope of embodiments of the present disclosure.

    [0009] The local area network (160) of Figure 1 may also be implemented with a variety of fabrics and protocols. Examples of such fabrics include Ethernet (802.3), wireless (802.11), and the like. Examples of such data communications protocols include Transmission Control Protocol ('TCP'), User Datagram Protocol ('UDP'), Internet Protocol ('IP'), HyperText Transfer Protocol ('HTTP'), Wireless Access Protocol ('WAP'), Handheld Device Transport Protocol ('HDTP'), Real Time Protocol ('RTP') and others as will occur to those of skill in the art.

    [0010] The example storage arrays (102, 104) of Figure 1 provide persistent data storage for the computing devices (164, 166, 168, 170). Each storage array (102, 104) depicted in Figure 1 includes a storage array controller (106, 112). Each storage array controller (106, 112) may be embodied as a module of automated computing machinery comprising computer hardware, computer software, or a combination of computer hardware and software. The storage array controllers (106, 112) may be configured to carry out various storage-related tasks. Such tasks may include writing data received from the one or more of the computing devices (164, 166, 168, 170) to storage, erasing data from storage, retrieving data from storage to provide the data to one or more of the computing devices (164, 166, 168, 170), monitoring and reporting of disk utilization and performance, performing RAID (Redundant Array of Independent Drives) or RAID-like data redundancy operations, compressing data, encrypting data, and so on.

    [0011] Each storage array controller (106, 112) may be implemented in a variety of ways, including as a Field Programmable Gate Array ('FPGA'), a Programmable Logic Chip ('PLC'), an Application Specific Integrated Circuit ('ASIC'), or computing device that includes discrete components such as a central processing unit, computer memory, and various adapters. Each storage array controller (106, 112) may include, for example, a data communications adapter configured to support communications via the SAN (158) and the LAN (160). Although only one of the storage array controllers (112) in the example of Figure 1 is depicted as being coupled to the LAN (160) for data communications, readers will appreciate that both storage array controllers (106, 112) may be independently coupled to the LAN (160). Each storage array controller (106, 112) may also include, for example, an I/O controller or the like that couples the storage array controller (106, 112) for data communications, through a midplane (114, 116), to a number of storage devices (146, 150), and a number of write buffer devices (148, 152).

    [0012] Each write buffer device (148, 152) may be configured to receive, from the storage array controller (106, 112), data to be stored in the storage devices (146). Such data may originate from any one of the computing devices (164, 166, 168, 170). In the example of Figure 1, writing data to the write buffer device (148, 152) may be carried out more quickly than writing data to the storage device (146, 150). The storage array controller (106, 112) may be configured to effectively utilize the write buffer devices (148, 152) as a quickly accessible buffer for data destined to be written to storage. In this way, the latency of write requests may be significantly improved relative to a system in which the storage array controller writes data directly to the storage devices (146, 150).

    [0013] A 'storage device' as the term is used in this specification refers to any device configured to record data persistently. The term 'persistently' as used here refers to a device's ability to maintain recorded data after loss of a power source. Examples of storage devices may include mechanical, spinning hard disk drives, Solid-state drives (e.g., "Flash drives"), and the like.

    [0014] The storage array controllers (106, 112) of Figure 1 may be useful in performing a non-disruptive upgrade of data in a storage system according to embodiments of the present disclosure. The storage array controllers (106, 112) may assist in performing a non-disruptive upgrade of data in a storage system by: creating new data in a new data format, where the new data includes a reference to old data in an old data format, wherein the new data and the old data are associated with a volume of data, and wherein system software in the storage system can utilize data in the new data format and the old data format; determining that a portion of the volume has changed; responsive to determining that the portion of the volume has changed, updating the new data to include: a reference to old data associated with a portion of the volume that precedes the changed portion of the volume; new data associated with the changed portion of the volume, wherein the new data associated with the changed portion of the volume is in the new data format; and a reference to old data associated with a portion of the volume that follows the changed portion of the volume, and performing other functions as will be described in greater detail below.

    [0015] The arrangement of computing devices, storage arrays, networks, and other devices making up the example system illustrated in Figure 1 are for explanation, not for limitation. Systems useful according to various embodiments of the present disclosure may include different configurations of servers, routers, switches, computing devices, and network architectures, not shown in Figure 1, as will occur to those of skill in the art.

    [0016] Performing a non-disruptive upgrade of data in a storage system in accordance with embodiments of the present disclosure is generally implemented with computers. In the system of Figure 1, for example, all the computing devices (164, 166, 168, 170) and storage controllers (106, 112) may be implemented to some extent at least as computers. For further explanation, therefore, Figure 2 sets forth a block diagram of a storage array controller (202) useful in performing a non-disruptive upgrade of data in a storage system according to embodiments of the present disclosure.

    [0017] The storage array controller (202) of Figure 2 is similar to the storage array controllers depicted in Figure 1, as the storage array controller (202) of Figure 2 is communicatively coupled, via a midplane (206), to one or more storage devices (212) and to one or more memory buffer devices (214) that are included as part of a storage array (216). The storage array controller (202) may be coupled to the midplane (206) via one or more data communications links (204) and the midplane (206) may be coupled to the storage devices (212) and the memory buffer devices (214) via one or more data communications links (208, 210). The data communications links (204, 208, 210) of Figure 2 may be embodied, for example, as Peripheral Component Interconnect Express ('PCIe') bus.

    [0018] The storage array controller (202) of Figure 2 includes at least one computer processor (232) or 'CPU' as well as random access memory ('RAM') (236). The computer processor (232) may be connected to the RAM (236) via a data communications link (230), which may be embodied as a high speed memory bus such as a Double-Data Rate 4 ('DDR4') bus.

    [0019] Stored in RAM (214) is an operating system (246). Examples of operating systems useful in storage array controllers (202) configured for intelligently compressing data in a storage array according to embodiments of the present disclosure include UNIX, Linux, Microsoft Windows, and others as will occur to those of skill in the art. Also stored in RAM (236) is a non-disruptive upgrade module (248), a module that includes computer program instructions useful in performing a non-disruptive upgrade of data in a storage system according to embodiments of the present disclosure.

    [0020] The non-disruptive upgrade module (248) may perform a non-disruptive upgrade of data in a storage system by: creating new data in a new data format, wherein the new data includes a reference to old data in an old data format, wherein the new data and the old data are associated with a volume of data, and wherein system software in the storage system can utilize data in the new data format and the old data format; determining that a portion of the volume has changed; responsive to determining that the portion of the volume has changed, updating the new data to include: a reference to old data associated with a portion of the volume that precedes the changed portion of the volume; new data associated with the changed portion of the volume, wherein the new data associated with the changed portion of the volume is in the new data format; and a reference to old data associated with a portion of the volume that follows the changed portion of the volume, as will be described in greater detail below.

    [0021] The non-disruptive upgrade module (248) may further perform a non-disruptive upgrade of data in a storage system by: updating system software in the storage system, wherein the updated system software utilizes metadata in the new data format and a previously installed version of the system software utilizes metadata in the old data format, wherein the new data includes metadata describing the volume of data; and the old data includes metadata describing the volume of data; replacing old data associated with the changed portion of the volume with a reference to the new data associated with the changed portion of the volume; executing, as a background process on the storage array controller, a data conversion process; updating the new data to include: a reference to old data associated with a portion of the volume that precedes the data-converted portion of the volume; new data associated with the data-converted portion of the volume, wherein the new data associated with the data-converted portion of the volume is in the new data format; and a reference to old data associated with a portion of the volume that follows the data-converted portion of the volume; replacing old data associated with the data-converted portion of the volume with a reference to the new data associated with the data-converted portion of the volume; copying a volume stored at a first location in the storage system; storing, at a second location within the storage system, the copy of the volume; copying metadata associated with the volume stored at the first location in the storage system, wherein the metadata associated with the volume stored at the first location in the storage system includes metadata in the new data format and metadata in the old data format; and storing, at a third location in the storage system, the metadata, wherein the metadata stored at the third location is associated with the copy of the volume stored at the second location within the storage system, as will be described in greater detail below.

