(19)
(11)EP 3 431 730 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
13.01.2021 Bulletin 2021/02

(21)Application number: 18181620.8

(22)Date of filing:  04.07.2018
(51)International Patent Classification (IPC): 
F01N 3/20(2006.01)
F02M 61/18(2006.01)
F02M 61/16(2006.01)

(54)

FLUID SPRAY INJECTORS

FLUIDSPRÜHINJEKTOREN

INJECTEURS DE PULVÉRISATION DE FLUIDE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 19.07.2017 US 201715653931

(43)Date of publication of application:
23.01.2019 Bulletin 2019/04

(73)Proprietor: Delavan, Inc.
West Des Moines, IA 50265 (US)

(72)Inventors:
  • TIBBS, Andy W.
    Earlham, IA Iowa 50072 (US)
  • BUELOW, Philip E. O.
    West Des Moines, IA Iowa 50266 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
US-A- 4 087 050
US-A1- 2007 241 210
US-A- 6 024 301
US-A1- 2011 126 529
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND


    1. Field



    [0001] The present disclosure relates to fluid spray injectors, e.g., for selective catalyst reduction systems that inject urea/diesel exhaust fluid for use with diesel or other suitable engines.

    2. Description of Related Art



    [0002] Certain selective catalyst reduction (SCR) systems (e.g., for NOx reduction) require a controlled injection of diesel exhaust fluid (DEF) or urea into the exhaust system. This fluid needs to evaporate and mix rapidly before entering a catalyst. The injectors that are used for this injection are run on a duty-cycle to control the amount of DEF in the exhaust and are operated very frequently with short cycles. However, typical pressure-swirl atomizers require a refractory period of time before the full spray cone develops, resulting in good atomization. During this refractory period the liquid effluent is temporarily very poorly atomized.

    [0003] With a constant "on/off" cycle, much of the liquid injected is poorly atomized. If the spray takes a relatively long time to develop, then a significant portion of the duty-cycle could be spent developing the spray, resulting in slugs of fluid (or large droplets) being formed each cycle. Thus, these systems can suffer from unevaporated DEF depositing on the catalyst or other parts of the system resulting in fouling of the catalyst by formation of urea crystals.

    [0004] Such conventional methods and systems have generally been considered satisfactory for their intended purpose. However, there is still a need in the art for improved injectors with rapid spray development. The present disclosure provides a solution for this need.

    [0005] US 6,024,301 A discloses an atomizer spray plate for discharging fuel oil.

    [0006] US 2011/0126529 A1 discloses an air-assisted fluid injector.

    SUMMARY



    [0007] From a first aspect, a fluid spray nozzle tip as claimed in claim 1 is provided.

    [0008] The spray outlet can have a constant cross sectional area over a full longitudinal dimension of the spray outlet. The spray outlet can be cylindrical.

    [0009] The spray outlet can be defined through pintle sealing surface body and partly into the feed hole body. The feed holes are defined at a non-normal angle relative to a centerline axis (forward or backward in a longitudinal direction of the centerline) of the nozzle tip where the at least one feed hole intersects with the spray outlet. The feed holes can be straight.

    [0010] The feed holes can be offset from centerline of the spray outlet to cause swirling in spray outlet. Each feed hole can intersect at least one other feed hole in addition to intersecting with the spray outlet.

    [0011] Each feed hole can define a feed hole axis and the spray outlet defines a spray outlet axis, wherein the feed hole axis is skewed relative to the spray outlet axis.

    [0012] The pintle sealing surface body can define a flange having a larger dimension from the centerline than the feed hole body. The spray outlet can effuse from the pintle sealing surface body.

    [0013] The feed holes can be recessed inwardly from the sealing surface such that the sealing surface extends at least partially over the feed holes. The feed holes can have a non-linear shape. The non-linear shape can be a tentacle shaped.

