(19)
(11)EP 3 430 967 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
02.09.2020 Bulletin 2020/36

(21)Application number: 18000614.0

(22)Date of filing:  19.07.2018
(51)International Patent Classification (IPC): 
A61B 1/00(2006.01)
A61B 1/005(2006.01)
A61B 1/045(2006.01)

(54)

A CONTROL INTERFACE AND ADJUSTMENT MECHANISM FOR AN ENDOSCOPE OR EXOSCOPE

STEUERSCHNITTSTELLE UND VERSTELLMECHANISMUS FÜR EIN ENDOSKOP ODER EXOSKOP

INTERFACE DE COMMANDE ET MÉCANISME DE RÉGLAGE DESTINÉ À UN ENDOSCOPE OU EXOSCOPE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 21.07.2017 US 201715656158

(43)Date of publication of application:
23.01.2019 Bulletin 2019/04

(73)Proprietor: Karl Storz Imaging, Inc.
Goleta, CA 93117 (US)

(72)Inventor:
  • HALE, Eric
    Goleta, CA 93117 (US)

(74)Representative: Weidner Stern Jeschke 
Patentanwälte Partnerschaft mbB Universitätsallee 17
28359 Bremen
28359 Bremen (DE)


(56)References cited: : 
JP-A- 2003 148 998
US-A1- 2014 330 082
US-A1- 2017 078 583
US-A1- 2007 219 409
US-A1- 2016 256 160
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    Field of the Invention



    [0001] The invention relates to a manual control system for endoscopic cameras, and peripherals. Particularly, functional control is provided through a combination of buttons accessible to the user.

    Description of the Background Art



    [0002] Optical instruments such as endoscopes, borescopes, and exoscopes may include an electronic imaging device located, for example, at a proximal end of an elongated shaft or in a camera head which is connected to an elongated shaft. In addition, the distal end of the elongated shaft can contain focusing or zoom lenses and a light source. The distal end often requires manual control for the lenses and sometimes requires manual control for direction of view if the distal end is flexible.

    [0003] In particular, a standard rigid endoscope has a distal objective, a proximal eyepiece, a proximal camera detachably connected to the endoscope with the zoom being performed in the camera, and with the buttons on the camera. Alternatively, a rigid video endoscope can have a distal objective and distal image sensor(s) or a distal objective and proximal image sensors (using a rod lens system) such that the buttons are on the handle of the proximal end of the endoscope. Additionally, a flexible video endoscope with a distal objective, LED, and image sensor can have the buttons on the proximal handle. Finally, an exoscope would have an objective and camera with a separate button module for camera or light control.

    [0004] Originally, the control of endoscopes was purely mechanical as in the US patent 3,557,780 to Masaaki Sato, which discloses tension wires to steer a flexible head of the endoscope. The control interface of Sato is a rotating knob, which provides angular control for the deflection of the imaging head of the endoscope. The camera disclosed in this device is film based and requires actuation and lighting as well.

    [0005] Cameras and control interfaces then became digital as in US patent 5,762,603 to Robert Lee Thompson where foot pedals provide control of the digital camera head and lighting module. The foot pedal control assembly includes four controls: (1) moving camera housing left and right; (2) moving camera housing up and down; (3) zooming in and out; and (4) adjusting light intensity up and down. Signals from the foot pedal control assembly are routed to the control console for translation and transmission to the camera head.

    [0006] In the endoscopes of Sato and Thompson, the camera head is disposed at the distal end of the endoscope. This placement, however, limits the size of the CCD imaging chip and also requires compact lens arrangements for zoom and focus. Alternatively, cameras, focusing optics and zoom optics can be arranged at a proximal end of the endoscope opposite the insertion end with the imaged light being carried from the insertion end by carrier lenses. This configuration allows the control interface to be adjacent to the camera and optics being controlled.

    [0007] The control interface must give the user tactile feedback since the user often cannot give full attention to the buttons being pushed. Therefore, touchscreens and the like cannot be used for the control interface. Furthermore, the camera heads for endoscopes are subjected to repeated exposure to chemicals and fluids for sterilization and cleaning. As a result, traditional push buttons and electronic contacts cannot be used.

    [0008] Some endoscope control interfaces, such as Frith, et al. (US 2005/0059858), utilize hall proximity sensors inside the camera module coupled with movable magnets that actuate the hall proximity sensors. FIG. 1 illustrates a rocker switch 1 as disclosed in the conventional art, namely, Frith and provides leaf springs 7 below a front and back of one button 2 so that forward or backward pressure by a user is translated into proximity signals for control of the camera. The hall sensor 6 detects the up and down movement of the magnet 5 and magnetic pin 4 as the button 2 pivots about a central support 3. The switch components in Frith are all disposed outside a sealed endoscope housing 8 as described previously.

    [0009] The rocking motion and resistance of the leaf springs provides tactile feedback for control of a one dimensional forward and backward movement. The rocking switch of Frith is limited to control in one direction for one component. Therefore, the switch can only control simple actions such as zoom or focus, but cannot pan across a view, control a distal end of the endoscope, or shift lighting directions. Furthermore, the device of Frith does not compensate for orientation of the endoscope. In other words, the endoscope can be inserted and positioned in a number of directions and also rotated about its axis. If left uncorrected, these movements degrade the viewing experience of the surgeon or user.

    [0010] Systems like Frith that use a magnet/hall sensor pairing do not utilize a magnetometer for orientation. In particular, the button magnets interfere with magnetometer-based orientation systems and oversaturate the natural magnetic field strength. Therefore, orientation systems are not paired with sealed hall magnet button interfaces due to this interference. The system shown in FIG. 1 illustrates a conventional control button for an endoscope. Conventional hall magnet/button switches double the number of parts needed for a single button, and therefore, are costly and difficult to manufacture.