    [0022] The storage array controller (202) of Figure 2 also includes a plurality of host bus adapters (218, 220, 222) that are coupled to the processor (232) via a data communications link (224, 226, 228). Each host bus adapter (218, 220, 222) may be embodied as a module of computer hardware that connects the host system (i.e., the storage array controller) to other network and storage devices. Each of the host bus adapters (218, 220, 222) of Figure 2 may be embodied, for example, as a Fibre Channel adapter that enables the storage array controller (202) to connect to a SAN, as an Ethernet adapter that enables the storage array controller (202) to connect to a LAN, and so on. Each of the host bus adapters (218, 220, 222) may be coupled to the computer processor (232) via a data communications link (224, 226, 228) such as, for example, a PCIe bus.

    [0023] The storage array controller (202) of Figure 2 also includes a host bus adapter (240) that is coupled to an expander (242). The expander (242) depicted in Figure 2 may be embodied as a module of computer hardware utilized to attach a host system to a larger number of storage devices than would be possible without the expander (242). The expander (242) depicted in Figure 2 may be embodied, for example, as a SAS expander utilized to enable the host bus adapter (240) to attach to storage devices in an arrangement where the host bus adapter (240) is embodied as a SAS controller.

    [0024] The storage array controller (202) of Figure 2 also includes a switch (244) that is coupled to the computer processor (232) via a data communications link (238). The switch (244) of Figure 2 may be embodied as a computer hardware device that can create multiple endpoints out of a single endpoint, thereby enabling multiple devices to share what was initially a single endpoint. The switch (244) of Figure 2 may be embodied, for example, as a PCIe switch that is coupled to a PCIe bus (238) and presents multiple PCIe connection points to the midplane (206).

    [0025] The storage array controller (202) of Figure 2 also includes a data communications link (234) for coupling the storage array controller (202) to other storage array controllers. Such a data communications link (234) may be embodied, for example, as a QuickPath Interconnect ('QPI') interconnect, as PCIe non-transparent bridge ('NTB') interconnect, and so on.

    [0026] Readers will recognize that these components, protocols, adapters, and architectures are for illustration only, not limitation. Such a storage array controller may be implemented in a variety of different ways, each of which is well within the scope of the present disclosure.

    [0027] For further explanation, Figure 3 sets forth a flow chart illustrating an example method for performing a non-disruptive upgrade of data in a storage system (300) that includes a plurality of storage devices (302, 330, 332) and a storage array controller (314) according to embodiments of the present disclosure. Although depicted in less detail, the storage system (300) of Figure 3 may be similar to the storage arrays described above with reference to Figure 1, as the storage system (300) may include one or more storage arrays. Likewise, the storage array controller (314) depicted in Figure 3 may be similar to the storage array controller described above with reference to Figure 2.

    [0028] One of the storage devices (302) depicted in Figure 3 includes a volume (306) of data. The volume (306) of data may be embodied as any logical collection of data such as, for example, a file, a file system, a database, data contained in a range of physical or logical addresses, one or more snapshots, and so on. The volume (306) of data may be associated with some other data such as, for example, metadata that describes the volume (306) of data. Entities within the storage system (300), such as system software (304) that executes within the storage system (300), may utilize the metadata to access or otherwise manage the volume (306) of data. In the example method depicted in Figure 3, the metadata that is utilized by system software (304) may be embodied as old data (308) that is stored on the storage device (302), where the old data (308) is in an old data format that is utilized by the system software (304).

    [0029] In the example described above, however, entities such as the system software (304) may be upgraded occasionally, such that the system software (304) is upgraded to a newer or different version. Readers will appreciate that the upgraded version of the system software (304) may be configured to utilize metadata in a new data format. As such, the format of the metadata that describes the volume (306) of data may also need to be upgraded. By performing a non-disruptive upgrade of such data (i.e., the metadata), entities such as the system software (304) may be upgraded without requiring significant amounts of system downtime.

    [0030] The example method depicted in Figure 3 includes creating (316) new data (310) in a new data format. The new data (310) is associated with the volume (306) and the new data format may represent, for example, a data format for metadata that is utilized by an updated version of the system software (304) to access or otherwise manage the volume (306). Creating (316) the new data (310) in a new data format may be carried out, for example, by creating an instance of a new data object and populating one or more fields of the new data object with information that is specific to the volume (306). Readers will appreciate that the new data (310) in the new data format is initially just a stub that points back to the old data (308), which is also associated with the volume (306) and is formatted in the old data format.

    [0031] In the example method depicted in Figure 3, the new data (310) includes a reference (312) to old data (308) in the old data format. The reference (312) to the old data (308) in the old data format may be embodied, for example, as a pointer to the old data (308), as an address for the old data (308), and so on. In such an example, the new data format may therefore support the inclusion of pointers or forms of references (312) as elements within the new data (310).

    [0032] The example method depicted in Figure 3 also includes determining (318) whether a portion of the volume (306) of data has changed. A portion of the volume (306) may change, for example, when data is written to a portion of the volume (306), when physical memory whose contents are included in the volume (306) of data is erased, and so on. In such an example, determining (318) whether a portion of the volume (306) of data has changed may be carried out by identifying the range of physical or logical memory addresses that are used to store data that is included in the volume (306) and detecting that an instruction to modify the contents of memory within the range of physical or logical addresses that make up the volume (306) of data has been executed.

    [0033] The example method depicted in Figure 3 also includes updating (322) the new data (310) in response to affirmatively (320) determining that the portion of the volume (306) has changed. In the example method depicted in Figure 3, updating (322) the new data (310) may be carried out by updating the new data (310) to include a reference (324) to old data (308) associated with a portion of the volume (306) that precedes the changed portion of the volume (306).

    [0034] Consider an example in which the volume (306) of data includes all of the contents of memory within the storage device (302) that are addressed by address 0 to address 5000. In this example, assume that data was written to addresses 1600-1700. Given that data was written to addresses 1600-1700, the portion of the volume (306) that has changed would include the portion of the volume (306) whose contents reside in memory that is addressed by addresses 1600-1700. In such an example, the portion of the volume (306) that precedes the changed portion of the volume (306) would include the portion of the volume (306) whose contents reside in memory that is addressed by addresses 0-1599. As such, updating the new data (310) to include a reference (324) to old data (308) associated with a portion of the volume (306) that precedes the changed portion of the volume may be carried out by creating a reference (324) that points to the old data (308) that is associated with portion of the volume (306) whose contents reside in memory that is addressed by addresses 0-1599.

    [0035] In the example method depicted in Figure 3, updating (322) the new data (310) may be carried out by further updating the new data (310) to include new data (326) associated with the changed portion of the volume (306). In such an example, the new data (326) that is associated with the changed portion of the volume (306) can be in the new data format. Continuing with the example described above in which the volume (306) of data includes all of the contents of memory within the storage device (302) that are addressed by address 0-5000 and the portion of the volume (306) that has changed is the portion of the volume (306) whose contents are addressed by addresses 1600-1700, updating the new data (310) to include new data (326) associated with the changed portion of the volume (306) may be carried out by creating new data (326) that is associated with the portion of the volume (306) whose contents are addressed by addresses 1600-1700. For example, the new data (326) may be formatted in the new data format and may be embodied as metadata that enables an upgraded version of the system software (304) to access or otherwise manage the volume (306).

    [0036] In the example method depicted in Figure 3, updating (322) the new data (310) may be carried out by further updating the new data (310) to include a reference (328) to old data associated with a portion of the volume (306) that follows the changed portion of the volume (306). Continuing with the example described above in which the volume (306) of data includes all of the contents of memory within the storage device (302) that are addressed by addresses 0-5000 and the portion of the volume (306) that has changed is the portion of the volume (306) whose contents are addressed by addresses 1600-1700, updating the new data (310) to include a reference (328) to old data associated with a portion of the volume (306) that follows the changed portion of the volume (306) may be carried out by creating a reference (328) that points to the old data (308) that is associated with portion of the volume (306) whose contents are addressed by addresses 1701-5000.