    [0014] The feed hole body can be integral with the pintle sealing surface body. The feed hole body can be shaped to be surrounded by a pintle to allow the pintle to seal against the pintle sealing surface to prevent flow to the feed holes. The sealing surface body can include a cavity configured to receive a pintle to allow the pintle to interact with the pintle sealing surface to prevent flow to the feed holes.

    [0015] In accordance with at least one aspect of this disclosure, a fluid spray nozzle tip can include a feed hole body that defines a plurality of feed holes and a pintle sealing surface body extending from the feed hole body and configured to allow a pintle to seal against a sealing surface thereof. At least one of the feed hole body and the pintle sealing surface body define a spray outlet in direct fluid communication with the plurality of feed holes without an upstream spin chamber.

    [0016] The spray outlet can have a constant flow area. For example, the spray outlet can be cylindrical. Any other suitable shape for the spray outlet is contemplated herein.

    [0017] In certain embodiments, the spray outlet can be defined through pintle sealing surface body and partly into the feed hole body. The feed holes can be defined at a non-normal angle relative to centerline axis of the nozzle tip to meet the spray outlet. In certain embodiments, the feed holes can be defined at normal angle relative to centerline axis to meet the spray outlet.

    [0018] In certain embodiments, the feed holes can be straight. Any other suitable shape (e.g., a non-linear flow channel) is contemplated herein. The feed holes can be offset from centerline to cause swirling in spray outlet.

    [0019] The pintle sealing surface body can define a flange having a larger dimension from the centerline than the feed hole body. The spray outlet can spray from the pintle sealing surface body.

    [0020] In certain embodiments, the feed holes can be recessed from sealing surface such that sealing surface extends over the feed holes. In certain embodiments, the feed holes have tentacle shape, however, any suitably shaped flow channels are contemplated herein.

    [0021] In certain embodiments, the feed hole body can be integral with the pintle sealing surface body. It is contemplated that the feed hole body and the pintle sealing surface body can be separate pieces joined together in any suitable manner.

    [0022] The feed hole body can be shaped to be surrounded by a pintle to allow the pintle to interact with the pintle sealing surface to prevent flow to the feed holes. In certain embodiments, the sealing surface body can include a cavity configured to receive a pintle to allow the pintle to interact with the pintle sealing surface to prevent flow to the feed holes.

    [0023] In accordance with at least one aspect of this disclosure, a diesel exhaust fluid spray nozzle for a selective catalyst reduction system as claimed in claim 15 is provided. The nozzle tip can be integral with the housing in certain embodiments.

    [0024] These and other features of the systems and methods of the subject disclosure will become more readily apparent to those skilled in the art from the following detailed description taken in conjunction with the drawings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0025] So that those skilled in the art to which the subject disclosure appertains will readily understand how to make and use the devices and methods of the subject disclosure without undue experimentation, embodiments thereof will be described in detail herein below with reference to certain figures, wherein:

    Fig. 1A is a cross-sectional perspective view of an embodiment of a nozzle tip in accordance with this disclosure;

    Fig. 1B is a cross-sectional perspective view of the embodiment of Fig. 1A;

    Fig. 1C is a perspective view of the embodiment of Fig. 1A;

    Fig. 2A is a cross-sectional perspective view of an embodiment of a nozzle tip which does not fall within the scope of the invention, shown including more feed holes than the embodiment of Fig. 1A;

    Fig. 2B is a cross-sectional perspective view of the embodiment of Fig. 2A;

    Fig. 2C is a perspective view of the embodiment of Fig. 2A;

    Fig. 3A is a cross-sectional perspective view of an embodiment of a nozzle tip in accordance with this disclosure;

    Fig. 3B is a cross-sectional perspective view of the embodiment of Fig. 3A;

    Fig. 4 is a cross-sectional perspective view of an embodiment of a fluid spray nozzle in accordance with this disclosure; and

    Fig. 5 is a cross-sectional perspective view of an embodiment of a fluid spray nozzle in accordance with this disclosure.