    [0011] Thus, control interfaces for medical devices require special design considerations. In addition, a surgeon must be able to perform at least the four adjustments described in regards to the device of Thompson above. The current control interfaces available are limited in adaptability and do not provide integrated control of all endoscope functions.
    In US 2007/0219409 A1 a switch mechanism for use in medical apparatuses is disclosed, wherein a first magnet provided outside an airtight unit is movable by an operation unit provided outside the airtight unit, a second magnet provided in the airtight unit is able to receive a force from the first magnet in accordance with a position of the first magnet, and a switch unit provided in the airtight unit is able to be switched on and off by using a force acting between the first magnet and the second magnet.
    US 2014/0330082 A1 relates to hermetically sealed enclosures for use in endoscopic systems, wherein a Hall effect or magnetic switch resides inside an enclosure of a handle, detecting the motion of a magnet or ferrous object of a control outside of a handle housing.
    US 2017/0078583 A1 and JP 2003 148998 disclose arrangements with a magnetic sensor sensing a movement of a magnet connected to a button or other operating element. US 2016/0256160 A1 relates to a system for detecting the mis-insertion of a staple cartridge into a surgical stapler, with a magnetic field sensor for detecting changes in a magnetic field caused by the movement of a magnetic element, a safety processor configured to implement a watchdog function, and an acceleration segment comprising one or more inertial sensors.

    SUMMARY OF THE INVENTION



    [0012] The invention is defined in apparatus claim 1, method claim 9, and system claim 12. Further aspects and preferred embodiments are defined in the appended claims. Aspects, embodiments and examples of the present disclosure which do not fall under the scope of the appended claims do not form part of the invention and are merely provided for illustrative purposes. In view of the foregoing and other exemplary problems, drawbacks and disadvantages of the conventional methods and devices, an exemplary feature of the present invention is to provide a control interface, and method, for endoscopes and cameras that use an orientation tracking system.

    [0013] In an exemplary non-limiting aspect of the invention a control interface and adjustment mechanism for an endoscope, comprises at least one button or more than one button and has a touch surface, a magnet disposed below the touch surface, a magnetometer detecting ambient magnetic fields, and a control processor receiving signals from the magnetometer. The control processor is connected to at least one endoscope component and controls the at least one endoscope component. The control processor filters received first field information from the magnetometer to determine if the received first field information matches a specific stored button vector of at least one button vector stored in memory, and if the received first field information matches the specific stored button vector, then the at least one endoscope component is controlled based on the first information detected by the control unit.

    [0014] A control interface and adjustment mechanism for an endoscope or exoscope is provided that includes at least one button or more than one button with a touch surface and a magnet disposed adjacent to the touch surface of the button, a magnetometer detecting ambient magnetic fields, and a control processor receiving signals from the magnetometer, the control processor being connected to at least one peripheral component and controls the at least one component, the control processor filtering received first field information from the magnetometer to determine if the received first field information matches a specific stored button vector of at least one button vector stored in memory, and if the received first field information matches the specific stored button vector, the at least one peripheral component is controlled based on the first field information received by the control processor. The endoscope includes gyroscope and an accelerometer connected to the control processor with the gyroscope providing orientation signals to the control processor, and the orientation signals being corrected based on ambient magnetic fields detected by the magnetometer.

    [0015] In an exemplary embodiment of the invention a method of controlling an optical component is provided that comprises receiving, at a control unit, orientation data from a magnetometer; filtering the received orientation data based on past orientation data, matching the received orientation data in real time based on a delta function stored in memory, the delta function mapping a magnetic field shift to an expected magnetic field shift for a button, signaling an input of the button to the control unit, if a detected magnetic field shift matches the expected magnetic field shift, and controlling a peripheral device based on the input of the button.

    [0016] In an exemplary embodiment of the invention an endoscope includes a sealed housing, a control interface and adjustment mechanism, including at least two buttons, each of the at least two buttons including a touch surface and a magnet disposed adjacent to the touch surface. The endoscope also including magnetometer detecting ambient magnetic fields and a control processor receiving signals from the magnetometer, the control processor being connected to at least one endoscope component and controlling the at least one endoscope component, the control processor filtering received first field information from the magnetometer to determine if the received first field information matches a specific stored button vector of at least one button vector stored in memory, and if the received first field information matches the specific stored button vector, the at least one endoscope component is controlled based on the first field information received by the control processor.

    [0017] The endoscope can additionally include a gyroscope and an accelerometer connected to the control processor, wherein the gyroscope provides orientation signals to the control processor, wherein the orientation signals are corrected based on ambient magnetic fields detected by the magnetometer.

    [0018] The specific stored button vector is an average magnetic field shift for each button so that the average magnetic field shift is mapped to the first field information by a delta function. The average magnetic field shift is mapped to the first field information by the delta function based on orientation data received at the control processor from a gyroscope and/or an accelerometer. If the first field information does not match the specific stored button vector, then the first field information is ignored or interpreted as movement of the endoscope or exoscope. The specific stored button vector can be an average magnetic field shift calculated from multiple button depressions detected when the magnetometer is in a calibration position.

    [0019] The magnet of the each button is depressed when the touch surface is pressed by a user, the magnet being depressed such that the magnetometer detects a magnetic field shift as part of the first field information. The endoscope can have a second button, such that the first button and second button have corresponding specific stored button vectors. If the at least one button and second button are activated substantially simultaneously, the control processor determines that the two buttons were pressed by matching a sum of the specific stored button vector for each button with the first field information. The specific stored button vector is an average magnetic field shift for one of the two buttons, such that average magnetic field shift is mapped to the first field information by a delta function based on the orientation data.