    [0037] Although the example method depicted in Figure 3 illustrates a volume (306), old data (308), and new data (310) only residing in one of the storage devices (302), readers will appreciate that each additional storage device (330, 332) in the storage system (300) may also include one or more volumes of data, old data that is associated with one or more of the volumes, and new data (310) that is associated with one or more of the volumes. Readers will further appreciate that in some embodiments, volumes may be distributed across multiple storage devices and that the old data and new data that are associated with a particular volume need not be stored on the same storage device as the contents of the particular volume.

    [0038] Readers will appreciate that in view of the fact that some data associated with the volume (306) may be in the old format and some other data associated with the volume (306) may be in the new format, the system software (306) may be configured to utilize data in the new data format and the old data format. For example, if the new data (310) and the old data (308) are embodied as metadata that enables the system software (304) to access the volume (306), the system software (304) may be configured to utilize both formats of metadata.

    [0039] For further explanation, Figure 4 sets forth a flow chart illustrating the invention as claimed for performing a non-disruptive upgrade of data in a storage system (300) that includes a plurality of storage devices (302, 330, 332) and a storage array controller (314) according to embodiments of the present disclosure. The method depicted in Figure 4 is similar to the example method depicted in Figure 3, as the method depicted in Figure 4 also includes creating (316) new data (310) in a new data format, determining (318) whether a portion of the volume (306) of data has changed, and updating (322) the new data (310) in response to affirmatively (320) determining that the portion of the volume (306) has changed.

    [0040] The method depicted in Figure 4 also includes updating (408) system software (304) in the storage system. Updating (408) the system software (304) in the storage system may be carried out, for example, by automatically updating the system software (304) in response to being notified that a newer version of the system software (304) is available, in response to a system administrator or other user causing an upgrade to occur, and so on.

    [0041] In the method depicted in Figure 4, the updated system software (404) utilizes metadata in the new data format and a previously installed version of the system software (304) utilizes metadata (402) in the old data format. Although the updated system software (404) utilizes metadata in the new data format, the updated system software (404) is also configured to be backwards compatible as the updated system software (404) may also utilize metadata (402) in the old data format. As such, when the new data (310) includes references (312, 324, 328) to metadata that is formatted utilizing the old data format, the updated system software (404) may still utilize metadata in one or more old data formats, until the metadata is updated to the new data format.

    [0042] In the method depicted in Figure 4, the new data (310) includes metadata (406) describing the volume (306) of data and the old data (308) also includes metadata (402) describing the volume (306) of data. The new data (310) can include, for example, metadata (406) describing portions of the volume (306) that have changed while the old data (308) can include metadata (402) describing portions of the volume (306) that have not changed. When a particular portion of the volume (306) changes, the new data (310) is updated (322) to include new metadata (410) that enables updated system software (404) to access or otherwise manage the particular portion of the volume (306) that has changed.

    [0043] For further explanation, Figure 5 sets forth a flow chart illustrating an additional example method for performing a non-disruptive upgrade of data in a storage system (300) that includes a plurality of storage devices (302, 330, 332) and a storage array controller (314) according to embodiments of the present disclosure. The example method depicted in Figure 5 is similar to the example method depicted in Figure 3, as the example method depicted in Figure 5 also includes creating (316) new data (310) in a new data format, determining (318) whether a portion of the volume (306) of data has changed, and updating (322) the new data (310) in response to affirmatively (320) determining that the portion of the volume (306) has changed.

    [0044] The example method depicted in Figure 5 also includes replacing (502) old data (308) associated with the changed portion of the volume (306) with a reference (504) to the new data (326) associated with the changed portion of the volume (306). In the example method depicted in Figure 5, replacing (502) old data (308) associated with the changed portion of the volume (306) with a reference (504) to the new data (326) associated with the changed portion of the volume (306) may be carried out by segmenting the old data (308) into three segments: a first segment that includes all of the old data (308) that is associated with the portion of the volume (306) that precedes the changed portion of the volume (306), a second segment that includes all of the old data (308) that is associated with the changed portion of the volume (306), and a third segment that includes all of the old data (308) that is associated with the portion of the volume (306) that follows the changed portion of the volume (306). Replacing (502) old data (308) that is associated with the changed portion of the volume (306) with a reference (504) to the new data (326) associated with the changed portion of the volume (306) may therefore be carried out, for example, by discarding the second segment of the old data (308) and replacing it with the reference (504) to the new data (326) that is associated with the changed portion of the volume (306). As such, the modified version of the old data (308) may include the first segment of the old data (308), the reference (504) to the new data (326) that is associated with the changed portion of the volume (306), and the third segment of the old data (308).

    [0045] Readers will appreciate that because the old data (308) that is associated with the volume (306) may be retained, the storage array controller (314) may replace (502) old data (308) associated with the changed portion of the volume (306) with a reference (504) to the new data (326) that is associated with the changed portion of the volume (306) in order to reduce the size of the old data (308) that is retained. As additional portions of the volume (306) are changed, the old data (308) that is associated with the volume (306) may be whittled away and replaced with references to the new data (310).

    [0046] For further explanation, Figure 6 sets forth a flow chart illustrating an additional example method for performing a non-disruptive upgrade of data in a storage system (300) that includes a plurality of storage devices (302, 330, 332) and a storage array controller (314) according to embodiments of the present disclosure. The example method depicted in Figure 6 is similar to the example method depicted in Figure 3, as the example method depicted in Figure 6 also includes creating (316) new data (310) in a new data format, determining (318) whether a portion of the volume (306) of data has changed, and updating (322) the new data (310) in response to affirmatively (320) determining that the portion of the volume (306) has changed.

    [0047] The example method depicted in Figure 6 also includes executing (602), as a background process on the storage array controller (314), a data conversion process (616). The data conversion process (616) may be embodied, for example, as a module of computer program instructions executing on computer hardware such as a computer processor. The data conversion process (616) may be executed (602) as a background process, for example, by only executing the data conversion process (616) when system resource utilization falls below a threshold, by ceasing the execution of the data conversion process (616) when other processes require computing resources, and so on. The data conversion process (616) may be configured to convert old data (308) in the old data format into new data (310) in the new data format without requiring that any portion of the volume (306) changes. Readers will appreciate that the data conversion process (616) may therefore be utilized to convert data associated with volumes that never change, such as a volume that comprises a snapshot.

    [0048] In the example method depicted in Figure 6, executing (602) the data conversion process (616) further comprises updating (604) the new data (310) to include a reference (608) to old data (308) associated with a portion of the volume (306) that precedes a data-converted portion of the volume (306). Consider an example in which old data (308) associated with the volume (306) is stored within the storage device (302) at a location that is addressed by address 7000 to address 10000. In this example, assume that the portion of the old data (308) that resides at addresses 8000-9000 is converted into the new data format by the data conversion process. In such an example, the old data (308) associated with a portion of the volume (306) that precedes a data-converted portion of the volume (306) would include the old data (308) stored at addresses 7000-7999. As such, updating (604) the new data (310) to include a reference (608) to old data (308) associated with a portion of the volume (306) that precedes a data-converted portion of the volume (306) may be carried out by creating a reference (608) that points to the old data (308) that is stored at addresses 7000-7999.

    [0049] In the example method depicted in Figure 6, executing (602) the data conversion process (616) further comprises updating (604) the new data (310) to include new data (610) associated with the data-converted portion of the volume (306). In the example method depicted in Figure 6, the new data (610) associated with the data-converted portion of the volume (306) may be in the new data format. Continuing with the example in which old data (308) associated with the volume (306) is stored within the storage device (302) at a location that is addressed by addresses 7000-10000 and the portion of the old data (308) that resides at addresses 8000-9000 has been converted into the new data format by the data conversion process (616), the new data (610) that is associated with the data-converted portion of the volume (306) will include the converted contents of addresses 8000-9000.