    DETAILED DESCRIPTION



    [0026] Reference will now be made to the drawings wherein like reference numerals identify similar structural features or aspects of the subject disclosure. For purposes of explanation and illustration, and not limitation, an illustrative view of an embodiment of a nozzle tip in accordance with the disclosure is shown in Fig. 1A and is designated generally by reference character 100. Other embodiments and/or aspects of this disclosure are shown in Figs. 1B-5. The systems and methods described herein can be used to reduce time to develop atomized spray and to simplify nozzle assemblies.

    [0027] Referring to Figs. 1A-1C, a fluid spray nozzle tip 100 includes a feed hole body 101 that defines one or more of feed holes 103 and a pintle sealing surface body 105 extending from the feed hole body 101 and configured to allow a pintle (e.g., as shown in Figs. 4 and/or 5) to seal against a sealing surface 107 thereof. At least one of the feed hole body 101 and the pintle sealing surface body 105 define a spray outlet 109 in direct fluid communication with the plurality of feed holes 103 without an upstream spin chamber (e.g., a spin chamber between the feed holes 103 and the spray outlet 109 that is normally included in traditional systems). A spin chamber is traditionally placed before the outlet to induce swirl in the flow before it enters the outlet and has a different diameter than the outlet (e.g., a larger diameter) and feeds into the outlet.

    [0028] The spray outlet 109 can be centrally located (e.g., coaxial with the centerline of the tip 100) or in any other suitable position. The spray outlet 109 can include any suitable opening edge 111 (e.g., sharp to cause narrower spray angle, angled (beveled) edge for wider spray angle). The spray outlet 109 can have a constant flow area. For example, the spray outlet 109 can be cylindrical. Any other suitable shape and/or dimensions (e.g., 1 to 1 diameter to length) for the spray outlet 109 is contemplated herein.

    [0029] As shown, in certain embodiments, the spray outlet 109 can be defined through pintle sealing surface body 105 and partly into the feed hole body 101. As shown in Fig. 1A, the feed holes 103 are defined at a non-normal angle relative to centerline axis of the nozzle tip 100 to meet the spray outlet 109. Referring to Fig. 2A, in certain embodiments which do not fall within the scope of the invention, the feed holes 203 of a nozzle 200 can be defined at normal angle relative to centerline axis to meet the spray outlet 109. In certain arrangements which do not fall within the scope of the invention, where there are a sufficiently high number of feed holes 209, to have a clean intersection (such that there are no peaks or sharp edges formed within the spray outlet 109) of the spray outlet 109, the feed holes 209 may need to be perpendicular to the centerline axis.

    [0030] As shown in Figs. 1A-2C, in certain embodiments, the feed holes 103, 203 can be straight. Any other suitable shape (e.g., a non-linear flow channel) is contemplated herein. The feed holes 103, 203 can be offset from centerline to cause swirling in spray outlet 109.

    [0031] The pintle sealing surface body 105 can define a flange having a larger dimension from the centerline than the feed hole body 101. The spray outlet 109 can spray from the pintle sealing surface body 105 as shown in Figs. 1A and 2A, or from any other suitable location.

    [0032] Referring now to Figs. 3A and 3B, in certain embodiments, a nozzle 300 can include feed holes 303 that are recessed from sealing surface 307 such that sealing surface 307 extends over the feed holes 303. As shown, the sealing surface 307 can be angled instead of flat. Any suitable shape of the sealing surface 107, 307 is contemplated herein.

    [0033] In certain embodiments, the feed holes 303 have a non-linear shape (e.g., tentacle shape with curves in one or more dimensions), however, any suitably shaped flow channels are contemplated herein. The feed holes 303 can meet the outlet 109 offset from the centerline to cause swirling in the outlet 109 and/or can be meet at a normal angle or at any suitable tilt angle.