    [0020] The at least one peripheral component can include: a camera of the optical instrument, an internal lighting system, an external lighting system, an image storage system, a CCD/CMOS sensor, a zoom lens, a zoom actuator, a focus lens, a focus actuator, a camera panning motor, an irrigation pump, and/or a moveable camera head. In addition, the buttons can be disposed entirely outside the sealed housing.

    [0021] The present invention provides an interface with fewer parts and easier assembly than the conventional art. Furthermore, by calibrating the response detected for each button, the influence of ambient magnetic fluctuations can be minimized. Prior art Hall sensors would be activated by magnets or fields not associated with the buttons. Finally, the sealed interface and housing allows for easy cleaning and protection of the electronics in the camera head of the endoscope.

    [0022] Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes, combinations and modifications within the scope of the invention will become apparent to those skilled in the art from this detailed description.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0023] The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:

    FIG. 1 is a conventional rocker switch;

    FIG. 2 is a cross-section view of the button interface according to an exemplary embodiment;

    FIG. 3 is a top view of the button interface according to an exemplary embodiment of the present invention;

    FIG. 4 is a cross-section view of an endoscope handle with a control interface according the embodiment in FIG. 3;

    FIG. 5 is a graph illustrating various adaptations to button movements and orientation changes as detected by the control interface;

    FIG. 6 is a system diagram of the control interface and peripheral devices according to an exemplary embodiment of the present invention; and

    FIG. 7 is a process diagram for the filtering and correction process of the present invention.


    DETAILED DESCRIPTION



    [0024] Referring now to the drawings, and more specifically, FIGs. 2-7, there are shown exemplary embodiments of the method and structures according to the present invention.

    [0025] The exemplary endoscope head shown in FIG. 2 includes two magnetic buttons 10a and 10b disposed outside a housing 11 of the endoscope. Inside the endoscope head is a printed circuit board 20 including an inertial measurement unit (IMU) 22 and a control processor 25 for interpreting the signals from the IMU 22. The terminating shape at the left-hand end (insertion end) of the housing is purely exemplary and would instead likely extend to another rounded end or other shape.

    [0026] Figure 3 illustrates an exemplary button interface shown including four buttons 10a, 10b, 10c, and 10d in a cross configuration. Each of the buttons 10 is preferably a push button with a hard plastic center and a flexible, sealed rubber connection to the endoscope housing 11. The four buttons 10 can control a camera or moveable endoscope head. Specifically, buttons 10c and 10d can provide digital panning or steering a moveable camera head to left and right, and buttons 10a and 10b can provide zoom control or digital panning up and down within a larger captured image.

    [0027] Additional buttons can be added to provide switching between functionality, for instance switching between steering and panning or switching between zooming and focus. The additional buttons can record a still image from the video recorded by the camera head, or they can be programmable and control another device such as a light source or irrigation pump. Each of the buttons includes a magnet preferably inset in the hard plastic portion of the button such that when the button is depressed the magnet is moved closer or is shifted relative to a detector below the button.

    [0028] The four buttons are preferably inset in a depressed and widened portion of the endoscope handle as shown in the side view of FIG. 4. Inside the endoscope housing 11 a circuit board 20 is provided. The circuit board 20 includes a control processor 25 and an inertial measurement unit (IMU) 22 including a magnetometer, gyroscope and at least one accelerometer. The two button design of FIG. 2 can include all the features shown and described with respect to FIG. 4 as well.

    [0029] The circuit board 20 is connected by wires 23 to controllable peripheral components that can be arranged within or externally or connected wirelessly to the endoscope or exoscope, the peripheral elements include, for example, CCD/CMOS sensors, zoom lenses or actuators, focus lenses or actuators, camera panning motors, lighting systems, irrigation pumps or moveable camera heads, for example. The IMU 22 is aligned parallel to a Z-axis projected through the center of the endoscope housing 11.

    [0030] The inertial measurement unit (IMU) 22 measures rotation of the endoscope housing 11 using the Earth's magnetic field detected by the magnetometer as a reference. The IMU 22 can be mounted inside the hollow endoscope housing 11 such that the IMU is equidistant from the cylindrical sides of the endoscope. This placement ensures accurate measurement of rotations about the Z-axis.

    [0031] The control processor 25 receives the IMU 22 outputs, and then applies filters and calibrations to these signals. Specifically, the control processor 25 checks if a detected shift in magnetic field direction is the result of a button press. If the control processor 25 determines that a button has been pressed, then the detected shift is discounted and no control adjustments are made for the shift in magnetic field. The control processor 25 then determines which button was pressed based on the detected shift in magnetic field and generates a signal for control of peripheral systems.

    [0032] The determination process is shown in FIG. 5 where exemplary magnetic field vectors, detected by the magnetometer, are shifted in different directions by buttons and rotation of the housing. Vector 31 is a reference magnetic field of the Earth used for calibration when the camera head is turned on. The dark vector 30 is the measured vector when no buttons have been pressed but the endoscope has been rotated about the Z-axis. The rotation causes a shift in the detected magnetic field of the Earth 35 and corresponding gyroscope and accelerometer changes. Vectors 35 are the Earth's magnetic field contribution derived from the difference of the last valid sampling. This changed orientation vector 31 is then stored as the new orientation of the endoscope housing and the change is used to control peripheral devices or the camera display. The lighter circles 36 represent the locus on which the new vector must end based on the calibrated Earth's magnetic field vector.

