(19)
(11)EP 3 431 215 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.09.2020 Bulletin 2020/37

(21)Application number: 18175115.7

(22)Date of filing:  30.05.2018
(51)International Patent Classification (IPC): 
B23K 9/173(2006.01)
B23K 9/29(2006.01)
G09B 9/00(2006.01)
G09B 19/24(2006.01)
B23K 9/26(2006.01)
B23K 9/32(2006.01)
G09B 19/00(2006.01)
G09B 25/02(2006.01)

(54)

TIP ASSEMBLY TO SUPPORT SIMULATED SHIELDED METAL ARC WELDING WITH A SPRING-LOADED LOCKABLE ELONGATED ELECTRODE TIP

SPITZENANORDNUNGEN ZUR UNTERSTÜTZUNG VON SIMULIERTEM METALLLICHTBOGENSCHWEISSEN MIT SCHUTZGAS MIT EINER SCHLIESSSBAREN FEDERBELASTETEN ELEKTRODENSPITZE

ENSEMBLE POUR SIMULER LE SOUDAGE À L'ARC PROTEGE PAR GAZ DE METAUX AVEC UNE POINTE ELECTRODE MONTEE SUR RESSORT ET POUVANT ETRE BLOQUEE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 01.06.2017 US 201762513584 P
06.09.2017 US 201715696495

(43)Date of publication of application:
23.01.2019 Bulletin 2019/04

(73)Proprietor: Lincoln Global, Inc.
Santa Fe Springs, CA 90670 (US)

(72)Inventors:
  • CAPONI, Darren P.
    North Ridgeville, OH 44039 (US)
  • KOSHAR, Andrew S.
    Willoughby, OH 44094 (US)
  • CHANTRY, Bruce John
    Solon, OH 44139 (US)

(74)Representative: Grosse Schumacher Knauer von Hirschhausen 
Patent- und Rechtsanwälte Frühlingstrasse 43A
45133 Essen
45133 Essen (DE)


(56)References cited: : 
CN-U- 203 572 567
GB-A- 528 529
JP-U- S6 149 687
US-A- 2 333 192
US-A1- 2014 253 461
CN-U- 203 604 794
JP-U- S5 954 171
US-A- 1 286 529
US-A1- 2010 062 406
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD



    [0001] The invention relates to a tip assembly to support simulation of a shielded metal arc welding operation according to the preamble of claim 1 (see for example US 2 333 192), to a mock welding tool having such tip assembly, and to methods of assembling such tip assembly as defined in claims 11 and 14-15 respectively. Embodiments of the present invention thus relate to systems, apparatus, and methods associated with simulated welding. More specifically, embodiments of the present invention relate to systems, apparatus, and methods to support simulation of a shielded metal arc welding (SMAW) operation via a spring-loaded tip assembly.

    BACKGROUND



    [0002] In certain weld joints (e.g., SMAW pipe welding), the process of welding requires the user to feel the welding joint of the workpiece via the electrode being used. There is an ideal pressure that is to be applied to the weld joint to find the proper arc distance. Current professional welders feed the electrode into the joint beyond first contact to obtain proper arc length and weld deposition rate. Simulating a SMAW pipe welding process for training welding students can be difficult. With today's simulated/virtual welding training systems, an artificial electrode tip provided as part of a mock SMAW tool tends to be rigid. This results in an unrealistic simulation of the SMAW operation. For example, electrode slippage can occur at the welding coupon, there is an absence of a pressure-based welding technique, and there is a lack of proper disposition. A way to more realistically simulate a SMAW pipe welding process is desired.

    SUMMARY



    [0003] Embodiments of the present invention include spring-loaded tip assemblies to support simulation of a shielded metal arc welding (SMAW) operation for training student welders. The spring-loaded tip assemblies include an elongate mock electrode tip that mitigates slippage at the welding coupon and provides a pressure-based tactile feedback to the student welder.

    [0004] A tip assembly to support simulation of a shielded metal arc welding (SMAW) operation according to the present invention is defined in claim 1. The tip assembly includes an elongate mock electrode tip having a proximal end, a distal end, and a locking sleeve near the proximal end. The tip assembly also includes a compression spring having a first end and a second end. The first end is configured to interface with the proximal end of the electrode tip. The tip assembly further includes a locking cup configured to encompass the compression spring and the locking sleeve of the electrode tip. The tip assembly also includes a housing having an orifice. The housing is configured to receive the electrode tip, the compression spring, and the locking cup into the housing by accepting the distal end of the electrode tip through the orifice of the housing up to the locking sleeve. The result is that the compression spring, the locking cup, and the locking sleeve reside in an interior of the housing with a majority of the electrode tip protruding out of the housing. The locking sleeve and the locking cup are configured to be rotated with respect to each other to allow changing between a locked position and an unlocked position. In one embodiment, the locked position holds the compression spring in a fully compressed state within the locking cup while holding the electrode tip in an immovable state with respect to the locking cup and the housing, for use in simulated shielded metal arc welding of a plate welding coupon. The unlocked position puts the compression spring in a free state. The free state allows the compression spring to compress as the distal end of the electrode tip is pushed toward the housing. The free state also allows the compression spring to decompress to push the distal end of the electrode tip away from the housing. The result is that a tactile feedback is provided to a student welder to simulate a feel of performing an actual shielded metal arc welding operation on a pipe as the electrode tip engages a pipe welding coupon during a simulated shielded metal arc welding operation. In one embodiment, the housing is configured to removably attach to a mock welding tool for use in a SMAW operation. In one embodiment, the distal end of the electrode tip is made of a material configured to mitigate slippage between the electrode tip and a welding coupon during a simulated SMAW operation. For example, at least a portion of the electrode tip may be made of polyoxymethylene. In one embodiment, at least a portion of the compression spring is made of polyetherimide. The simulated arc characteristic may include, for example, an arc voltage, an arc current, an arc length, or an extinguished arc. In one embodiment, the sleeve and the cup are configured to be rotated with respect to each other to allow changing between a locked position and an unlocked position. In one embodiment, the locked position holds the compression spring in a fully compressed state within the locking cup while holding the electrode tip in an immovable state with respect to the locking cup and the housing, for use in simulated shielded metal arc welding of a plate welding coupon. The unlocked position puts the compression spring in a free state. The free state allows the compression spring to compress as the distal end of the electrode tip is pushed toward the housing. The free state also allows the compression spring to decompress to push the distal end of the electrode tip away from the housing. The result is that a tactile feedback is provided to a student welder to simulate a feel of performing an actual shielded metal arc welding operation on a pipe as the electrode tip engages a pipe welding coupon during a simulated shielded metal arc welding operation.