    [0034] Referring to Figs. 1A-3B, in certain embodiments, the feed hole body 101, 301 can be integral with the pintle sealing surface body 105, 305 (e.g., additively manufactured, casted). It is contemplated that the feed hole body 101, 301 and the pintle sealing surface body 105, 305 can be separate pieces joined together in any suitable manner (e.g., via welding, via adhesion).

    [0035] As shown in Figs. 1A-2C and Fig. 4, the feed hole body 101 can be shaped to be surrounded by a pintle 413 to allow the pintle 413 to interact with the pintle sealing surface 107 to prevent flow to the feed holes 103, 203. In certain embodiments, referring to Figs. 3A, 3B, and Fig. 5, the sealing surface body 105 can include a cavity 315 configured to receive a pintle 513 to allow the pintle 513 to interact with the pintle sealing surface 307 to prevent flow to the feed holes 303.

    [0036] In accordance with at least one aspect of this disclosure, referring to Fig. 4, a fluid spray nozzle 400 includes a housing 417 defining a flow cavity 419. Any suitable embodiment of a nozzle tip (e.g., tip 100, 200) as described above can be disposed at an end of the housing 417. A pintle 413 is disposed within the flow cavity 419 and is configured to axially actuate therein between an open position where the feed holes 103 are in fluid communication with the flow cavity 419 and a closed position (e.g., as shown in Fig. 4) where the pintle 413 interacts with the pintle sealing surface 107 to seal the feed holes 103 from the flow cavity 419.

    [0037] In certain embodiments, the nozzle tip 103 can be integral with the housing 417. For example, Fig. 5 shows the nozzle tip 300 of Figs. 3A and 3B where the sealing surface body 305 defines a cavity 315 that can receive a pintle 513.

    [0038] As described above, feed holes directly intersect the spray orifice at the upstream end, without a spin-chamber, which allows rapid development of a swirling flow-field and a corresponding conical spray. Feed holes offset from the centerline can create spin for atomizing quickly. Embodiments include a single piece structure that has a single orifice that causes swirling and spraying. Certain embodiments can be additively manufactured which can allow for any suitable structures and flow channels.

    [0039] Certain embodiments provide a means to very rapidly form a fully-developed conical spray. This can be particularly advantageous in applications where the injector (spray) is duty-cycled on and off, frequently (e.g., in SCR NOx reduction systems). Typical pressure-swirl atomizers have offset holes/slots which feed an upstream spin-chamber to establish a swirling flow-field, which then passes through a smaller diameter orifice and forms a finely atomized conical spray. Filling this spin-chamber and establishing the swirling flow-field takes time, and during this time the spray may or may not be conical and is typically very poorly atomized. Embodiments eliminate the spin-chamber and feed offset holes/slots directly into the orifice. This permits very rapid spray cone development with good atomization. Embodiments can be used as swirler for any suitable system and is not limited to use in SCR systems, or even for rapid spray development.


    Claims

    1. A fluid spray nozzle tip (100), comprising:

    a feed hole body (101) that defines at least one feed hole (103) and a spray outlet (109),

    wherein the at least one feed hole (103) is a plurality of feed holes,

    characterised by the plurality of feed holes being in direct fluid communication with the spray outlet (109) without also being in fluid communication with an upstream spin chamber,

    wherein the tip further includes a pintle sealing surface body (105) extending from the feed hole body (101) and configured to allow a pintle (413) to seal against a sealing surface (107) thereof,

    wherein the plurality of feed holes are defined at a non-normal angle relative to a centerline axis of the nozzle tip where the plurality of feed holes intersect with the spray outlet (109).


     
    2. The nozzle tip (100) of claim 1, wherein the spray outlet (109) has a constant cross sectional area over a full longitudinal dimension of the spray outlet (109).
     
    3. The nozzle tip (100) of claim 2, wherein the spray outlet (109) is cylindrical.
     
    4. The nozzle tip (100) of claim 1, 2 or 3, wherein the spray outlet (109) is defined through pintle sealing surface body (105) and partly into the feed hole body (101).
     