    [0033] The magnetic field also shifts when one of the buttons is actuated. For example, when a first button is pushed the magnetic field shifts to vector 33 by vector 39. Alternatively, when a second button is pushed the magnetic field shifts to vector 38 by vector 34. When the magnetic field shifts to vectors 38 or 33, the IMU does not sense any corresponding gyroscope or accelerometer changes. Thus, if the IMU senses magnetic field changes without other motion systems activating, then the magnetic field shift is interpreted as a button press. The magnetometer measurements are sensitive to the outside environment, so the IMU filters for changes in the measurement resembling a calibrated value beyond the inputs from the gyroscope and accelerometer. If a button is pressed while the endoscope is being rotated, the IMU checks why the magnetometer does not match the gyroscope and accelerometer inputs, and determines which button was pressed. If the resulting output does not match a known vector for the button, then the detected shift not supported by the gyroscope or accelerometer can be discarded.

    [0034] Using the last recorded vector of the Earth's magnetic field 30 and the known deflection 34 or 39 due to the pressing of the specific button, the deflected vectors 33 and 38 are expected to be vectors 32 and 37. If vectors 32 and 37 are actually detected at the magnetometer, then the control processor can determine which button has been pushed. The rotation shift of vector 35 can be removed and the simple shift of vectors 39 and 34 are matched with a calibrated button press vector associated with each button.

    [0035] The magnetometer can be used to remove long term drift from the gyroscope sensor by adding realignment terms based on the average drift and/or a measured magnetic field calibration point. In addition, this realignment can be calculated in reverse such that changes in the magnetometer outside of values expected by the gyroscope and accelerometer can be identified. These identified anomalous changes are then matched to calibrated magnetic button movements to confirm that the vector change is similar. In particular, the calibrated magnetic button movement can be calculated from an average magnetic field shift of a number of presses and an expected delta function in the magnitude of the average shift depending on orientation. Then, by comparing the real world anomalous change with the expected value from the delta function, the magnetic button input is determined in real time. The delta function is non-spherical.

    [0036] The final vectors 37 and 32 can be saved as representing the filtered magnetic field of the Earth for future reference by the control processor 25. This filtered magnetic field is useful if another button is pressed while the first button remains pressed. Then, rather than determining a combination vector for both buttons, which can be complicated, the system can determine the vector shift for only the additional button using the final vectors 32 and 37 as a baseline.

    [0037] FIG. 5 illustrates the filtering process for two buttons using known magnetic field references 30 and 31, and known deflections corresponding to each button being pushed 34 and 39. Additional buttons and different configurations of buttons relative to the magnetometer can be provided with only a few additional calibration steps to determine each button's deflection vector. In addition, once the deflection vector for each button has been recorded, any field shifts that do not correspond to a recorded deflection or combination of deflections can be determined to be a rotation or movement of the endoscope housing or ignored as ambient magnetic fields.

    [0038] The detected deflections can be compared with known field shifts due to various buttons being pushed, or in the case of multiple buttons, compared with sums of known deflections. Alternatively, each deflection combination from two or more buttons being pressed and each deflection from individual buttons can be separately recorded and calibrated. Based on these calibrated vectors, the magnetic field shifts with no corresponding detection by the gyroscope or accelerometer of the IMU 22 can be assigned to specific buttons being pressed or filtered out.

    [0039] The system diagram in FIG. 6 shows the control unit 25 on the circuit board 20. The control signal wires 23 transmit the output of the control unit 25 to peripheral devices. In addition, the control unit 25 is connected to the IMU 22, which includes at least one gyroscope 41, at least one magnetometer 42, and at least one accelerometer 43 for measuring changes in the orientation of the endoscope. The control unit 25 is also connected to a graphics processor 44, which receives the recorded camera images and manipulates them for transmission to the user. This transmission from the endoscope can be wireless via antenna 46 or hardwired via wire 45.

    [0040] The vector determination process performed by the control unit is outlined in FIG. 7 with a simple case of a single field shift. If multiple buttons are pressed, or the field has already been corrected, additional steps are necessary as described above regarding FIG. 5. First, the control unit is calibrated in S501 to detect the default magnetic field strength of the Earth in a horizontal position of the endoscope. Then, the control unit 25 detects a shift from this calibrated vector at S502. The control unit then attempts to match the detected shift with stored shifts/vectors corresponding to specific buttons to determine if one or more buttons have been activated in S503.

    [0041] If one or more buttons have been pushed, then the control unit 25 generates a control signal corresponding to the button being pressed at S504. Finally, if after filtering for the button press, a field shift remains that is the result of an orientation change, the control unit calculates a corresponding control signal and transmits the calculated control signal to the appropriate peripheral device in S505.

    [0042] As noted previously, the detected field shifts can also be compared with a set of deflection vectors corresponding to actuation of specific buttons and button combinations. This type of filtering and detection is particularly useful in hysteresis to detect fields that are rapidly shifting due to actuation of separate buttons. The magnetometer is subject to outside field influences and requires automated recalibration when the system returns to a state where no buttons are actuated.

    [0043] In addition to the hysteresis provided for the detector, the rotation adjustment should also be tightly controlled by hysteresis so that the image displayed does not shift too much and cause dizziness in the user. Other controls, such as the button controls need not be so tightly controlled because they require active actuation. In contrast, the rotation of the endoscope may simply be the result of the user shifting position or the patient shifting position (e.g., breathing) and thus should be tightly controlled by hysteresis.