    [0005] A mock welding tool to support simulation of a SMAW operation according to the present invention, with such tip assembly, is defined in claim 11. This tool includes a handle configured to be held by a student welder and a trigger operatively connected to the handle and configured to indicate an active weld state to a welding simulator. The mock welding tool also includes a mock stick electrode having a tip assembly. The tip assembly includes an elongate mock electrode tip having a proximal end, a distal end, and a locking sleeve near the proximal end. The tip assembly also includes a compression spring having a first end and a second end. The first end is configured to interface with the proximal end of the electrode tip. The tip assembly further includes a locking cup configured to encompass the compression spring and the locking sleeve of the electrode tip. The tip assembly also includes a housing having an orifice. The housing is configured to receive the electrode tip, the compression spring, and the locking cup into the housing by accepting the distal end of the electrode tip through the orifice of the housing up to the locking sleeve. The result is that the compression spring, the locking cup, and the locking sleeve reside in an interior of the housing with a majority of the electrode tip protruding out of the housing. The locking sleeve and the locking cup are configured to be rotated with respect to each other to allow changing between a locked position and an unlocked position. In one embodiment, the locked position holds the compression spring in a fully compressed state within the locking cup while holding the electrode tip in an immovable state with respect to the locking cup and the housing, for use in simulated shielded metal arc welding of a plate welding coupon. The unlocked position puts the compression spring in a free state. The free state allows the compression spring to compress as the distal end of the electrode tip is pushed toward the housing. The free state also allows the compression spring to decompress to push the distal end of the electrode tip away from the housing. The result is that a tactile feedback is provided to a student welder to simulate a feel of performing an actual shielded metal arc welding operation on a pipe as the electrode tip engages a pipe welding coupon during a simulated shielded metal arc welding operation. In one embodiment, the mock welding tool includes at least one sensor to aid the welding simulator in tracking the mock welding tool in at least position and orientation in three-dimensional space. In one embodiment, the mock welding tool includes an actuator assembly configured to retract the mock stick electrode toward the student welder, in response to the student welder activating the trigger, to simulate consumption of a real stick electrode. In one embodiment, the mock welding tool includes a communication module configured to communicate with the welding simulator. Communication may be wireless or via a cable connected between the mock welding tool and the welding simulator.

    [0006] Numerous aspects of the general inventive concepts will become readily apparent from the following detailed description of exemplary embodiments, from the claims, and from the accompanying drawings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0007] The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate various embodiments of the disclosure. It will be appreciated that the illustrated element boundaries (e.g., boxes, groups of boxes, or other shapes) in the figures represent one embodiment of boundaries. In some embodiments, one element may be designed as multiple elements or that multiple elements may be designed as one element. In some embodiments, an element shown as an internal component of another element may be implemented as an external component and vice versa. Furthermore, elements may not be drawn to scale.

    FIG. 1 illustrates an exploded view of a first embodiment of a spring-loaded tip assembly to support a simulated SMAW operation;

    FIG. 2 illustrates a first assembled view of the embodiment of FIG. 1;

    FIG. 3 illustrates a second assembled view of the embodiment of FIG. 1;

    FIG. 4 illustrates a locked configuration of a portion of an assembled embodiment of the spring-loaded tip assembly of FIG. 1 to FIG. 3;

    FIG. 5 illustrates an un-locked configuration of a portion of an assembled embodiment of the spring-loaded tip assembly of FIG. 1 to FIG. 3;

    FIG. 6 illustrates a cross-sectional view of the assembled embodiment of the spring-loaded tip assembly of FIG. 1 to FIG. 3;

    FIG. 7 illustrates an exploded view of a second embodiment of a spring-loaded tip assembly to support a simulated SMAW operation;

    FIG. 8 illustrates a first view of an embodiment of a mock welding tool having the spring-loaded tip assembly of FIG. 1 to FIG. 3;

    FIG. 9 illustrates a second view of the mock welding tool of FIG. 8;

    FIG. 10 illustrates an embodiment of a pipe welding coupon used to support a simulated SMAW operation;

    FIG. 11 illustrates one embodiment of the mock welding tool of FIG. 8 and FIG. 9 in relation to the pipe welding coupon of FIG. 10;

    FIG. 12 illustrates an example of a student welder using the mock welding tool of FIG. 8 and FIG. 9 on the pipe welding coupon of Fig. 10 during a simulated SMAW operation as supported by a welding simulator;

    FIG. 13 illustrates a block diagram of an embodiment of a training welding system having the welding simulator of FIG. 12;

    FIG. 14 illustrates a flowchart of a first embodiment of a method to assemble a spring-loaded tip assembly; and

    FIG. 15 illustrates a flowchart of a second embodiment of a method to assemble a spring-loaded tip assembly.


    DETAILED DESCRIPTION



    [0008] Embodiments of systems, apparatus, and methods to support simulation of a shielded metal arc welding (SMAW) operation via a spring-loaded tip assembly are disclosed. In one embodiment, a welding simulator is provided which includes a mock welding tool having a tip assembly. The tip assembly includes an elongate mock electrode tip having a proximal end, a distal end, and a locking sleeve near the proximal end. A compression spring is configured to interface with the proximal end of the electrode tip. A locking cup is configured to encompass the compression spring and the locking sleeve. A housing, having an orifice, is configured to receive the electrode tip, the compression spring, and the locking cup into an interior of the housing by accepting the distal end of the electrode tip through the orifice up to the locking sleeve. The locking sleeve and the locking cup are configured to be rotated with respect to each other to allow changing between a locked position and an unlocked position.

    [0009] The examples and figures herein are illustrative only and are not meant to limit the subject invention, which is measured by the scope and spirit of the claims. Referring now to the drawings, wherein the showings are for the purpose of illustrating exemplary embodiments of the subject invention only and not for the purpose of limiting same, FIG. 1 illustrates an exploded view of a first embodiment of a spring-loaded tip assembly 100 to support a simulated SMAW operation.

    [0010] Referring to FIG. 1, the tip assembly 100 includes an elongate mock electrode tip 110. The electrode tip 110 has a proximal end 112, a distal end 114, and a locking sleeve 116 near the proximal end 112. The tip assembly 100 also includes a compression spring 120 having a first end 122 and a second end 124. The first end 122 is configured to interface with the proximal end 112 of the electrode tip 110. For example, as shown in FIG. 1, a male/female type of interface is provided. The tip assembly 100 includes a locking cup 130 configured to encompass the compression spring 120 and the locking sleeve 116 of the electrode tip 110.

    [0011] The tip assembly 100 includes a housing 140 having an orifice 142. The housing 140 is configured to receive the electrode tip 110, the compression spring 120, and the locking cup 130 into an interior of the housing 140 by accepting the distal end 114 of the electrode tip 110 through the orifice 142 up to the locking sleeve 116. With the electrode tip 110, the compression spring 120, and the locking cup 130 assembled within the interior of the housing 140, the majority of the electrode tip 110 protrudes from the housing 140 out of the orifice 142, as shown in FIG. 2 and FIG. 3. FIG. 2 illustrates a first assembled view of the embodiment of FIG. 1 and FIG. 3 illustrates a second assembled view of the embodiment of FIG. 1.

    [0012] In accordance with one embodiment, the locking sleeve 116 and the locking cup 130 are configured to be rotated with respect to each other to allow changing between a locked position and an unlocked position. FIG. 4 illustrates a locked configuration 400 of a portion of an assembled embodiment of the spring-loaded tip assembly 100 of FIG. 1 to FIG. 3, showing the electrode tip 110 and the locking cup 130 in a locked position. FIG. 5 illustrates an un-locked configuration 500 of a portion of an assembled embodiment of the spring-loaded tip assembly 100 of FIG. 1 to FIG. 3, showing the electrode tip 110 and the locking cup 130 in an unlocked position.