    5. The nozzle tip (100) of any of claims 1 to 4, wherein the feed holes (103) are straight.
     
    6. The nozzle tip (100) of any of claims 1 to 5, wherein the feed holes (103) are offset from centerline of the spray outlet (109) to cause swirling in spray outlet (109).
     
    7. The nozzle tip (100) of claim 6, wherein each feed hole (103) intersects at least one other feed hole (103) in addition to intersecting with the spray outlet (109).
     
    8. The nozzle tip (100) of claim 6 or 7, wherein the each feed hole (103) defines a feed hole axis and the spray outlet (109) defines a spray outlet axis, wherein the feed hole axis is skewed relative to the spray outlet axis.
     
    9. The nozzle tip (100) of any of claims 1 to 8, wherein the pintle sealing surface body (105) defines a flange having a larger dimension from the centerline than the feed hole body (101).
     
    10. The nozzle tip (100) of claim 9, wherein the spray outlet (109) effuses from the pintle sealing surface body (105).
     
    11. The nozzle tip (100) of any of claims 1 to 10, wherein the feed holes (103) are recessed inwardly from the sealing surface (107) such that the sealing surface extends at least partially over the feed holes (103).
     
    12. The nozzle tip (100) of claim 11, wherein the feed holes (103) have a non-linear shape.
     
    13. The nozzle tip (100) of claim 12, wherein the non-linear shape is tentacle shaped.
     
    14. The nozzle tip (100) of any of claims 1 to 13, wherein the feed hole body (101) is integral with the pintle sealing surface body (105),
    wherein, optionally, the feed hole body (101) is shaped to be surrounded by a pintle (413) to allow the pintle to seal against the pintle sealing surface (105) to prevent flow to the feed holes (103), and/or wherein, optionally, the sealing surface body (105) includes a cavity configured to receive a pintle (413) to allow the pintle to interact with the pintle sealing surface (105) to prevent flow to the feed holes (103).
     
    15. A diesel exhaust fluid spray nozzle for a selective catalyst reduction system, the nozzle comprising:

    a housing defining a flow cavity;

    a nozzle tip (100) disposed at an end of the housing, comprising:

    a feed hole body (101) that defines a plurality of feed holes (103); and

    characterised by a pintle sealing surface body (105) extending from the feed hole body (101) and configured to allow a pintle (413) to seal against a sealing surface (107) thereof,

    wherein at least one of the feed hole body (101) and the pintle sealing surface body (105) define a spray outlet (109) in direct fluid communication with the plurality of feed holes (103) without an upstream spin chamber; and

    a pintle (413) disposed within the flow cavity and configured to axially actuate therein between an open position where the feed holes (103) are in fluid communication with the flow cavity, and a closed position where the pintle interacts with the pintle sealing surface (105) to seal the feed holes (103) from the flow cavity;

    wherein the feed holes (103) are defined at a non-normal angle relative to a centerline axis of the nozzle tip (100) where the at least one feed hole (103) intersects with the spray outlet (109).


     


    Ansprüche

    1. Fluidsprühdüsenspitze (100), umfassend:

    einen Führungslochkörper (101), der mindestens ein Führungsloch (103) und einen Sprühauslass (109) definiert,

    wobei das mindestens eine Führungsloch (103) einer Vielzahl von Führungslöchern entspricht,

    gekennzeichnet durch die Vielzahl von Führungslöchern, die mit dem Sprühauslass (109) in direkter Fluidkommunikation steht, ohne dass sie auch mit einer vorgelagerten Drehkammer in Fluidkommunikation steht,

    wobei die Spitze ferner einen Düsenzapfendichtflächenkörper (105) einschließt, der sich von dem Führungslochkörper (101) erstreckt und konfiguriert ist, um zu ermöglichen, dass ein Düsenzapfen (413) an einer diesbezüglichen Dichtfläche (107) abgedichtet wird,

    wobei die Vielzahl von Führungslöchern in Bezug auf eine Mittelachse der Düsenspitze, wo die Vielzahl von Führungslöchern den Sprühauslass (109) schneidet, in einem Winkel definiert ist, der nicht 90 Grad entspricht.