    [0044] The orientation tracking system of the control unit 25 is also applicable to an externally applied IMU attached to the endoscope housing 11. In addition, the orientation tracking is also applicable to button systems that are not magnet based. In particular, the hysteresis control of the rotation would be applicable if magnet-based buttons are not used. For these applications, less calibration steps would be required, but the field shift detection algorithms would remain the same for the control unit 25.

    [0045] The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.


    Claims

    1. A control interface and adjustment mechanism for an endoscope or exoscope, comprising:

    at least one button (10a, 10b, 10c, 10d) comprising:

    a touch surface; and

    a magnet disposed adjacent to the touch surface;

    an inertial measurement unit (22), including:

    a magnetometer (42) detecting ambient magnetic fields, a gyroscope (41), and at at least one accelerometer (43); and

    a control processor (25) connected to the inertial measurement unit (22), receiving signals from the magnetometer (42), and orientation signals from the gyroscope (41), and wherein the orientation signals are corrected based on the ambient magnetic fields detected by the magnetometer (42), and wherein the control processor (25) is connected to at least one peripheral component and controls the at least one peripheral component,

    wherein the control processor (25) filters received first field information from the magnetometer (42) to determine if the received first field information matches a specific stored button vector of at least one button vector stored in memory, and

    wherein if the received first field information matches the specific stored button vector, the at least one peripheral component is controlled based on the first field information received by the control processor (25),

    wherein the magnet of the at least one button (10a, 10b, 10c, 10d) is depressed when the touch surface is pressed by a user, the magnet being depressed such that the magnetometer (42) detects a magnetic field shift as part of the first field information, and

    wherein, if the first field information does not match the specific stored button vector, the first field information is ignored or interpreted as movement of the endoscope or exoscope.


     
    2. Control interface and adjustment mechanism according to claim 1, wherein the specific stored button vector is an average magnetic field shift for the at least one button (10a, 10b, 10c, 10d), and wherein the average magnetic field shift is mapped to the first field information by a delta function.
     
    3. Control interface and adjustment mechanism according to claim 2, wherein the average magnetic field shift is mapped to the first field information by the delta function based on orientation data received at the control processor (25) from the gyroscope (41) and/or the accelerometer (43).
     
    4. Control interface and adjustment mechanism according to any one of claims 1-3, wherein the specific stored button vector is an average magnetic field shift calculated from multiple button depressions detected when the magnetometer (42) is in a calibration position.
     
    5. Control interface and adjustment mechanism according to any one of claims 1-4, further comprising a second button (10a, 10b, 10c, 10d), wherein the at least one button (10a, 10b, 10c, 10d) and second button (10a, 10b, 10c, 10d) have corresponding specific stored button vectors.
     
    6. Control interface and adjustment mechanism according to claim 5, wherein, if the at least one button (10a, 10b, 10c, 10d) and second button (10a, 10b, 10c, 10d) are activated substantially simultaneously, the control processor (25) determines that the two buttons (10a, 10b, 10c, 10d) were pressed by matching a sum of the specific stored button vector for each button (10a, 10b, 10c, 10d) with the first field information.
     
    7. Control interface and adjustment mechanism according to any one of claims 1-6, wherein the at least one peripheral component includes: a camera of the endoscope or exoscope, an internal lighting system, an external lighting system, an image storage system, a CCD/CMOS sensor, a zoom lens, a zoom actuator, a focus lens, a focus actuator, a camera panning motor, an irrigation pump, and/or a moveable camera head.
     
    8. Control interface and adjustment mechanism according to any one of claims 1-7, wherein the at least one button (10a, 10b, 10c, 10d) is disposed entirely outside of a sealed housing (11) of the endoscope or exoscope.
     
    9. A method of controlling an endoscope or exoscope, comprising:

    receiving, at a control unit, orientation data from a magnetometer (42), from a gyroscope (41) and from an accelerometer (43);

    filtering the received orientation data based on past orientation data;

    matching the received orientation data in real time based on a delta function stored in memory, the delta function mapping a magnetic field shift to an expected magnetic field shift for a button (10a, 10b, 10c, 10d);

    signaling an input of the button (10a, 10b, 10c, 10d) to the control unit, if a detected magnetic field shift matches the expected magnetic field shift; and

    controlling a peripheral device based on the input of the button (10a, 10b, 10c, 10d),

    wherein a magnet of the button (10a, 10b, 10c, 10d) is depressed when a touch surface is pressed by a user, the magnet being depressed such that the magnetometer (42) detects the magnetic field shift, and

    wherein, if the magnetic field shift does not match the expected magnetic field shift for the button (10a, 10b, 10c, 10d), the magnetic field shift is ignored or interpreted as movement of the optical instrument.


     
    10. Method according to claim 9, wherein the peripheral device is a camera of the optical instrument, an internal lighting system, an external lighting system, an image storage system, a CCD/CMOS sensor, a zoom lens or zoom actuator, a focus lens or focus actuator, a camera panning motor, an irrigation pump, or a moveable camera head.
     
    11. An endoscope or exoscope comprising

    a sealed housing (11); and

    a control interface and adjustment mechanism according to any one of claims 1-8.


     
    12. Endoscope or exoscope according to claim 11, wherein the control interface and adjustment mechanism comprises:
    at least two buttons (10a, 10b, 10c, 10d), each of the at least two buttons (10a, 10b, 10c, 10d) comprising:

    a touch surface; and

    a magnet disposed adjacent to the touch surface;

    and wherein the at least one peripheral component is at least one endoscope or exoscope component.
     