    [0013] In FIG. 4, the compression spring 120 is in the locked position and is not seen in FIG. 4 because it is compressed and entirely encompassed by the locking cup 130 and the locking sleeve 116. In one embodiment, the compression spring 120 is in a fully compressed state in the locked position and the electrode tip 110 is in an immovable state (is locked) with respect to the locking cup 130 and the housing 140. To accomplish the locked position, in one embodiment, a user would push the electrode tip 110 into the housing 140 as far as the electrode tip 110 will go, and then rotate the electrode tip 110 with respect to the locking cup 130. As can be seen in FIG. 4, a portion of the locking sleeve 116 engages with a slot of the locking cup 130 to put the tip assembly 100 in the locked position. Other equivalent locking configurations are possible as well, in accordance with other embodiments. In this manner, the locking position is provided to support a simulated SMAW plate welding operation.

    [0014] In FIG. 5, the compression spring 120 is in the unlocked position which puts the compression spring 120 in a free state. As can be seen in Fig. 5, the locking sleeve 116 is no longer engaged with the slot of the locking cup 130. The free state allows the compression spring 120 to compress as the distal end 114 of the electrode tip 110 is pushed toward the housing 140 (e.g., as a student welder pushes the distal end 114 of the electrode tip 110 into the joint of a pipe welding coupon during a simulated SMAW pipe welding operation via a mock welding tool having the tip assembly 100 attached thereto). The free state also allows the compression spring 120 to decompress to push the distal end 114 of the electrode tip 110 away from the housing 140 (e.g. as the student welder pulls the mock welding tool, having the tip assembly 100 attached thereto, away from the joint of the pipe welding coupon during the simulated SMAW pipe welding operation). In this manner, a tactile feedback is provided to the student welder to simulate a feel of performing an actual SMAW operation on a pipe as the electrode tip 110 engages the pipe welding coupon during the simulated SMAW operation.

    [0015] FIG. 6 illustrates a cross-sectional view of the assembled embodiment of the spring-loaded tip assembly 100 of FIG. 1 to FIG. 3. As seen in FIG. 6, the housing 140 includes an attachable portion 600 which allows the tip assembly 100 to be attached to and removed from a mock welding tool as discussed later herein. The attachable portion 600 of FIG. 6 is in the form of a clip-on or snap-on configuration. Other equivalent attachable portion configurations are possible as well, in accordance with other embodiments.

    [0016] The electrode tip 110 is made of a material configured to mitigate slippage between the electrode tip 110 and a welding coupon during a simulated SMAW operation. For example, in one embodiment, at least the distal end 114 of the electrode tip 110 is made of a polyoxymethylene material. The polyoxymethylene material mitigates slippage as desired. In accordance with one embodiment, at least a portion of the compression spring 120 is made of a polyetherimide material. The polyetherimide material provides desired compression spring characteristics for applications to simulated SMAW operations. Other equivalent materials may be possible as well, in accordance with other embodiments.

    [0017] FIG. 7 illustrates an exploded view of a second embodiment of a spring-loaded tip assembly 700 to support a simulated SMAW operation. The tip assembly 700 of FIG. 7 is similar to the tip assembly 100 of the previous figures except that the tip assembly 700 further includes a pressure sensor transducer 710. The pressure sensor transducer 710 is configured to interface with the second end 121 of the compression spring 120 to sense an amount of compression of the compression spring 120 and to generate a signal indicating the amount of compression of the compression spring 120. In accordance with one embodiment, the pressure sensor transducer 710 uses piezoelectric technology. In other embodiments, the pressure sensor transducer 710 may use other types of sensor and transducer technology. The cup 130 is configured to encompass the pressure sensor transducer 710, the compression spring 120, and the sleeve 116 of the electrode tip 110. The housing 140 is configured to receive the electrode tip 110, the compression spring 120, the pressure sensor transducer 710, and the cup 130 into an interior of the housing in a similar manner to that of FIG. 1 to Fig. 3.

    [0018] In one embodiment, the cup 130 and the sleeve 116 of the tip assembly 700 are a locking cup and a locking sleeve similar to that of FIG. 1 to FIG. 3. However, in an alternative embodiment, the cup 130 and the sleeve 116 of the tip assembly 700 do not provide the ability to change between a locked position and an unlocked position as described previously herein. Instead, the electrode tip 110 is always unlocked and in the free state (described previously herein) to support a simulated SMAW pipe welding operation.

    [0019] The signal generated by the pressure sensor transducer 710 to indicate the amount of compression of the compression spring 120 is representative of at least one simulated arc characteristic, in accordance with one embodiment. The simulated arc characteristic may be an arc voltage, an arc current, an arc length (arc distance), or an extinguished arc. The signal may be provided (wired or wirelessly) to a welding simulator which is configured to correlate the signal to at least one arc characteristic and generate a response based on the correlation as discussed later herein. The signal may be an analog signal and/or a digital signal, in accordance with various embodiments.

    [0020] FIG. 8 illustrates a first view of an embodiment of a mock welding tool 800 having the spring-loaded tip assembly 100 of FIG. 1 or the spring-loaded tip assembly 700 of FIG. 7. FIG. 9 illustrates a second view of a portion of the mock welding tool 800 of FIG. 8. The mock welding tool 800 includes a handle 810 configured to be held by a student welder. The mock welding tool 800 also includes a trigger 820 operatively connected to the handle 810 and configured to indicate an active weld state to a welding simulator. For example, in one embodiment, when a student welder presses the trigger 820, an electrical signal is sent from the mock welding tool 800 to a welding simulator, either wired or wirelessly, to activate a simulated (e.g., virtual reality) welding operation. A welding simulator will be discussed in more detail later herein. The handle 810 and the trigger 820 may be configured for a right-handed student welder in one embodiment, and for a left-handed student welder in another embodiment.

    [0021] The mock welding tool 800 also includes a mock stick electrode 830 having a spring-loaded tip assembly 100 or 700 attached to a portion thereof. The tip assembly 100 or 700 is as previously described herein, in accordance with various embodiments, and attaches (and is removable) via the attachable portion 600 of the tip assembly 100 or 700 (e.g., also see FIG. 6 and FIG. 7). The attachable portion 600 is configured to clip or snap onto the mock welding tool 800, in accordance with one embodiment. In other embodiments, the attachable portion may be configured to twist onto or slide and lock onto the mock welding tool. Other attachable embodiments are possible as well. Furthermore, in one embodiment, the tip assembly 100 or 700 is configured as an adapter that connects to the mock welding tool 800. The mock welding tool 800 may also support the attachment of other adapter tool configurations for simulation of other types of welding or cutting, for example.

    [0022] The mock welding tool 800 includes an actuator assembly 840 configured to retract or withdraw the mock stick electrode 830 toward the student welder in response to the student welder activating (e.g., pressing or pulling) the trigger 820. The retracting or withdrawing of the mock stick electrode 830 simulates consumption of a real stick electrode during a SMAW operation. In accordance with one embodiment, the actuator assembly 840 includes an electric motor.