    [0050] In the example method depicted in Figure 6, executing (602) the data conversion process (616) further comprises updating (604) the new data (310) to include a reference (612) to old data (308) associated with a portion of the volume (306) that follows the data-converted portion of the volume (306). Continuing with an example in which old data (308) associated with the volume (306) is stored within the storage device (302) at addresses 7000-10000 and the old data (308) that resides at addresses 8000-9000 has been converted into the new data format by the data conversion process (616), the old data (308) that follows the data-converted portion of the volume (306) would include the old data (308) stored at addresses 9001-10000. As such, updating (604) the new data (310) to include a reference (612) to old data (308) associated with a portion of the volume (306) that follows the data-converted portion of the volume (306) may be carried out by creating a reference (612) that points to the old data (308) that is stored at addresses 9001-10000.

    [0051] In the example method depicted in Figure 6, executing (602) the data conversion process (616) further comprises replacing (606) old data (308) associated with the data-converted portion of the volume (306) with a reference to the new data (610) associated with the data-converted portion of the volume (306). Continuing with an example in which old data (308) associated with the volume (306) is stored within the storage device (302) at addresses 7000-10000 and the old data (308) that resides at addresses 8000-9000 has been converted into the new data format by the data conversion process (616), the old data (308) associated with the data-converted portion of the volume (306) would include the old data (308) stored at addresses 8000-9000. As such, replacing (606) old data (308) associated with the data-converted portion of the volume (306) with a reference (614) to the new data (610) associated with the data-converted portion of the volume (306) may be carried out by discarding the old data (308) stored at addresses 8000-9000 and creating a reference (614) to the new data (610) that is associated with the data-converted portion of the volume (306).

    [0052] For further explanation, Figure 7 sets forth a flow chart illustrating an additional example method for performing a non-disruptive upgrade of data in a storage system (300) that includes a plurality of storage devices (302, 330, 332) and a storage array controller (314) according to embodiments of the present disclosure. The example method depicted in Figure 7 is similar to the example method depicted in Figure 3, as the example method depicted in Figure 7 also includes creating (316) new data (310) in a new data format, determining (318) whether a portion of the volume (306) of data has changed, and updating (322) the new data (310) in response to affirmatively (320) determining that the portion of the volume (306) has changed.

    [0053] The example method depicted in Figure 7 also includes copying (702) a volume (306) stored at a first location in the storage system (300). In the example method depicted in Figure 7, the first location in the storage system (300) may be embodied as a particular storage device (302), an address within the particular storage device (302), and so on. Readers will appreciate that although Figure 7 depicts an entire volume (306) being copied, in alternative embodiments, only a portion of the volume (306) may be copied (702).

    [0054] The example method depicted in Figure 7 also includes storing (704), at a second location within the storage system (300), the copy (710) of the volume (306). In the example method depicted in Figure 7, the second location within the storage system (300) is depicted as being a different storage device (332) than the storage device (302) that houses the volume (306). Readers will appreciate that the depiction of the first location in the storage system (300) and the second location in the storage system (300) as being within different storage devices (302, 332) is only for illustrative purposes. In alternative arrangements, the first location in the storage system (300) and the second location in the storage system (300) may be different addresses in the same storage device. Likewise, the first location in the storage system (300) and the second location in the storage system (300) may be in different storage arrays in a multi-array storage system, different storage devices within the same storage array, and so on.

    [0055] The example method depicted in Figure 7 also includes copying (706) metadata associated with the volume (306) stored at the first location in the storage system (300). In the example method depicted in Figure 7, the metadata associated with the volume (306) stored at the first location in the storage system (300) includes metadata in the new data format and metadata in the old data format. The metadata associated with the volume (306) may be embodied as the old data (308) that is stored in the same storage device (302) as the volume (306) and the new data (310) that is stored in the same storage device (302) as the volume (306). As such, copying (706) metadata associated with the volume (306) stored at the first location in the storage system (300) may be carried out by copying both the old data (308) and the new data (310).

    [0056] The example method depicted in Figure 7 also includes storing (708), at a third location in the storage system (300), a copy (712) of the metadata. Readers will appreciate that the depiction of the first location in the storage system (300), the second location in the storage system (300), and the third location within the storage system (300) as being within three different storage devices (302, 332, 334) is only for illustrative purposes. In alternative arrangements, each location may be embodied as different addresses in the same storage device, two of the locations may be embodied as different addresses in the same storage device, and so on. Likewise, each location may be in different storage arrays in a multi-array storage system, two of the locations may be in a first storage array while the other location is in a second storage array, each of the locations may be different storage devices within the same storage array, and so on.

    [0057] In the example method depicted in Figure 7, the copy (712) of the metadata stored at the third location is associated with the copy (710) of the volume stored at the second location within the storage system (300). The copy (712) of the metadata stored at the third location may be associated with the copy (710) of the volume stored at the second location within the storage system (300), for example, because the copy (712) of the metadata stored at the third location is metadata that is used to access or otherwise manage the copy (710) of the volume stored at the second location within the storage system (300).

    [0058] For further explanation, Figure 8 sets forth a flow chart illustrating an additional example method for performing a non-disruptive upgrade of data in a storage system (300) that includes a plurality of storage devices (302, 330, 332) and a storage array controller (314) according to embodiments of the present disclosure. The example method depicted in Figure 8 is similar to the example method depicted in Figure 3, as the example method depicted in Figure 8 also includes creating (316) new data (310) in a new data format, determining (318) whether a portion of the volume (306) of data has changed, and updating (322) the new data (310) in response to affirmatively (320) determining that the portion of the volume (306) has changed.

    [0059] The example method depicted in Figure 8 also includes placing (802) the old data (308) and the new data (310) in the storage system (300) in dependence upon one or more space efficiency considerations. The one or more space efficiency considerations may be embodied, for example, as a rule that is used to determine where to place (802) the old data (308) and the new data (310) in the storage system (300). Such a space efficiency consideration may specify, for example, that the old data (308) and the new data (310) are to be placed within a single memory region (e.g., a single storage device, a single storage array) where data within the memory region is deduplicated against other data in the memory region, as the old data (308) and the new data (310) may have similar data that can be effectively deduplicated. Alternatively, the old data (308) and the new data (310) that are associated with a particular volume (306) may be placed within a memory region where other volumes of similar types (e.g., other snapshots, other databases) are stored, as ability to deduplicate data may increase as data with similar characteristics are grouped together. Readers will appreciate that many other space efficiency considerations may exist and that the operations described above may therefore be carried out with an eye towards maximizing space efficiency.

    [0060] The present invention may be embodied at least an apparatus, a method, and/or a computer program product. The computer program product may include a computer readable storage medium (or media) having computer readable program instructions thereon for causing a processor to carry out aspects of the present invention.

    [0061] The computer readable storage medium can be a tangible device that can retain and store instructions for use by an instruction execution device. The computer readable storage medium may be, for example, but is not limited to, an electronic storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. A non-exhaustive list of more specific examples of the computer readable storage medium includes the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, and any suitable combination of the foregoing. A computer readable storage medium, as used herein, is not to be construed as being transitory signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.

    [0062] Computer readable program instructions described herein can be downloaded to respective computing/processing devices from a computer readable storage medium or to an external computer or external storage device via a network, for example, the Internet (172), a local area network, a wide area network and/or a wireless network. The network may comprise copper transmission cables, optical transmission fibers, wireless transmission, routers, firewalls, switches, gateway computers and/or edge servers. A network adapter card or network interface in each computing/processing device receives computer readable program instructions from the network and forwards the computer readable program instructions for storage in a computer readable storage medium within the respective computing/processing device.

    [0063] Computer readable program instructions for carrying out operations of the present invention may be assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state-setting data, or either source code or object code written in any combination of one or more programming languages, including an object oriented programming language such as Smalltalk, C++ or the like, and conventional procedural programming languages, such as the "C" programming language or similar programming languages. The computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider). In some arrangements, electronic circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA) may execute the computer readable program instructions by utilizing state information of the computer readable program instructions to personalize the electronic circuitry, in order to perform aspects of the present invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer readable program instructions.