    13. Endoscope or exoscope according to claim 12, wherein the specific stored button vector is an average magnetic field shift for one of the at least two buttons (10a, 10b, 10c, 10d), and wherein the average magnetic field shift is mapped to the first field information by a delta function based on orientation data.
     
    14. Endoscope or exoscope according to claim 12 or 13, wherein the at least two buttons (10a, 10b, 10c, 10d) are disposed entirely outside of the sealed housing (11).
     


    Ansprüche

    1. Steuerschnittstelle und Einstellmechanismus für ein Endoskop oder Exoskop, umfassend:

    mindestens eine Taste (10a, 10b, 10c, 10d), umfassend:

    eine Berührungsfläche; und

    ein Magnet, der an der Berührungsfläche angrenzend angeordnet ist;

    eine Trägheitsmesseinheit (22), umfassend:
    ein Magnetometer (42), das Magnetfelder erfasst, ein Gyroskop (41) und mindestens einen Beschleunigungsmesser (43); und

    einen Steuerprozessor (25), der mit der Trägheitsmesseinheit (22) verbunden ist und Signale von dem Magnetometer (42) und Ausrichtungssignale von dem Gyroskop (41) empfängt, und wobei die Ausrichtungssignale auf der Grundlage der durch das Magnetometer (42) erfassten Umgebungsmagnetfelder korrigiert werden, und wobei

    der Steuerprozessor (25) mit mindestens einer Peripheriekomponente verbunden ist und die mindestens eine Peripheriekomponente steuert,

    wobei der Steuerprozessor (25) vom Magnetometer (42) empfangene erste Feldinformation filtert, um zu bestimmen, ob die empfangene erste Feldinformation mit einem spezifischen gespeicherten Tastenvektor von mindestens einem im Speicher gespeicherten Tastenvektor übereinstimmt, und

    wobei, wenn die empfangene erste Feldinformation mit dem spezifischen gespeicherten Tastenvektor übereinstimmt, die mindestens eine periphere Komponente auf der Grundlage der ersten Feldinformation gesteuert wird, die von dem Steuerprozessor (25) empfangen wird,

    wobei der Magnet der mindestens einen Taste (10a, 10b, 10C, 10d) gedrückt wird, wenn die Berührungsfläche von einem Benutzer gedrückt wird, wobei der Magnet so gedrückt wird, dass das Magnetometer (42) eine Magnetfeldverschiebung als Teil der ersten Feldinformation erfasst, und

    wobei, wenn die erste Feldinformation nicht mit dem spezifischen gespeicherten Tastenvektor übereinstimmt, die erste Feldinformation ignoriert oder als Bewegung des Endoskops oder Exoskop interpretiert wird.


     
    2. Steuerschnittstelle und Einstellmechanismus nach Anspruch 1, wobei der spezifische gespeicherte Tastenvektor eine durchschnittliche Magnetfeldverschiebung für den mindestens einen Knopf (10a, 10b, 10c, 10d) ist, und wobei die durchschnittliche Magnetfeldverschiebung durch eine Delta-Funktion auf die erste Feldinformation abgebildet wird.
     
    3. Steuerschnittstelle und Einstellmechanismus nach Anspruch 2, wobei die durchschnittliche Magnetfeldverschiebung auf der Grundlage von Ausrichtungsdaten, die am Steuerprozessor (25) von dem Gyroskop (41) und/oder dem Beschleunigungsmesser (43) empfangen werden, durch die Delta-Funktion auf die erste Feldinformation abgebildet wird.
     
    4. Steuerschnittstelle und Einstellmechanismus nach einem der Ansprüche 1-3, wobei der spezifische gespeicherte Tastenvektor eine durchschnittliche Magnetfeldverschiebung ist, die aus mehreren Knopfdrücken berechnet wird, die erfasst werden, wenn sich das Magnetometer (42) in einer Kalibrierungsposition befindet.
     
    5. Steuerschnittstelle und Einstellmechanismus nach einem der Ansprüche 1-4, ferner umfassend eine zweite Taste (10a, 10b, 10c, 10d), wobei die mindestens eine Taste (10a, 10b, 10c, 10d) und die zweite Taste (10a, 10b, 10c, 10d) entsprechende spezifische gespeicherte Tastenvektoren aufweisen.
     
    6. Steuerschnittstelle und Einstellmechanismus nach Anspruch 5, wobei, wenn die mindestens eine Taste (10a, 10b, 10c, 10d) und die zweite Taste (10a, 10b, 10c, 10d) im Wesentlichen gleichzeitig aktiviert werden, der Steuerprozessor (25) bestimmt, dass die beiden Tasten (10a, 10b, 10c, 10d) gedrückt wurden, indem er eine Summe des spezifischen gespeicherten Tastenvektors für jede Taste (10a, 10b, 10c, 10d) mit der ersten Feldinformation abgleicht.
     
    7. Steuerschnittstelle und Einstellmechanismus nach einem der Ansprüche 1-6, wobei die mindestens eine periphere Komponente umfasst: eine Kamera des Endoskops oder Exoskops, ein internes Beleuchtungssystem, ein externes Beleuchtungssystem, ein Bildspeichersystem, einen CCD/CMOS-Sensor, ein Zoomobjektiv, einen Zoomaktuator, ein Fokusobjektiv, einen Fokusaktuator, einen Kameraschwenkmotor, eine Spülpumpe und/oder einen beweglichen Kamerakopf.
     
    8. Steuerschnittstelle und Einstellmechanismus nach einem der Ansprüche 1-7, wobei die mindestens eine Taste (10a, 10b, 10c, 10d) vollständig außerhalb eines dichten Gehäuses (11) des Endoskops oder Exoskops angeordnet ist.
     