    [0023] In one embodiment, the mock welding tool 800 includes at least one sensor 850 to aid a welding simulator in tracking the mock welding tool 800 in at least position and orientation in three-dimensional space. The sensor and tracking technology may include one or more of, for example, accelerometers, gyros, magnets, conductive coils, lasers, ultrasonics, radio frequency devices, and scanning systems, in accordance with certain embodiments. An example of a welding simulator with spatial tracking capability is discussed in U.S. Patent No. 8,915,740 which is incorporated herein by reference in its entirety.

    [0024] In one embodiment, the mock welding tool 800 includes a communication module 860 configured to communicate with a welding simulator. Communication between the mock welding tool 800 and the welding simulator may take place either wirelessly (e.g., via radio frequency or infrared) or via wired means (e.g., via an electrical cable), in accordance with various embodiments. The communication module 860 may facilitate communication of the electrical signal, produced when the trigger 820 is activated, from the mock welding tool 800 to the welding simulator. The communication module 860 may also facilitate communication of sensor signals produced by the sensor 850 (indicating position and orientation of the mock welding tool 800) from the mock welding tool 800 to the welding simulator. In one embodiment, the communication module 860 may facilitate communication of warning and alert signals from the welding simulator to the mock welding tool 800. For example, the mock welding tool 800 may include light emitting diodes (LEDs) and/or sound-producing transducers to warn and alert a welding student in response to the warning and alert signals.

    [0025] FIG. 10 illustrates an embodiment of a pipe welding coupon 1000 used to support a simulated SMAW pipe welding operation. The pipe welding coupon 1000 includes a joint 1010 that circumscribes the coupon 1000. FIG. 11 illustrates one embodiment of the mock welding tool 800 of FIG. 8 and FIG. 9 in relation to the pipe welding coupon 1000 of FIG. 10 to simulate welding of the joint 1010 as part of a simulated SMAW pipe welding operation. The spring-loaded tip assembly of the mock welding tool 800 mitigates slippage at the welding coupon and provides a pressure-based tactile feedback to the student welder.

    [0026] FIG. 12 illustrates an example of a student welder 1100 using the mock welding tool 800 of FIG. 8 and FIG. 9 on the pipe welding coupon 1000 of Fig. 10 during a simulated SMAW operation as supported by a welding simulator 1200. As shown in FIG. 12, the pipe welding coupon 1000 is supported by a welding stand 1110 which holds the pipe welding coupon in a desired position for the student welder 1100. In FIG. 12, the student welder 1100 is wearing a virtual reality welding helmet or face mounted display device (FMDD) 1120 which, along with the mock welding tool 800, communicatively interfaces to the welding simulator 1200. In certain embodiments, the welding simulator 1200 provides an augmented reality and/or a virtual reality environment to the student welder which can be viewed by the student welder 1100 on display devices within the FMDD 1120 as the student welder 1100 uses the mock welding tool 800 to practice simulated SMAW pipe welding on the pipe welding coupon 1000. Again, the spring-loaded tip assembly of the mock welding tool 800 provides a pressure-based tactile feedback to the student welder 1100 to simulate a feel of performing an actual shielded metal arc welding operation on a pipe as the electrode tip engages the pipe welding coupon 1000 during a simulated shielded metal arc welding operation.

    [0027] FIG. 13 illustrates a block diagram of an embodiment of a training welding system 1300 which includes the welding simulator 1200, the welding coupon 1000, the welding table/stand 1110, the FMDD 1120, and the mock welding tool 800 of FIG. 12. The welding simulator 1200 includes a programmable processor-based subsystem (PPS) 1210, a spatial tracker (ST) 1220, a welding user interface (WUI) 1230, and an observer display device (ODD) 1240. A detailed description of embodiments of the PPS 1210, the ST 1220, the WUI 1230, the ODD 1240 (as well as the FMDD 1120, the welding coupon 1000, and the welding table/stand 1110) can be found in U.S. Patent No. 8,915,740 which is incorporated herein by reference in its entirety. It is noted that reference numerals that are different from those used herein may be used in U.S. Patent No. 8,915,740 for the corresponding components.

    [0028] As discussed previously herein, the signal generated by the pressure sensor transducer 710 to indicate the amount of compression of the compression spring 120 is representative of at least one simulated arc characteristic, in accordance with one embodiment. The simulated arc characteristic may be, for example, an arc voltage, an arc current, an arc length (arc distance), or an extinguished arc. The signal may be provided (wired or wirelessly) to the welding simulator 1200 which is configured to correlate the signal to at least one arc characteristic and generate a response based on the correlation. The signal may be an analog signal and/or a digital signal, in accordance with various embodiments.

    [0029] For example, the signal may be correlated to an "arc extinguish" characteristic, indicating that the electrode tip 110 has been pushed too far into the joint 1010 of the pipe welding coupon 1000 and that, in the real world, the arc would have been extinguished as a result. As another example, the signal may be correlated to an "arc distance" characteristic, indicating that the arc distance is too short or too long and that the student welder should adjust the position of the mock welding tool 800 with respect to the joint 1010 in an attempt to achieve a proper arc distance. The welding simulator 1200 can provide various alerts and warnings to the student welder based on such arc characteristics, in accordance with one embodiment. Also, the welding simulator 1200 can apply a penalty to a score of a student welder when the student welder goes "out of bounds" with respect to various arc characteristics.

    [0030] FIG. 14 illustrates a flowchart of a first embodiment of a method 1400 to assemble a spring-loaded tip assembly 100. At block 1410 of FIG. 14, interface a first end of a compression spring with a proximal end of an elongate mock electrode tip having a locking sleeve near the proximal end. At block 1420, encompass the compression spring and at least the locking sleeve of the mock electrode tip with a locking cup. At block 1430, insert the electrode tip, the compression spring, and the locking cup (as interfaced and encompassed) into a housing having an orifice such that the compression spring, the locking cup, and the locking sleeve reside in an interior of the housing with a majority of the mock electrode tip protruding out of the housing through the orifice. The blocks 1410-1430 may be performed in the order given or in an alternate order which results in the same final assembled configuration of the spring-loaded tip assembly 100.

    [0031] FIG. 15 illustrates a flowchart of a second embodiment of a method 1500 to assemble a spring-loaded tip assembly 700. At block 1510, interface a first end of a compression spring with a proximal end of an elongate mock electrode tip having a locking sleeve near the proximal end. At block 1520, interface a pressure sensor transducer with a second end of the compression spring. At block 1530, encompass the pressure sensor transducer, the compression spring, and at least the locking sleeve of the mock electrode tip with a locking cup. At block 1540, insert the electrode tip, the compression spring, the pressure sensor transducer, and the locking cup (as interfaced and encompassed) into a housing having an orifice such the compression spring, the pressure sensor transducer, the locking cup, and the locking sleeve reside in an interior of the housing with a majority of the electrode tip protruding out of the housing through the orifice. The blocks 1510-1540 may be performed in the order given or in an alternate order which results in the same final assembled configuration of the spring-loaded tip assembly 700.