     
    2. Düsenspitze (100) nach Anspruch 1, wobei der Sprühauslass (109) über eine gesamte Längsabmessung des Sprühauslasses (109) eine konstante Querschnittsfläche aufweist.
     
    3. Düsenspitze (100) nach Anspruch 2, wobei der Sprühauslass (109) zylindrisch ist.
     
    4. Düsenspitze (100) nach Anspruch 1, 2 oder 3, wobei der Sprühauslass (109) durch den Düsenzapfendichtflächenkörper (105) und teilweise in den Führungslochkörper (101) definiert ist.
     
    5. Düsenspitze (100) nach einem der Ansprüche 1 bis 4, wobei die Führungslöcher (103) gerade sind.
     
    6. Düsenspitze (100) nach einem der Ansprüche 1 bis 5, wobei die Führungslöcher (103) von der Mittellinie des Sprühauslasses (109) versetzt sind, um eine Verwirbelung im Sprühauslass (109) zu verursachen.
     
    7. Düsenspitze (100) nach Anspruch 6, wobei jedes Führungsloch (103) zusätzlich dazu, dass es den Sprühauslass (109) schneidet, mindestens ein anderes Führungsloch (103) schneidet.
     
    8. Düsenspitze (100) nach Anspruch 6 oder 7, wobei das jede Führungsloch (103) eine Führungslochachse definiert und der Sprühauslass (109) eine Sprühauslassachse definiert, wobei die Führungslochachse in Bezug auf die Sprühauslassachse schräg ist.
     
    9. Düsenspitze (100) nach einem der Ansprüche 1 bis 8, wobei der Düsenzapfendichtflächenkörper (105) einen Flansch definiert, der von der Mittellinie eine größere Abmessung aufweist als der Führungslochkörper (101).
     
    10. Düsenspitze (100) nach Anspruch 9, wobei sich der Sprühauslass (109) von dem Düsenzapfendichtflächenkörper (105) ausbreitet.
     
    11. Düsenspitze (100) nach einem der Ansprüche 1 bis 10, wobei die Führungslöcher (103) von der Dichtfläche (107) nach innen versenkt sind, sodass sich die Dichtfläche zumindest teilweise über die Führungslöcher (103) erstreckt.
     
    12. Düsenspitze (100) nach Anspruch 11, wobei die Führungslöcher (103) eine nicht lineare Form aufweisen.
     
    13. Düsenspitze (100) nach Anspruch 12, wobei die nicht lineare Form tentakelförmig ist.
     
    14. Düsenspitze (100) nach einem der Ansprüche 1 bis 13, wobei der Führungslochkörper (101) mit dem Düsenzapfendichtflächenkörper (105) einstückig ausgebildet ist,
    wobei der Führungslochkörper (101) gegebenenfalls so geformt ist, dass er von einem Düsenzapfen (413) umgeben ist, um zu ermöglichen, dass der Düsenzapfen an der Düsenzapfendichtfläche (105) abdichtet, um einen Strom zu den Führungslöchern (103) zu verhindern, und/oder wobei der Dichtflächenkörper (105) gegebenenfalls einen Hohlraum einschließt, der konfiguriert ist, um einen Düsenzapfen (413) aufzunehmen, um zu ermöglichen, dass der Düsenzapfen mit der Düsenzapfendichtfläche (105) interagiert, um einen Strom zu den Führungslöchern (103) zu verhindern.
     