    9. Verfahren zur Steuerung eines Endoskops oder Exoskops, umfassend:

    das Empfangen, an einer Steuereinheit, von Ausrichtungsdaten von einem Magnetometer (42), von einem Gyroskop (41) und von einem Beschleunigungsmesser (43);

    das Filtern der empfangenen Ausrichtungsdaten auf der Grundlage früherer Ausrichtungsdaten;

    den Abgleich der empfangenen Ausrichtungsdaten in Echtzeit auf der Grundlage einer im Speicher gespeicherten Delta-Funktion, wobei die Delta-Funktion eine Magnetfeldverschiebung auf eine erwartete Magnetfeldverschiebung für eine Taste (10a, 10b, 10c, 10d) abbildet;

    die Signalisierung einer Eingabe der Taste (10a, 10b, 10c, 10d) an die Steuereinheit, wenn eine erkannte Magnetfeldverschiebung mit der erwarteten Magnetfeldverschiebung übereinstimmt; und

    die Steuerung eines Peripheriegeräts auf der Grundlage der Tasteneingabe (10a, 10b, 10c, 10d),

    wobei ein Magnet der Taste (10a, 10b, 10c, 10d) niedergedrückt wird, wenn eine Berührungsfläche von einem Benutzer gedrückt wird, wobei der Magnet so niedergedrückt wird, dass das Magnetometer (42) die Magnetfeldverschiebung detektiert, und

    wobei, wenn die Magnetfeldverschiebung nicht mit der erwarteten Magnetfeldverschiebung für den Knopf (10a, 10b, 10c, 10d) übereinstimmt, die Magnetfeldverschiebung ignoriert oder als Bewegung des optischen Instruments interpretiert wird.


     
    10. Verfahren nach Anspruch 9, wobei das Peripheriegerät eine Kamera des optischen Instruments, ein internes Beleuchtungssystem, ein externes Beleuchtungssystem, ein Bildspeichersystem, ein CCD/CMOS-Sensor, ein Zoomobjektiv, ein Zoomaktuator, ein Fokusobjektiv, ein Fokusaktuator, ein Kameraschwenkmotor, eine Spülpumpe und/oder ein beweglicher Kamerakopf ist.
     
    11. Endoskop oder Exoskop, umfassend

    ein dichtes Gehäuse (11); und

    eine Steuerschnittstelle und einen Einstellmechanismus nach einem der Ansprüche 1-8.


     
    12. Endoskop oder Exoskop nach Anspruch 11,
    wobei die Steuerschnittstelle und der Einstellmechanismus Folgendes umfasst:
    mindestens zwei Tasten (10a, 10b, 10c, 10d), wobei jede der mindestens zwei Tasten (10a, 10b, 10c, 10d) Folgendes umfasst:

    eine Berührungsfläche; und

    ein Magnet, der an der Berührungsfläche angrenzend angeordnet ist;

    und wobei die mindestens eine periphere Komponente mindestens eine Endoskop- oder Exoskopkomponente ist.
     
    13. Endoskop oder Exoskop nach Anspruch 12, wobei der spezifische gespeicherte Knopfvektor eine durchschnittliche Magnetfeldverschiebung für einen der mindestens zwei Knöpfe (10a, 10b, 10c, 10d) ist, und wobei die durchschnittliche Magnetfeldverschiebung auf die erste Feldinformation durch eine Delta-Funktion auf der Grundlage von Ausrichtungsdaten abgebildet wird.
     
    14. Endoskop oder Exoskop nach Anspruch 12 oder 13, wobei die mindestens zwei Tasten (10a, 10b, 10c, 10d) vollständig außerhalb des dichten Gehäuses (11) angeordnet sind.
     


    Revendications

    1. Interface de commande et mécanisme de réglage pour un endoscope ou un exoscope, comprenant :

    au moins un bouton (10a, 10b, 10c, 10d) comprenant :

    une surface tactile ; et

    un aimant disposé de manière adjacente à la surface de contact ;

    une unité de mesure inertielle (22), comprenant :
    un magnétomètre (42) détectant les champs magnétiques, un gyroscope (41), et au moins un accéléromètre (43) ; et

    un processeur de commande (25) connecté à l'unité de mesure inertielle (22), recevant des signaux du magnétomètre (42), et des signaux d'orientation du gyroscope (41) et où les signaux d'orientation sont corrigés en se fondant sur les champs magnétiques ambiants détectés par le magnétomètre (42), et où le processeur de commande (25) est connecté à au moins un composant périphérique et commande ledit au moins un composant périphérique,

    où le processeur de commande (25) filtre les premières informations de champ reçues du magnétomètre (42) pour déterminer si les premières informations de champ reçues correspondent à un vecteur bouton spécifique stocké d'au moins un vecteur bouton stocké en mémoire, et

    où si la première information de champ reçue correspond au vecteur bouton spécifique stocké, le au moins un composant périphérique est commandé en se fondant sur la première information de champ reçue par le processeur de commande (25),

    où l'aimant d'au moins un bouton (10a, 10b, 10C, 10d) est enfoncé lorsque la surface tactile est pressée par un utilisateur, l'aimant étant enfoncé de telle sorte que le magnétomètre (42) détecte un décalage du champ magnétique dans le cadre de la première information de champ, et

    où, si la première information de champ ne correspond pas au vecteur de bouton spécifique stocké, la première information de champ est ignorée ou interprétée comme un mouvement de l'endoscope ou de l'exoscope.