    [0032] While the disclosed embodiments have been illustrated and described in considerable detail, it is not the intention to restrict or in any way limit the scope of the appended claims to such detail. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the various aspects of the subject matter. Therefore, the disclosure is not limited to the specific details or illustrative examples shown and described. Thus, this disclosure is intended to embrace alterations, modifications, and variations that fall within the scope of the appended claims. The above description of specific embodiments has been given by way of example. From the disclosure given, those skilled in the art will not only understand the general inventive concepts and attendant advantages, but will also find apparent various changes and modifications to the structures and methods disclosed. It is sought, therefore, to cover all such changes and modifications as fall within the spirit and scope of the general inventive concepts, as defined by the appended claims, and equivalents thereof.
    REFERENCE NUMERALS
    100 tip assembly 1000 pipe welding coupon
    110 mock electrode tip 1010 joint
    112 proximal end 1100 student welder
    114 distal end 1110 welding table/stand
    116 locking sleeve 1120 face mounted display device (FMDD)
    120 compression spring  
    122 first end 1200 welding simulator
    124 second end 1210 processor-based subsystem (PPS)
    130 locking cup  
    140 housing 1220 spatial tracker (ST)
    142 orifice 1230 welding user interface (WUI)
    400 locked configuration 1240 observer display device (ODD)
    500 un-locked configuration 1300 training welding system
    600 attachable portion 1400 method
    700 tip assembly 1410 block
    710 transducer 1420 block
    800 mock welding tool 1430 block
    810 handle 1500 method
    820 trigger 1510 block
    830 mock stick electrode 1520 block
    840 actuator assembly 1530 block
    850 sensor 1540 block
    860 communication module    



    Claims

    1. A tip assembly (100) to support simulation of a shielded metal arc welding operation, the tip assembly (100) comprising:

    an elongate mock electrode tip (110) having a proximal end (112), a distal end (114), and a locking sleeve (116) near the proximal end;

    a compression spring (120) having a first end (122) and a second end (124), wherein the first end (122) is configured to interface with the proximal end (112) of the electrode tip (110);

    a locking cup (130) configured to encompass the compression spring (120) and the locking sleeve (116) of the electrode tip (110); and characterized by

    a housing (140) having an orifice (142), wherein the housing (140) is configured to receive the electrode tip (110), the compression spring (120), and the locking cup (130) into the housing (140) by accepting the distal end (114) of the electrode tip (110) through the orifice (142) of the housing (140) up to the locking sleeve (116), resulting in the compression spring (120), the locking cup (130), and the locking sleeve (116) residing in an interior of the housing (140) with a majority of the electrode tip (110) protruding out of the housing (140), and

    wherein the locking sleeve (116) and the locking cup (130) are configured to be rotated with respect to each other to allow changing between a locked position (400) and an unlocked position (500).


     
    2. The tip assembly of claim 1, wherein the locked position holds the compression spring in a fully compressed state within the locking cup while holding the electrode tip in an immovable state with respect to the locking cup and the housing, for use in simulated shielded metal arc welding of a plate welding coupon.
     
    3. The tip assembly of claim 1 or 2, wherein the unlocked position puts the compression spring in a free state, allowing the compression spring to compress as the distal end of the electrode tip is pushed toward the housing, and allowing the compression spring to decompress to push the distal end of the electrode tip away from the housing, resulting in providing a tactile feedback to a student welder to simulate a feel of performing an actual shielded metal arc welding operation on a pipe as the electrode tip engages a pipe welding coupon during a simulated shielded metal arc welding operation.
     
    4. The tip assembly of one of the claims 1 to 3, wherein the housing is configured to removably attach to a mock welding tool for use in a simulated shielded metal arc welding operation.
     
    5. The tip assembly of one of the claim 1 to 4, wherein at least the distal end of the electrode tip is made of a material configured to mitigate slippage between the electrode tip and a welding coupon during a simulated shielded metal arc welding operation.
     
    6. The tip assembly of one of the claims 1 to 5, wherein at least a portion of the compression spring is made of polyetherimide; and/or wherein at least a portion of the electrode tip is made of polyoxymethylene.
     
    7. The tip assembly of one of the claims 1 to 6, comprising a pressure sensor transducer (710) configured to interface with the second end of the compression spring to sense an amount of compression of the compression spring and to generate a signal indicating the amount of compression of the compression spring; wherein the cup is configured to encompass the pressure sensor transducer (710), the compression spring, and the sleeve of the electrode tip; and wherein the housing is configured to receive the electrode tip, the compression spring, the pressure sensor transducer (710), and the cup into the housing by accepting the distal end of the electrode tip through the orifice of the housing up to the sleeve, resulting in the pressure sensor transducer (710), the compression spring, the cup, and the sleeve residing in an interior of the housing with a majority of the electrode tip protruding out of the housing.
     
    8. The tip assembly of claim 7, wherein the signal indicating the amount of compression of the compression spring is representative of at least one simulated arc characteristic.
     
    9. The tip assembly of claim 8, wherein the at least one simulated arc characteristic includes at least one of an arc voltage, an arc current, an arc length, and an extinguished arc.
     
    10. The assembly of claim 7, , wherein the locked position holds the compression spring in a fully compressed state within the cup while holding the electrode tip in an immovable state with respect to the cup and the housing, for use during a simulated shielded metal arc welding operation on a plate welding coupon; and/or wherein the unlocked position puts the compression spring in a free state, allowing the compression spring to compress as the distal end of the electrode tip is pushed toward the housing, and allowing the compression spring to decompress to push the distal end of the electrode tip away from the housing, resulting in providing a tactile feedback to a student welder to simulate a feel of performing an actual shielded metal arc welding operation on a pipe as the electrode tip engages a pipe welding coupon during a simulated shielded metal arc welding operation.
     
    11. A mock welding tool (800) to support simulation of a shielded metal arc welding operation, the mock welding tool (800) comprising:

    a handle (810) configured to be held by a student welder (1100);

    a trigger (820) operatively connected to the handle (810) and configured to indicate an active weld state to a welding simulator;

    characterized by a mock stick electrode (830) having a tip assembly (100), according to one of the preceding claims.


     
    12. The mock welding tool according to claim 11, further comprising at least one sensor to aid the welding simulator in tracking the mock welding tool in at least position and orientation in three-dimensional space; and/or further comprising an actuator assembly configured to retract the mock stick electrode toward the student welder, in response to the student welder activating the trigger, to simulate consumption of a real stick electrode.
     
    13. The mock welding tool according to one of the claims 11 and 12, further comprising a communication module configured to wirelessly communicate with the welding simulator; and/or further comprising a communication module configured to communicate with the welding simulator via a cable connected between the mock welding tool and the welding simulator.
     
    14. Method of assembling a spring loaded tip assembly characterized by :

    providing the tip assembly of one of the claims 1 to 6;

    interfacing the first end of a compression spring to the proximal end of the elongate mock electrode tip having the locking sleeve near the proximal end;

    encompassing the compression spring and at least the locking sleeve of the mock electrode tip with the locking cup;

    inserting the electrode tip, the compression spring, and the locking cup into the housing having the orifice, such that the compression spring, the locking cup, and the locking sleeve reside in an interior of the housing with a majority of the electrode tip protruding out of the housing through the orifice.