    [0064] These computer readable program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks. These computer readable program instructions may also be stored in a computer readable storage medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in a particular manner, such that the computer readable storage medium having instructions stored therein comprises an article of manufacture including instructions which implement aspects of the function/act specified in the flowchart and/or block diagram block or blocks.

    [0065] The computer readable program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other device to cause a series of operational steps to be performed on the computer, other programmable apparatus or other device to produce a computer implemented process, such that the instructions which execute on the computer, other programmable apparatus, or other device implement the functions/acts specified in the flowchart and/or block diagram block or blocks. In this regard, each block in the flowchart or block diagrams in the Figures may represent a module, segment, or portion of instructions, which comprises one or more executable instructions for implementing the specified logical function(s). In some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose hardware and computer instructions.

    [0066] It will be understood from the foregoing description that modifications and changes may be made in various embodiments and arrangements of the present invention without departing from its scope as defined in the appended claims. The descriptions in this specification are for purposes of illustration only and are not to be construed in a limiting sense. The scope of the present invention is limited only by the language of the following claims.


    Claims

    1. A method of performing a non-disruptive upgrade of data in a storage system (300) that includes a plurality of storage devices (302, 330, 332) and a storage controller (314), the method comprising:

    updating (408), by the storage controller (314), system software (304) in the storage system (300), wherein:

    the system software (304) utilizes metadata in an old format to access a volume (306) stored in one or more storage devices (302, 330, 332) in the storage system (300); and

    after the system software (304) is updated, the updated system software (404) can utilize metadata in the old format to access the volume (306) stored in one or more storage devices (302, 330, 332) in the storage system (300) or metadata in a new format to access the volume (306) stored in one or more storage devices (302, 330, 332) in the storage system (300);

    characterized by the method further comprising:

    creating (316), in the one or more storage devices (302, 330, 332) by the storage controller (314), new data (310) in the new format associated with the volume (306), wherein the new data (310) includes the metadata (406) describing the volume (306), and wherein the new data (310) is initially a stub pointing back to the old data (308) formatted in the old data format and associated with the volume (306);

    whenever determining (318), by the storage controller (314), that a portion of the contents in an address range of the volume (306) has changed, updating (322), by the storage controller (314), the new data (310) in the new format associated with the volume (306) to include:

    a reference to data and metadata in the old format associated with a portion in an address range of the volume (306) that precedes the address range of the updated portion of the volume (306);

    data and metadata in the new format associated with the updated portion of the volume (306); and

    a reference to data and metadata in the old format associated with a portion in an address range of the volume (306) that follows the address range of the updated portion of the volume (306).


     
    2. The method of claim 1 further comprising replacing, by the storage controller, data and metadata in the old format associated with the changed portion of the volume (306) with a reference to the data and metadata in the new format associated with the changed portion of the volume (306).
     
    3. The method of claim 1 further comprising executing, by the storage controller when system resource utilization falls below a threshold, a data conversion process.
     
    4. The method of claim 3 wherein executing the data conversion process further comprises:

    updating, by the storage controller, the new data (310) associated with the volume to include:

    a reference to data and metadata in the old format associated with a portion in an address range of the volume (306) that precedes the address range of the data-converted portion of the volume (306);

    data and metadata in the new format associated with the data-converted portion of the volume (306); and

    a reference to data and metadata in the old format associated with a portion in an address range of the volume (306) that follows the address range of the data-converted portion of the volume (306); and

    replacing data and metadata in the old format associated with the data-converted portion in an address range of the volume with a reference to the data and metadata in the new format associated with the data-converted portion in an address range of the volume.


     
    5. The method of claim 1 further comprising:

    copying, by the storage controller, a volume stored at a first location in the storage system (300);

    storing, by the storage controller, at a second location within the storage system (300), the copy of the volume;

    copying, by the storage controller, metadata associated with the volume stored at the first location in the storage system (300), wherein the metadata associated with the volume stored at the first location in the storage system (300) includes metadata in the new format and metadata in the old format; and

    storing, by the storage controller, at a third location in the storage system (300), the metadata, wherein the metadata stored at the third location is associated with the copy of the volume stored at the second location within the storage system (300).


     
    6. The method of claim 1 further comprising placing, by the storage controller (314), the data and metadata in the old format and the data and metadata in the new format in the storage system (300) in dependence upon one or more space efficiency considerations.
     
    7. An apparatus for performing a non-disruptive upgrade of data in a storage system (300) that includes a plurality of storage devices (302, 330, 332), the apparatus comprising a computer processor, a computer memory operatively coupled to the computer processor, the computer memory having disposed within it computer program instructions that, when executed by the computer processor, cause the apparatus to carry out the steps of:

    updating (408) system software (304) in the storage system (300), wherein:

    the system software (304) utilizes metadata in an old format to access a volume (306) stored in one or more storage devices (302, 330, 332) in the storage system (300); and

    after the system software (304) is updated, the updated system software (404) can utilize metadata in the old format to access the volume (306) stored in one or more storage devices (302, 330, 332) in the storage system (300) or metadata in a new format to access the volume (306) stored in one or more storage devices (302, 330, 332) in the storage system (300);

    characterized by further carrying out the steps of:

    creating (316), in the one or more storage devices (302, 330, 332), new data (310) in the new format associated with the volume (306), wherein the new data (310) includes the metadata (406) describing the volume (306), and wherein the new data (310) is initially a stub pointing back to the old data (308) formatted in the old data format and associated with the volume (306);

    whenever determining (318) that a portion of the contents in an address range of the volume (306) has changed; updating (322) the new data in the new format associated with the volume (306) to include:

    a reference to data and metadata in the old format associated with a portion in an address range of the volume (306) that precedes the address range of the updated portion of the volume (306);

    data and metadata in the new format associated with the updated portion of the volume (306); and

    a reference to data and metadata in the old format associated with a portion in an address range of the volume (306) that follows the address range of the updated portion of the volume (306).


     
    8. The apparatus of claim 7 further comprising computer program instructions that, when executed by the computer processor, cause the apparatus to carry out the step of replacing data and metadata in the old format associated with the changed portion of the volume with a reference to the data and metadata in the new format associated with the changed portion of the volume.
     
    9. The apparatus of claim 7 further comprising computer program instructions that, when executed by the computer processor, cause the apparatus to carry out the step of executing, when system resource utilization falls below a threshold, a data conversion process.
     
    10. The apparatus of claim 9 wherein executing the data conversion process further comprises:

    updating the metadata associated with the volume to include:

    a reference to data and metadata in the old format associated with a portion in an address range of the volume (306) that precedes the address range of the data-converted portion of the volume (306);

    metadata in the new format associated with the data-converted portion of the volume; and

    a reference to metadata in the old format associated with a portion of the volume that follows the data-converted portion of the volume; and

    replacing data and metadata in the old format associated with the data-converted portion in an address range of the volume with a reference to the data and metadata in the new format associated with the data-converted portion in an address range of the volume.


     
    11. The apparatus of claim 7 further comprising computer program instructions that, when executed by the computer processor, cause the apparatus to carry out the steps of:

    copying a volume stored at a first location in the storage system (300);

    storing, at a second location within the storage system (300), the copy of the volume;

    copying metadata associated with the volume stored at the first location in the storage system (300), wherein the metadata associated with the volume stored at the first location in the storage system (300) includes metadata in the new format and metadata in the old format; and

    storing, at a third location in the storage system (300), the metadata, wherein the metadata stored at the third location is associated with the copy of the volume stored at the second location within the storage system (300).


     
    12. The apparatus of claim 7 further comprising computer program instructions that, when executed by the computer processor, cause the apparatus to carry out the step of placing the data and metadata in the old format and the data and metadata in the new format in the storage system (300) in dependence upon one or more space efficiency considerations.
     