     
    2. Interface de commande et mécanisme de réglage selon la revendication 1, où le vecteur de bouton spécifique stocké est un décalage de champ magnétique moyen pour le au moins un bouton (10a, 10b, 10c, 10d), et où le décalage de champ magnétique moyen est mis en correspondance avec la première information de champ par une fonction delta.
     
    3. Interface de commande et mécanisme de réglage selon la revendication 2, où le décalage moyen du champ magnétique est mis en correspondance avec la première information de champ par la fonction delta fondée sur les données d'orientation reçues au niveau du processeur de commande (25) en provenance du gyroscope (41) et/ou de l'accéléromètre (43).
     
    4. Interface de commande et mécanisme de réglage selon l'une quelconque des revendications 1-3, où le vecteur bouton spécifique stocké est un décalage de champ magnétique moyen calculé à partir de multiples dépressions de bouton détectées lorsque le magnétomètre (42) est en position d'étalonnage.
     
    5. Interface de commande et mécanisme de réglage selon l'une quelconque des revendications 1 à 4, comprenant en outre un second bouton (10a, 10b, 10c, 10d), où le au moins un bouton (10a, 10b, 10c, 10d) et le second bouton (10a, 10b, 10c, 10d) ont des vecteurs boutons stockés spécifiques correspondants.
     
    6. Interface de commande et mécanisme de réglage selon la revendication 5, où, si le au moins un bouton (10a, 10b, 10c, 10d) et le second bouton (10a, 10b, 10c, 10d) sont activés sensiblement simultanément, le processeur de commande (25) détermine que les deux boutons (10a, 10b, 10c, 10d) ont été enfoncés en mettant en correspondance une somme du vecteur de bouton spécifique stocké pour chaque bouton (10a, 10b, 10c, 10d) avec la première information de champ.
     
    7. Interface de commande et mécanisme de réglage selon l'une quelconque des revendications 1 à 6, où le au moins un composant périphérique comprend : une caméra de l'endoscope ou de l'exoscope, un système d'éclairage interne, un système d'éclairage externe, un système de stockage d'images, un capteur CCD/CMOS, un objectif zoom, un actionneur de zoom, un objectif de mise au point, un actionneur de mise au point, un moteur de panoramique de la caméra, une pompe d'irrigation et/ou une tête de caméra mobile.
     
    8. Interface de commande et mécanisme de réglage selon l'une quelconque des revendications 1-7, où le au moins un bouton (10a, 10b, 10c, 10d) est disposé entièrement à l'extérieur d'un boîtier étanche (11) de l'endoscope ou de l'exoscope.
     
    9. Procédé de commande d'un endoscope ou d'un exoscope, comprenant :

    la réception, au niveau d'une unité de commande, de données d'orientation provenant d'un magnétomètre (42), d'un gyroscope (41) et d'un accéléromètre (43) ;

    le filtrage des données d'orientation reçues en se fondant sur des données d'orientation antérieures ;

    la mise en correspondance des données d'orientation reçues en temps réel en se fondant sur une fonction delta stockée en mémoire, la fonction delta mettant en correspondance un décalage de champ magnétique avec un décalage de champ magnétique attendu pour un bouton (10a, 10b, 10c, 10d) ;

    la signalisation d'une entrée du bouton (10a, 10b, 10c, 10d) à l'unité de commande, si un décalage du champ magnétique détecté correspond au décalage du champ magnétique prévu ; et

    la commande d'un appareil périphérique en se fondant sur l'entrée du bouton (10a, 10b, 10c, 10d),

    où un aimant du bouton (10a, 10b, 10c, 10d) est enfoncé lorsqu'une surface tactile est pressée par un utilisateur, l'aimant étant enfoncé de telle sorte que le magnétomètre (42) détecte le décalage du champ magnétique, et

    où, si le décalage du champ magnétique ne correspond pas au décalage du champ magnétique attendu pour le bouton (10a, 10b, 10c, 10d), le décalage du champ magnétique est ignoré ou interprété comme un mouvement de l'instrument optique.


     
    10. Procédé selon la revendication 9, où le dispositif périphérique est une caméra de l'instrument optique, un système d'éclairage interne, un système d'éclairage externe, un système de stockage d'images, un capteur CCD/CMOS, un objectif de zoom ou un actionneur de zoom, un objectif de mise au point ou un actionneur de mise au point, un moteur de panoramique de la caméra, une pompe d'irrigation ou une tête de caméra mobile.
     
    11. Endoscope ou exoscope comprenant :

    un boîtier étanche (11) ; et

    une interface de commande et un mécanisme de réglage selon l'une quelconque des revendications 1-8.


     
    12. Endoscope ou exoscope selon la revendication 11,

    où l'interface de commande et le mécanisme de réglage comprennent :

    au moins deux boutons (10a, 10b, 10c, 10d), chacun des au moins deux boutons (10a, 10b, 10c, 10d) comprenant

    une surface tactile ; et

    un aimant disposé de manière adjacente à la surface tactile ;

    et où l'un au moins des composants périphériques est au moins un composant d'endoscope ou d'exoscope.


     
    13. Endoscope ou exoscope selon la revendication 12,
    où le vecteur bouton spécifique stocké est un décalage de champ magnétique moyen pour l'un des au moins deux boutons (10a, 10b, 10c, 10d), et où le décalage de champ magnétique moyen est mis en correspondance avec la première information de champ par une fonction delta en se fondant sur des données d'orientation.
     
    14. Endoscope ou exoscope selon la revendication 12 ou 13, où les au moins deux boutons (10a, 10b, 10c, 10d) sont disposés entièrement à l'extérieur du boîtier étanche (11).
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description