     
    15. Method of assembling a spring loaded tip assembly, characterized by:

    providing the tip assembly of one of the claims 7 to 10;

    interfacing the first end of the compression spring with the proximal end of the elongate mock electrode tip having the locking sleeve near the proximal end;

    interfacing the pressure sensor transducer with the second end of the compression spring;

    encompassing the pressure sensor transducer, the compression spring, and at least the locking sleeve of the mock electrode tip with the locking cup; and

    inserting the electrode tip, the compression spring, the pressure sensor transducer, and the locking cup into the housing having the orifice, such that the compression spring, the pressure sensor transducer, the locking cup, and the locking sleeve reside in an interior of the housing with a majority of the electrode tip protruding out of the housing through the orifice.


     


    Ansprüche

    1. Spitzenbaugruppe (100) zum Unterstützen der Simulation eines Handlichtbogenschweißvorgangs, wobei die Spitzenbaugruppe (100) umfasst:

    eine längliche Simulationselektrodenspitze (110) mit einem proximalen Ende (112), einem distalen Ende (114) und einer Verriegelungshülse (116) nahe dem proximalen Ende;

    eine Druckfeder (120) mit einem ersten Ende (122) und einem zweiten Ende (124), wobei das erste Ende (122) dafür konfiguriert ist, mit dem proximalen Ende (112) der Elektrodenspitze (110) zusammenwirken;

    einen Verriegelungsaufsatz (130), der dafür konfiguriert ist, die Druckfeder (120) und die Verriegelungshülse (116) der Elektrodenspitze (110) zu umschließen; und

    gekennzeichnet durch ein Gehäuse (140), das eine Öffnung (142) aufweist, wobei das Gehäuse (140) dafür konfiguriert ist, die Elektrodenspitze (110), die Druckfeder (120) und den Verriegelungsaufsatz (130) in dem Gehäuse (140) aufzunehmen, indem es das distale Ende (114) der Elektrodenspitze (110) durch die Öffnung (142) des Gehäuses (140) hindurch bis zur Verriegelungshülse (116) aufnimmt, was dazu führt, dass die Druckfeder (120), der Verriegelungsaufsatz (130) und die Verriegelungshülse (116) in einem Inneren des Gehäuses (140) angeordnet sind, wobei ein Großteil der Elektrodenspitze (110) aus dem Gehäuse (140) herausragt, und wobei die Verriegelungshülse (116) und der Verriegelungsaufsatz (130) dafür konfiguriert sind, in Bezug aufeinander gedreht zu werden, um einen Wechsel zwischen einer verriegelten Position (400) und einer entriegelten Position (500) zu ermöglichen.


     
    2. Spitzenbaugruppe nach Anspruch 1, wobei die verriegelte Position die Druckfeder in einem vollständig zusammengedrückten Zustand innerhalb des Verriegelungsaufsatzes hält, während die Elektrodenspitze in einem unbeweglichen Zustand in Bezug auf den Verriegelungsaufsatz und das Gehäuse gehalten wird, um beim simulierten Handlichtbogenschweißen eines Plattenschweißstücks verwendet zu werden.
     
    3. Spitzenbaugruppe nach Anspruch 1 oder 2, wobei die entriegelte Position die Druckfeder in einen freien Zustand versetzt, wodurch die Druckfeder zusammengedrückt werden kann, wenn das distale Ende der Elektrodenspitze in Richtung des Gehäuses gedrückt wird, und die Druckfeder sich entspannen kann, um das distale Ende der Elektrodenspitze vom Gehäuse fort zu drücken, wodurch ein Schweißschüler eine taktile Rückmeldung erhält, um das Gefühl zu simulieren, einen tatsächlichen Handlichtbogenschweißvorgang an einem Rohr durchzuführen, wenn die Elektrodenspitze ein Rohrschweißstück während eines simulierten Handlichtbogenschweißvorgangs in Eingriff nimmt.
     
    4. Spitzenbaugruppe nach einem der Ansprüche 1 bis 3, wobei das Gehäuse dafür konfiguriert ist, abnehmbar an einem Simulationsschweißwerkzeug zur Verwendung in einem simulierten Handlichtbogenschweißvorgang befestigt zu werden.
     
    5. Spitzenbaugruppe nach einem der Ansprüche 1 bis 4, wobei mindestens das distale Ende der Elektrodenspitze aus einem Material hergestellt ist, das dafür konfiguriert ist, einen Schlupf zwischen der Elektrodenspitze und einem Schweißstück während eines simulierten Handlichtbogenschweißvorgangs zu mindern.
     
    6. Spitzenbaugruppe nach einem der Ansprüche 1 bis 5, wobei mindestens ein Abschnitt der Druckfeder aus Polyetherimid hergestellt ist; und/oder
    wobei mindestens ein Abschnitt der Elektrodenspitze aus Polyoxymethylen hergestellt ist.
     
    7. Spitzenbaugruppe nach einem der Ansprüche 1 bis 6, die einen Drucksensormesswandler (710) umfasst, der dafür konfiguriert ist, mit dem zweiten Ende der Druckfeder verbunden zu werden, um einen Kompressionsbetrag der Druckfeder zu erfassen und ein Signal zu erzeugen, das den Kompressionsbetrag der Druckfeder anzeigt;
    wobei der Aufsatz dafür konfiguriert ist, den Drucksensormesswandler (710), die Druckfeder und die Hülse der Elektrodenspitze zu umschließen; und
    wobei das Gehäuse dafür konfiguriert ist, die Elektrodenspitze, die Druckfeder, den Drucksensormesswandler (710) und den Aufsatz in dem Gehäuse aufzunehmen, indem es das distale Ende der Elektrodenspitze durch die Öffnung des Gehäuses hindurch bis zu der Hülse aufnimmt, was dazu führt, dass der Drucksensormesswandler(710), die Druckfeder, der Aufsatz und die Hülse in einem Innenraum des Gehäuses angeordnet sind, wobei ein Großteil der Elektrodenspitze aus dem Gehäuse herausragt.
     
    8. Spitzenbaugruppe nach Anspruch 7, wobei das Signal, das den Kompressionsbetrag der Druckfeder anzeigt, für mindestens eine simulierte Lichtbogencharakteristik repräsentativ ist.
     
    9. Spitzenbaugruppe nach Anspruch 8, wobei die mindestens eine simulierte Lichtbogencharakteristik mindestens eines von einer Lichtbogenspannung, einem Lichtbogenstrom, einer Lichtbogenlänge und einem gelöschten Lichtbogen enthält.
     