    13. A computer program product for performing a non-disruptive upgrade of data in a storage system (300) that includes a plurality of storage devices (302, 330, 332) and a storage controller (314), the computer program product disposed upon a non-transitory computer readable medium, the computer program product comprising computer program instructions that, when executed, cause a computer to carry out the method of any of claims 1-6.
     


    Ansprüche

    1. Verfahren zur Durchführung einer unterbrechungsfreien Aktualisierung von Daten in einem Speichersystem (300), das eine Vielzahl von Speichervorrichtungen (302, 330, 332) und eine Speichersteuerung (314) einschließt, wobei das Verfahren Folgendes umfasst:

    Updaten (408) von Systemsoftware (304) in dem Speichersystem (300) durch die Speichersteuerung (314), wobei:

    die Systemsoftware (304) Metadaten in einem alten Format verwendet, um auf ein Volumen (306) zuzugreifen, das in einer oder mehreren Speichervorrichtungen (302, 330, 332) in dem Speichersystem (300) gespeichert ist; und

    nach dem Updaten der Systemsoftware (304) die upgedatete Systemsoftware (404) Metadaten in dem alten Format verwenden kann, um auf das in einer oder mehreren Speichervorrichtungen (302, 330, 332) in dem Speichersystem (300) gespeicherte Volumen (306) zuzugreifen oder Metadaten in einem neuen Format, um auf das in einer oder mehreren Speichervorrichtungen (302, 330, 332) in dem Speichersystem (300) gespeicherte Volumen (306) zuzugreifen;

    dadurch gekennzeichnet, dass das Verfahren ferner Folgendes umfasst:

    Erstellen (316), in der einen oder den mehreren Speichervorrichtungen (302, 330, 332) durch die Speichersteuerung (314), neuer Daten (310) in dem neuen Format, die mit dem Volumen (306) verknüpft sind, wobei die neuen Daten (310) die Metadaten (406) einschließen, die das Volumen (306) beschreiben, und wobei die neuen Daten (310) zunächst einem Stub entsprechen, der zu den alten Daten (308) zurückweist, die in dem alten Datenformat formatiert und mit dem Volumen (306) verknüpft sind;

    immer wenn durch die Speichersteuerung (314) bestimmt (318) wird, dass sich ein Teil der Inhalte in einem Adressbereich des Volumens (306) geändert hat, Updaten (322) der neuen Daten (310) in dem neuen Format, die mit dem Volumen (306) verknüpft sind, durch die Speichersteuerung (314), sodass sie Folgendes einschließen:

    einen Verweis auf Daten und Metadaten in dem alten Format, die mit einem Teil in einem Adressbereich des Volumens (306) verknüpft sind, der dem Adressbereich des upgedateten Teils des Volumens (306) vorausgeht;

    Daten und Metadaten in dem neuen Format, die mit dem upgedateten Teil des Volumens (306) verknüpft sind; und

    einen Verweis auf Daten und Metadaten in dem alten Format, die mit einem Teil in einem Adressbereich des Volumens (306) verknüpft sind, der auf den Adressbereich des upgedateten Teils des Volumens (306) folgt.


     
    2. Verfahren nach Anspruch 1, ferner umfassend das Austauschen von Daten und Metadaten in dem alten Format, die mit dem geänderten Teil des Volumens (306) verknüpft sind, durch die Speichersteuerung mit einem Verweis auf die Daten und Metadaten in dem neuen Format, die mit dem geänderten Teil des Volumens (306) verknüpft sind.
     
    3. Verfahren nach Anspruch 1, ferner umfassend das Ausführen eines Datenumwandlungsprozesses durch die Speichersteuerung, wenn die Nutzung von Systemressourcen unter einen Schwellenwert fällt.
     
    4. Verfahren nach Anspruch 3, wobei das Ausführen des Datenumwandlungsprozesses ferner Folgendes umfasst:

    Updaten der neuen Daten (310), die mit dem Volumen verknüpft sind, durch die Speichersteuerung, sodass sie Folgendes einschließen:

    einen Verweis auf Daten und Metadaten in dem alten Format, die mit einem Teil in einem Adressbereich des Volumens (306) verknüpft sind, der dem Adressbereich des Teils des Volumens (306) mit umgewandelten Daten vorausgeht;

    Daten und Metadaten in dem neuen Format, die mit dem Teil des Volumens (306) mit umgewandelten Daten verknüpft sind; und

    einen Verweis auf Daten und Metadaten in dem alten Format, die mit einem Teil in einem Adressbereich des Volumens (306) verknüpft sind, der auf den Adressbereich des Teils des Volumens (306) mit umgewandelten Daten folgt; und

    Austauschen von Daten und Metadaten in dem alten Format, die mit dem Teil mit umgewandelten Daten in einem Adressbereich des Volumens verknüpft sind, mit einem Verweis auf die Daten und Metadaten in dem neuen Format, die mit dem Teil mit umgewandelten Daten in einem Adressbereich des Volumens verknüpft sind.


     
    5. Verfahren nach Anspruch 1, ferner umfassend:

    Kopieren eines an einer ersten Stelle in dem Speichersystem (300) gespeicherten Volumens durch die Speichersteuerung;

    Speichern der Kopie des Volumens an einer zweiten Stelle in dem Speichersystem (300) durch die Speichersteuerung;

    Kopieren von Metadaten, die mit dem an der ersten Stelle in dem Speichersystem (300) gespeicherten Volumen verknüpft sind, durch die Speichersteuerung, wobei die Metadaten, die mit dem an der ersten Stelle in dem Speichersystem (300) gespeicherten Volumen verknüpft sind, Metadaten in dem neuen Format und Metadaten in dem alten Format einschließen; und

    Speichern der Metadaten an einer dritten Stelle in dem Speichersystem (300) durch die Speichersteuerung, wobei die an der dritten Stelle gespeicherten Metadaten mit der Kopie des Volumens verknüpft sind, das an der zweiten Stelle in dem Speichersystem (300) gespeichert ist.


     
    6. Verfahren nach Anspruch 1, ferner umfassend das Platzieren der Daten und Metadaten in dem alten Format und der Daten und Metadaten in dem neuen Format in dem Speichersystem (300) durch die Speichersteuerung (314) in Abhängigkeit von einer oder mehreren Überlegungen zur Platzeffizienz.
     
    7. Einrichtung zur Durchführung einer unterbrechungsfreien Aktualisierung von Daten in einem Speichersystem (300), das eine Vielzahl von Speichervorrichtungen (302, 330, 332) einschließt, wobei die Einrichtung einen Computerprozessor umfasst, wobei ein Computerspeicher mit dem Computerprozessor wirkverbunden ist, wobei der Computerspeicher in ihm angeordnete Computerprogrammanweisungen aufweist, die, wenn sie von dem Computerprozessor ausgeführt werden, veranlassen, dass die Einrichtung die folgenden Schritte ausführt:

    Updaten (408) von Systemsoftware (304) in dem Speichersystem (300), wobei:

    die Systemsoftware (304) Metadaten in einem alten Format verwendet, um auf ein Volumen (306) zuzugreifen, das in einer oder mehreren Speichervorrichtungen (302, 330, 332) in dem Speichersystem (300) gespeichert ist; und

    nach dem Updaten der Systemsoftware (304) die upgedatete Systemsoftware (404) Metadaten in dem alten Format verwenden kann, um auf das in einer oder mehreren Speichervorrichtungen (302, 330, 332) in dem Speichersystem (300) gespeicherte Volumen (306) zuzugreifen oder Metadaten in einem neuen Format, um auf das in einer oder mehreren Speichervorrichtungen (302, 330, 332) in dem Speichersystem (300) gespeicherte Volumen (306) zuzugreifen;

    dadurch gekennzeichnet, dass ferner die folgenden Schritte ausgeführt werden:

    Erstellen (316), in der einen oder den mehreren Speichervorrichtungen (302, 330, 332) neuer Daten (310) in dem neuen Format, die mit dem Volumen (306) verknüpft sind, wobei die neuen Daten (310) die Metadaten (406) einschließen, die das Volumen (306) beschreiben, und wobei die neuen Daten (310) zunächst einem Stub entsprechen, der zu den alten Daten (308) zurückweist, die in dem alten Datenformat formatiert und mit dem Volumen (306) verknüpft sind;

    immer wenn bestimmt (318) wird, dass sich ein Teil der Inhalte in einem Adressbereich des Volumens (306) geändert hat; Updaten (322) der neuen Daten in dem neuen Format, die mit dem Volumen (306) verknüpft sind, sodass sie Folgendes einschließen:

    einen Verweis auf Daten und Metadaten in dem alten Format, die mit einem Teil in einem Adressbereich des Volumens (306) verknüpft sind, der dem Adressbereich des upgedateten Teils des Volumens (306) vorausgeht;

    Daten und Metadaten in dem neuen Format, die mit dem upgedateten Teil des Volumens (306) verknüpft sind; und

    einen Verweis auf Daten und Metadaten in dem alten Format, die mit einem Teil in einem Adressbereich des Volumens (306) verknüpft sind, der auf den Adressbereich des upgedateten Teils des Volumens (306) folgt.