    10. Spitzenbaugruppe nach Anspruch 7,
    wobei die verriegelte Position die Druckfeder in einem vollständig zusammengedrückten Zustand innerhalb des Aufsatzes hält, während die Elektrodenspitze in einem unbeweglichen Zustand in Bezug auf den Aufsatz und das Gehäuse gehalten wird, um während eines simulierten Handlichtbogenschweißvorgangs an einem Plattenschweißstück verwendet zu werden; und/oder
    wobei die entriegelte Position die Druckfeder in einen freien Zustand versetzt, wodurch die Druckfeder zusammengedrückt werden kann, wenn das distale Ende der Elektrodenspitze in Richtung des Gehäuses gedrückt wird, und die Druckfeder sich entspannen kann, um das distale Ende der Elektrodenspitze vom Gehäuse fort zu drücken, wodurch ein Schweißschüler eine taktile Rückmeldung erhält, um das Gefühl zu simulieren, einen tatsächlichen Handlichtbogenschweißvorgang an einem Rohr durchzuführen, wenn die Elektrodenspitze ein Rohrschweißstück während eines simulierten Handlichtbogenschweißvorgangs in Eingriff nimmt.
     
    11. Simulationsschweißwerkzeug (800) zum Unterstützen der Simulation eines Handlichtbogenschweißvorgangs, wobei das Simulationsschweißwerkzeug (800) umfasst:

    einen Griff (810), der dafür konfiguriert ist, durch einen Schweißschüler (1100) gehalten zu werden;

    einen Auslöser (820), der mit dem Griff (810) wirkverbunden und dafür konfiguriert ist, einem Schweißsimulator einen aktiven Schweißzustand anzuzeigen;

    gekennzeichnet durch eine Simulationsstabelektrode (830), die eine Spitzenbaugruppe (100) nach einem der vorangehenden Ansprüche aufweist.


     
    12. Simulationsschweißwerkzeug nach Anspruch 11, das des Weiteren mindestens einen Sensor zum Unterstützen des Schweißsimulators beim Verfolgen des Simulationsschweißwerkzeugs mindestens im Hinblick auf die Position und die Ausrichtung im dreidimensionalen Raum umfasst; und/oder
    des Weiteren eine Aktuatorbaugruppe umfasst, die dafür konfiguriert ist, die Simulationsstabelektrode in Richtung des Schweißschülers zurückzuziehen, wenn der Schweißschüler den Auslöser betätigt hat, um das Aufzehren einer echten Stabelektrode zu simulieren.
     
    13. Simulationsschweißwerkzeug nach einem der Ansprüche 11 und 12, das des Weiteren ein Kommunikationsmodul umfasst, das zur drahtlosen Kommunikation mit dem Schweißsimulator konfiguriert ist; und/oder das des Weiteren ein Kommunikationsmodul umfasst, das dafür konfiguriert ist, mit dem Schweißsimulator über ein Kabel zu kommunizieren, das zwischen dem Simulationsschweißwerkzeug und dem Schweißsimulator verbunden ist.
     
    14. Verfahren zum Zusammenbau einer federbelasteten Spitzenbaugruppe, gekennzeichnet durch:

    Bereitstellen der Spitzenbaugruppe nach einem der Ansprüche 1 bis 6;

    Verbinden des ersten Endes einer Druckfeder mit dem proximalen Ende der länglichen Simulationselektrodenspitze, wobei sich die Verriegelungshülse in der Nähe des proximalen Endes befindet;

    Umschließen der Druckfeder und mindestens der Verriegelungshülse der Simulationselektrodenspitze mit dem Verriegelungsaufsatz;

    Einführen der Elektrodenspitze, der Druckfeder und des Verriegelungsaufsatzes in das Gehäuse, das die Öffnung aufweist, dergestalt, dass sich die Druckfeder, der Verriegelungsaufsatz und die Verriegelungshülse in einem Inneren des Gehäuses befinden, wobei ein Großteil der Elektrodenspitze durch die Öffnung aus dem Gehäuse herausragt.


     
    15. Verfahren zum Zusammenbau einer federbelasteten Spitzenbaugruppe, gekennzeichnet durch:

    Bereitstellen der Spitzenbaugruppe nach einem der Ansprüche 7 bis 10;

    Verbinden des ersten Endes der Druckfeder mit dem proximalen Ende der länglichen Simulationselektrodenspitze, wobei sich die Verriegelungshülse in der Nähe des proximalen Endes befindet;

    Verbinden des Drucksensormesswandlers mit dem zweiten Ende der Druckfeder;

    Umschließen des Drucksensormesswandlers, der Druckfeder und mindestens der Verriegelungshülse der Simulationselektrodenspitze mit dem Verriegelungsaufsatz; und

    Einführen der Elektrodenspitze, der Druckfeder, des Drucksensormesswandlers und des Verriegelungsaufsatzes in das Gehäuse, das die Öffnung aufweist, dergestalt, dass sich die Druckfeder, der Drucksensormesswandler, der Verriegelungsaufsatz und die Verriegelungshülse in einem Inneren des Gehäuses befinden, wobei ein Großteil der Elektrodenspitze durch die Öffnung aus dem Gehäuse herausragt.


     


    Revendications

    1. Ensemble de pointe (100) pour prendre en charge une simulation d'une opération de soudage à l'arc métallique protégé, l'ensemble de pointe (100) comprenant :

    une pointe d'électrode factice allongée (110) ayant une extrémité proximale (112), une extrémité distale (114), et un manchon de verrouillage (116) à proximité de l'extrémité proximale ;

    un ressort de compression (120) ayant une première extrémité (122) et une seconde extrémité (124), dans lequel la première extrémité (122) est configurée pour être en interface avec l'extrémité proximale (112) de la pointe d'électrode (110) ;

    une coupelle de verrouillage (130) configurée pour renfermer le ressort de compression (120) et le manchon de verrouillage (116) de la pointe d'électrode (110) ; et

    caractérisé par

    un boîtier (140) ayant un orifice (142), dans lequel le boîtier (140) est configuré pour recevoir la pointe d'électrode (110), le ressort de compression (120) et

    la coupelle de verrouillage (130) dans le boîtier (140) en acceptant l'extrémité distale (114) de la pointe d'électrode (110) à travers l'orifice (142) du boîtier (140) jusqu'au manchon de verrouillage (116),

    avec pour conséquence que le ressort de compression (120), la coupelle de verrouillage (130) et le manchon de verrouillage (116) résident dans un intérieur du boîtier (140) avec une majorité de la pointe d'électrode (110) faisant saillie hors du boîtier (140), et

    dans lequel le manchon de verrouillage (116) et la coupelle de verrouillage (130) sont configurés pour être tournés l'un par rapport à l'autre pour permettre un changement entre une position verrouillée (400) et une position déverrouillée (500).


     
    2. Ensemble de pointe selon la revendication 1, dans lequel la position verrouillée maintient le ressort de compression dans un état complètement compressé à l'intérieur de la coupelle de verrouillage tout en maintenant la pointe d'électrode dans un état immobile par rapport à la coupelle de verrouillage et au boîtier, pour une utilisation dans le soudage à l'arc métallique protégé simulé d'un coupon de soudage de plaque.
     