     
    8. Einrichtung nach Anspruch 7, ferner umfassend Computerprogrammanweisungen, die, wenn sie von dem Computerprozessor ausgeführt werden, veranlassen, dass die Einrichtung den Schritt zum Austauschen von Daten und Metadaten in dem alten Format, die mit dem geänderten Teil des Volumens verknüpft sind, mit einem Verweis auf die Daten und Metadaten in dem neuen Format ausführt, die mit dem geänderten Teil des Volumens verknüpft sind.
     
    9. Einrichtung nach Anspruch 7, ferner umfassend Computerprogrammanweisungen, die, wenn sie von dem Computerprozessor ausgeführt werden, veranlassen, dass die Einrichtung den Schritt des Ausführens eines Datenumwandlungsprozesses ausführt, wenn die Nutzung von Systemressourcen unter einen Schwellenwert fällt.
     
    10. Einrichtung nach Anspruch 9, wobei das Ausführen des Datenumwandlungsprozesses ferner Folgendes umfasst:

    Updaten der Metadaten, die mit dem Volumen verknüpft sind, sodass sie Folgendes einschließen:

    einen Verweis auf Daten und Metadaten in dem alten Format, die mit einem Teil in einem Adressbereich des Volumens (306) verknüpft sind, der dem Adressbereich des Teils des Volumens (306) mit umgewandelten Daten vorausgeht;

    Metadaten in dem neuen Format, die mit dem Teil des Volumens mit umgewandelten Daten verknüpft sind; und

    einen Verweis auf Metadaten in dem alten Format, die mit einem Teil des Volumens verknüpft sind, der auf den Teil des Volumens mit umgewandelten Daten folgt; und

    Austauschen von Daten und Metadaten in dem alten Format, die mit dem Teil mit umgewandelten Daten in einem Adressbereich des Volumens verknüpft sind, mit einem Verweis auf die Daten und Metadaten in dem neuen Format, die mit dem Teil mit umgewandelten Daten in einem Adressbereich des Volumens verknüpft sind.


     
    11. Einrichtung nach Anspruch 7, ferner umfassend Computerprogrammanweisungen, die, wenn sie von dem Computerprozessor ausgeführt werden, veranlassen, dass die Einrichtung die folgenden Schritte ausführt:

    Kopieren eines an einer ersten Stelle in dem Speichersystem (300) gespeicherten Volumens;

    Speichern der Kopie des Volumens an einer zweiten Stelle in dem Speichersystem (300);

    Kopieren von Metadaten, die mit dem an der ersten Stelle in dem Speichersystem (300) gespeicherten Volumen verknüpft sind, wobei die Metadaten, die mit dem an der ersten Stelle in dem Speichersystem (300) gespeicherten Volumen verknüpft sind, Metadaten in dem neuen Format und Metadaten in dem alten Format einschließen; und

    Speichern der Metadaten an einer dritten Stelle in dem Speichersystem (300), wobei die an der dritten Stelle gespeicherten Metadaten mit der Kopie des Volumens verknüpft sind, das an der zweiten Stelle in dem Speichersystem (300) gespeichert ist.


     
    12. Einrichtung nach Anspruch 7, ferner umfassend Computerprogrammanweisungen, die, wenn sie von dem Computerprozessor ausgeführt werden, veranlassen, dass die Einrichtung den Schritt des Platzierens der Daten und Metadaten in dem alten Format und der Daten und Metadaten in dem neuen Format in dem Speichersystem (300) in Abhängigkeit von einer oder mehreren Überlegungen zur Platzeffizienz ausführt.
     
    13. Computerprogrammprodukt zur Durchführung einer unterbrechungsfreien Aktualisierung von Daten in einem Speichersystem (300), das eine Vielzahl von Speichervorrichtungen (302, 330, 332) und eine Speichersteuerung (314) einschließt, wobei das Computerprogrammprodukt auf einem nichtflüchtigen computerlesbaren Medium angeordnet ist, wobei das Computerprogrammprodukt Computerprogrammanweisungen umfasst, die bei Ausführung veranlassen, dass ein Computer das Verfahren nach einem der Ansprüche 1-6 ausführt.
     


    Revendications

    1. Procédé de réalisation d'une mise à niveau non perturbatrice de données dans un système de stockage (300) qui comporte une pluralité de dispositifs de stockage (302, 330, 332) et un dispositif de commande de stockage (314), le procédé comprenant :

    la mise à jour (408), par le dispositif de commande de stockage (314), du logiciel système (304) dans le système de stockage (300), dans lequel :

    le logiciel système (304) utilise des métadonnées dans un ancien format pour accéder à un volume (306) stocké dans un ou plusieurs dispositifs de stockage (302, 330, 332) dans le système de stockage (300) ; et

    après la mise à jour du logiciel système (304), le logiciel système (404) mis à jour peut utiliser des métadonnées dans l'ancien format pour accéder au volume (306) stocké dans un ou plusieurs dispositifs de stockage (302, 330, 332) dans le système de stockage (300) ou des métadonnées dans un nouveau format pour accéder au volume (306) stocké dans un ou plusieurs dispositifs de stockage (302, 330, 332) dans le système de stockage (300) ;

    caractérisé par le procédé comprenant en outre :

    la création (316), dans l'un ou plusieurs dispositifs de stockage (302, 330, 332) par le dispositif de commande de stockage (314), de nouvelles données (310) dans le nouveau format associé au volume (306), dans lequel les nouvelles données (310) comportent les métadonnées (406) décrivant le volume (306), et dans lequel les nouvelles données (310) sont initialement un stub pointant vers les anciennes données (308) formatées dans l'ancien format de données et associées au volume (306) ;

    chaque fois qu'il est déterminé (318), par le dispositif de commande de stockage (314), qu'une partie des contenus dans une plage d'adresse du volume (306) a changé, la mise à jour (322), par le dispositif de commande de stockage (314), des nouvelles données (310) dans le nouveau format associé au volume (306) pour inclure :

    une référence aux données et aux métadonnées dans l'ancien format associée à une partie dans une plage d'adresse du volume (306) qui précède la plage d'adresse de la partie mise à jour du volume (306) ;

    des données et des métadonnées dans le nouveau format associé à la partie mise à jour du volume (306) ; et

    une référence aux données et aux métadonnées dans l'ancien format associée à une partie dans une plage d'adresse du volume (306) qui suit la plage d'adresse de la partie mise à jour du volume (306).


     
    2. Procédé selon la revendication 1, comprenant en outre le remplacement, par le dispositif de commande de stockage, des données et des métadonnées dans l'ancien format associé à la partie modifiée du volume (306) par une référence aux données et aux métadonnées dans le nouveau format associé à la partie modifiée du volume (306).
     
    3. Procédé selon la revendication 1, comprenant en outre l'exécution, par le dispositif de commande de stockage lorsque l'utilisation de la ressource système se situe en dessous d'un seuil, d'un processus de conversion de données.
     
    4. Procédé selon la revendication 3, dans lequel l'exécution du processus de conversion de données comprend en outre :

    la mise à jour, par le dispositif de commande de stockage, des nouvelles données (310) associées au volume pour inclure :

    une référence aux données et aux métadonnées dans l'ancien format associée à une partie dans une plage d'adresse du volume (306) qui précède la plage d'adresse de la partie de données converties du volume (306) ;

    des données et des métadonnées dans le nouveau format associé à la partie de données converties du volume (306) ; et

    une référence aux données et aux métadonnées dans l'ancien format associée à une partie dans une plage d'adresse du volume (306) qui suit la plage d'adresse de la partie de données converties du volume (306) ; et

    le remplacement des données et des métadonnées dans l'ancien format associé à la partie de données converties dans une plage d'adresse du volume par une référence aux données et aux métadonnées dans le nouveau format associé à la partie de données converties dans une plage d'adresse du volume.


     
    5. Procédé selon la revendication 1, comprenant en outre :

    la copie, par le dispositif de commande de stockage, d'un volume stocké à un premier emplacement dans le système de stockage (300) ;

    le stockage, par le dispositif de commande de stockage, à un deuxième emplacement dans le système de stockage (300), de la copie du volume ;

    la copie, par le dispositif de commande de stockage, des métadonnées associées au volume stocké au premier emplacement dans le système de stockage (300), dans lequel les métadonnées associées au volume stocké au premier emplacement dans le système de stockage (300) comportent des métadonnées dans le nouveau format et des métadonnées dans l'ancien format ; et

    le stockage, par le dispositif de commande de stockage, à un troisième emplacement dans le système de stockage (300), des métadonnées, dans lequel les métadonnées stockées au troisième emplacement sont associées à la copie du volume stocké au deuxième emplacement dans le système de stockage (300) .


     
    6. Procédé selon la revendication 1, comprenant en outre le placement, par le dispositif de commande de stockage (314), des données et des métadonnées dans l'ancien format et des données et des métadonnées dans le nouveau format dans le système de stockage (300) en fonction d'une ou plusieurs considérations d'efficacité d'espace.
     
    7. Appareil de réalisation d'une mise à niveau non perturbatrice de données dans un système de stockage (300) qui comporte une pluralité de dispositifs de stockage (302, 330, 332), l'appareil comprenant un processeur d'ordinateur, une mémoire d'ordinateur couplée de manière fonctionnelle au processeur d'ordinateur, la mémoire d'ordinateur ayant des instructions de programme informatique disposées à l'intérieur de celle-ci qui, lorsqu'elles sont exécutées par le processeur d'ordinateur, amènent l'appareil à effectuer les étapes suivantes :

    la mise à jour (408) du logiciel système (304) dans le système de stockage (300), dans lequel :

    le logiciel système (304) utilise des métadonnées dans un ancien format pour accéder à un volume (306) stocké dans un ou plusieurs dispositifs de stockage (302, 330, 332) dans le système de stockage (300) ; et

    après la mise à jour du logiciel système (304), le logiciel système (404) mis à jour peut utiliser des métadonnées dans l'ancien format pour accéder au volume (306) stocké dans un ou plusieurs dispositifs de stockage (302, 330, 332) dans le système de stockage (300) ou des métadonnées dans un nouveau format pour accéder au volume (306) stocké dans un ou plusieurs dispositifs de stockage (302, 330, 332) dans le système de stockage (300) ;

    caractérisé par la mise en Ĺ“uvre supplémentaire des étapes suivantes :

    la création (316), dans l'un ou plusieurs dispositifs de stockage (302, 330, 332), de nouvelles données (310) dans le nouveau format associé au volume (306), dans lequel les nouvelles données (310) comportent les métadonnées (406) décrivant le volume (306), et dans lequel les nouvelles données (310) sont initialement un stub pointant vers les anciennes données (308) formatées dans l'ancien format de données et associées au volume (306) ;

    chaque fois qu'il est déterminé (318) qu'une partie des contenus dans une plage d'adresse du volume (306) a changé ; la mise à jour (322) des nouvelles données dans le nouveau format associé au volume (306) pour inclure :

    une référence aux données et aux métadonnées dans l'ancien format associée à une partie dans une plage d'adresse du volume (306) qui précède la plage d'adresse de la partie mise à jour du volume (306) ;

    des données et des métadonnées dans le nouveau format associé à la partie mise à jour du volume (306) ; et

    une référence aux données et aux métadonnées dans l'ancien format associée à une partie dans une plage d'adresse du volume (306) qui suit la plage d'adresse de la partie mise à jour du volume (306).


     
    8. Appareil selon la revendication 7 comprenant en outre des instructions de programme informatique qui, lorsqu'elles sont exécutées par le processeur d'ordinateur, amènent l'appareil à effectuer l'étape de remplacement des données et des métadonnées dans l'ancien format associé à la partie modifiée du volume avec une référence aux données et aux métadonnées dans le nouveau format associé à la partie modifiée du volume.
     
    9. Appareil selon la revendication 7, comprenant en outre des instructions de programme informatique qui, lorsqu'elles sont exécutées par le processeur d'ordinateur, amènent l'appareil à effectuer l'étape d'exécution, lorsque l'utilisation de la ressource système se situe en dessous d'un seuil, d'un processus de conversion de données.
     
    10. Appareil selon la revendication 9, dans lequel l'exécution du processus de conversion de données comprend en outre :

    la mise à jour des métadonnées associées au volume pour inclure :

    une référence aux données et aux métadonnées dans l'ancien format associée à une partie dans une plage d'adresse du volume (306) qui précède la plage d'adresse de la partie de données converties du volume (306) ;

    les métadonnées dans le nouveau format associé à la partie de données converties du volume ; et

    une référence aux métadonnées dans l'ancien format associée à une partie du volume qui suit la partie de données converties du volume ; et

    le remplacement des données et des métadonnées dans l'ancien format associé à la partie de données converties dans une plage d'adresse du volume par une référence aux données et aux métadonnées dans le nouveau format associé à la partie de données converties dans une plage d'adresse du volume.


     
    11. Appareil selon la revendication 7, comprenant en outre des instructions de programme informatique qui, lorsqu'elles sont exécutées par le processeur d'ordinateur, amènent l'appareil à effectuer les étapes suivantes :

    la copie d'un volume stocké à un premier emplacement dans le système de stockage (300) ;

    le stockage, à un deuxième emplacement dans le système de stockage (300), de la copie du volume ;

    la copie des métadonnées associées au volume stocké au premier emplacement dans le système de stockage (300), dans lequel les métadonnées associées au volume stocké au premier emplacement dans le système de stockage (300) comportent des métadonnées dans le nouveau format et des métadonnées dans l'ancien format ; et

    le stockage, à un troisième emplacement dans le système de stockage (300), des métadonnées, dans lequel les métadonnées stockées au troisième emplacement sont associées à la copie du volume stocké au deuxième emplacement dans le système de stockage (300).


     
    12. Appareil selon la revendication 7, comprenant en outre des instructions de programme informatique qui, lorsqu'elles sont exécutées par le processeur d'ordinateur, amènent l'appareil à effectuer l'étape de placement des données et des métadonnées dans l'ancien format et des données et des métadonnées dans le nouveau format dans le système de stockage (300) en fonction d'une ou plusieurs considérations d'efficacité d'espace.
     
    13. Produit de programme informatique pour la réalisation d'une mise à niveau non perturbatrice de données dans un système de stockage (300) qui comporte une pluralité de dispositifs de stockage (302, 330, 332) et un dispositif de commande de stockage (314), le produit de programme informatique étant disposé sur un support lisible par ordinateur non transitoire, le produit de programme informatique comprenant des instructions de programme informatique qui, lorsqu'elles sont exécutées, amènent un ordinateur à effectuer le procédé de l'une quelconque des revendications 1 à 6.
     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description