    3. Ensemble de pointe selon la revendication 1 ou 2, dans lequel la position déverrouillée met le ressort de compression dans un état libre, en permettant au ressort de compression de compresser lorsque l'extrémité distale de la pointe d'électrode est poussée vers le boîtier, et en permettant au ressort de compression de décompresser pour pousser l'extrémité distale de la pointe d'électrode à l'écart du boîtier, avec pour conséquence de fournir une rétroaction tactile à un apprenti soudeur pour simuler une sensation de réalisation d'une opération réelle de soudage à l'arc métallique protégé sur un tuyau lorsque la pointe d'électrode se met en prise avec un coupon de soudage de tuyau au cours d'une opération simulée de soudage à l'arc métallique protégé.
     
    4. Ensemble de pointe selon l'une des revendications 1 à 3, dans lequel le boîtier est configuré pour s'attacher, de manière amovible, à un outil de soudage factice pour une utilisation dans une opération simulée de soudage à l'arc métallique protégé.
     
    5. Ensemble de pointe selon l'une des revendications 1 à 4, dans lequel au moins l'extrémité distale de la pointe d'électrode est constituée d'un matériau configuré pour atténuer un glissement entre la pointe d'électrode et un coupon de soudage au cours d'une opération simulée de soudage à l'arc métallique protégé.
     
    6. Ensemble de pointe selon l'une des revendications 1 à 5, dans lequel au moins une portion du ressort de compression est constituée de polyétherimide ; et/ou dans lequel au moins une portion de la pointe d'électrode est constituée de polyoxyméthylène.
     
    7. Ensemble de pointe selon l'une des revendications 1 à 6, comprenant un transducteur de capteur de pression (710) configuré pour être en interface avec la seconde extrémité du ressort de compression pour détecter une quantité de compression du ressort de compression et pour générer un signal indiquant la quantité de compression du ressort de compression ; dans lequel la coupelle est configurée pour renfermer le transducteur de capteur de pression (710), le ressort de compression et le manchon de la pointe d'électrode ; et dans lequel le boîtier est configuré pour recevoir la pointe d'électrode, le ressort de compression, le transducteur de capteur de pression (710) et la coupelle dans le boîtier en acceptant l'extrémité distale de la pointe d'électrode à travers l'orifice du boîtier jusqu'au manchon, avec pour conséquence que le transducteur de capteur de pression (710), le ressort de compression, la coupelle et le manchon résident dans un intérieur du boîtier avec une majorité de la pointe d'électrode faisant saillie hors du boîtier.
     
    8. Ensemble de pointe selon la revendication 7, dans lequel le signal indiquant la quantité de compression du ressort de compression est représentatif d'au moins une caractéristique d'arc simulée.
     
    9. Ensemble de pointe selon la revendication 8, dans lequel l'au moins une caractéristique d'arc simulée inclut au moins l'un d'une tension d'arc, d'un courant d'arc, d'une longueur d'arc et d'un arc éteint.
     
    10. Ensemble de pointe selon la revendication 7, dans lequel la position verrouillée maintient le ressort de compression dans un état complètement compressé à l'intérieur de la coupelle de verrouillage tout en maintenant la pointe d'électrode dans un état immobile par rapport à la coupelle et au boîtier, pour une utilisation dans une opération simulée de soudage à l'arc métallique protégé simulé sur un coupon de soudage de plaque ; et/ou dans lequel la position déverrouillée met le ressort de compression dans un état libre, en permettant au ressort de compression de compresser lorsque l'extrémité distale de la pointe d'électrode est poussée vers le boîtier, et en permettant au ressort de compression de décompresser pour pousser l'extrémité distale de la pointe d'électrode à l'écart du boîtier, avec pour conséquence de fournir une rétroaction tactile à un apprenti soudeur pour simuler une sensation de réalisation d'une opération réelle de soudage à l'arc métallique protégé sur un tuyau lorsque la pointe d'électrode se met en prise avec un coupon de soudage de tuyau au cours d'une opération simulée de soudage à l'arc métallique protégé.
     
    11. Outil de soudage factice (800) pour prendre en charge une simulation d'une opération de soudage à l'arc métallique protégé, l'outil de soudage factice (800) comprenant :

    une poignée (810) configurée pour être tenue par un apprenti soudeur (1100) ;

    une gâchette (820) reliée opérationnellement à la poignée (810) et configurée pour indiquer un état de soudage actif à un simulateur de soudage ;

    caractérisé par

    une électrode enrobée factice (830) ayant un ensemble de pointe (100) selon l'une des revendications précédentes.


     
    12. Outil de soudage factice selon la revendication 11, comprenant en outre au moins un capteur pour aider le simulateur de soudage à suivre l'outil de soudage factice dans au moins une position et une orientation dans un espace tridimensionnel ; et/ou comprenant en outre un ensemble d'actionneur configuré pour retirer l'électrode enrobée factice vers l'apprenti soudeur, en réponse à l'activation de la gâchette par l'apprenti soudeur, pour simuler une consommation d'une électrode enrobée réelle.
     
    13. Outil de soudage factice selon la revendication 11 ou 12, comprenant en outre un module de communication configuré pour communiquer sans fil avec le simulateur de soudage ; et/ou comprenant en outre un module de communication configuré pour communiquer avec le simulateur de soudage par l'intermédiaire d'un câble relié entre l'outil de soudage factice et le simulateur de soudage.
     
    14. Procédé d'assemblage d'un ensemble de pointe à ressort, caractérisé par :

    la fourniture de l'ensemble de pointe selon l'une des revendications 1 à 6 ;

    la mise en interface de la première extrémité d'un ressort de compression avec l'extrémité proximale de la pointe d'électrode factice allongée ayant le manchon de verrouillage à proximité de l'extrémité proximale ;

    le renfermement du ressort de compression et d'au moins le manchon de verrouillage de la pointe d'électrode factice avec la coupelle de verrouillage ;

    l'insertion de la pointe d'électrode, du ressort de compression et de la coupelle de verrouillage dans le boîtier ayant l'orifice, de sorte que le ressort de compression, la coupelle de verrouillage et le manchon de verrouillage résident dans un intérieur du boîtier avec une majorité de la pointe d'électrode faisant saillie hors du boîtier ayant l'orifice.


     
    15. Procédé d'assemblage d'un ensemble de pointe à ressort, caractérisé par :

    la fourniture de l'ensemble de pointe selon l'une des revendications 7 à 10 ;

    la mise en interface de la première extrémité du ressort de compression avec l'extrémité proximale de la pointe d'électrode factice allongée ayant le manchon de verrouillage à proximité de l'extrémité proximale ;

    la mise en interface du transducteur de capteur de pression avec la seconde extrémité du ressort de compression ;

    le renfermement du transducteur de capteur de pression, du ressort de compression et d'au moins le manchon de verrouillage de la pointe d'électrode factice avec la coupelle de verrouillage ; et

    l'insertion de la pointe d'électrode, du ressort de compression, du transducteur de capteur de pression et de la coupelle de verrouillage dans le boîtier ayant l'orifice, de sorte que le ressort de compression, le transducteur de capteur de pression, la coupelle de verrouillage et le manchon de verrouillage résident dans un intérieur du boîtier avec une majorité de la pointe d'électrode faisant saillie hors du boîtier ayant l'orifice.


     




    Drawing


















































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description