    15. Dieselabgasfluidsprühdüse für ein System zur selektiven katalytischen Reduktion, wobei die Düse Folgendes umfasst:

    ein Gehäuse, das einen Strömungshohlraum definiert;

    eine Düsenspitze (100), die an einem Ende des Gehäuses angeordnet ist, umfassend:

    einen Führungslochkörper (101), der eine Vielzahl von Führungslöchern (103) definiert; und

    gekennzeichnet durch einen Düsenzapfendichtflächenkörper (105), der sich von dem Führungslochkörper (101) erstreckt und konfiguriert ist, um zu ermöglichen, dass ein Düsenzapfen (413) an einer diesbezüglichen Dichtfläche (107) abgedichtet wird,

    wobei mindestens einer des Führungslochkörpers (101) und des Düsenzapfendichtflächenkörpers (105) einen Sprühauslass (109) in direkter Fluidkommunikation mit der Vielzahl von Führungslöchern (103) ohne eine vorgelagerte Drehkammer definiert; und

    einen Düsenzapfen (413), der in dem Strömungshohlraum angeordnet und konfiguriert ist, um darin axial zwischen einer offenen Stellung, in der die Führungslöcher (103) mit dem Strömungshohlraum in Fluidkommunikation stehen und einer geschlossenen Stellung betätigt zu werden, in der der Düsenzapfen mit der Düsenzapfendichtfläche (105) interagiert, um die Führungslöcher (103) von dem Strömungshohlraum abzudichten;

    wobei die Führungslöcher (103) in Bezug auf eine Mittelachse der Düsenspitze (100), wo das mindestens eine Führungsloch (103) den Sprühauslass (109) schneidet, in einem Winkel definiert sind, der nicht 90 Grad entspricht.


     


    Revendications

    1. Embout de buse de pulvérisation de fluide (100), comprenant :

    un corps d'orifice d'alimentation (101) qui définit au moins un orifice d'alimentation (103) et une sortie de pulvérisation (109),

    dans lequel l'au moins un orifice d'alimentation (103) est une pluralité d'orifices d'alimentation,

    caractérisé par la pluralité d'orifices d'alimentation étant en communication fluidique directe avec la sortie de pulvérisation (109) sans être également en communication fluidique avec une chambre de rotation amont,

    dans lequel l'embout comporte en outre un corps de surface d'étanchéité de pivot (105) s'étendant depuis le corps d'orifice d'alimentation (101) et configuré pour permettre à un pivot (413) de se sceller contre une surface d'étanchéité (107) de celui-ci,

    dans lequel la pluralité d'orifices d'alimentation sont définis selon un angle non perpendiculaire par rapport à un axe de ligne centrale de l'embout de buse où la pluralité d'orifices d'alimentation croisent la sortie de pulvérisation (109).


     
    2. Embout de buse (100) selon la revendication 1, dans lequel la sortie de pulvérisation (109) a une région de section transversale constante sur une dimension longitudinale complète de la sortie de pulvérisation (109).
     
    3. Embout de buse (100) selon la revendication 2, dans lequel la sortie de pulvérisation (109) est cylindrique.
     
    4. Embout de buse (100) selon la revendication 1, 2 ou 3, dans lequel la sortie de pulvérisation (109) est définie à travers un corps de surface d'étanchéité de pivot (105) et partiellement dans le corps d'orifice d'alimentation (101).
     
    5. Embout de buse (100) selon l'une quelconque des revendications 1 à 4, dans lequel les orifices d'alimentation (103) sont droits.
     
    6. Embout de buse (100) selon l'une quelconque des revendications 1 à 5, dans lequel les orifices d'alimentation (103) sont décalés de la ligne centrale de la sortie de pulvérisation (109) pour provoquer un tourbillonnement dans la sortie de pulvérisation (109).
     
    7. Embout de buse (100) selon la revendication 6, dans lequel chaque orifice d'alimentation (103) croise au moins un autre orifice d'alimentation (103) en plus de croiser la sortie de pulvérisation (109).
     
    8. Embout de buse (100) selon la revendication 6 ou 7, dans lequel chaque orifice d'alimentation (103) définit un axe d'orifice d'alimentation et la sortie de pulvérisation (109) définit un axe de sortie de pulvérisation, dans lequel l'axe d'orifice d'alimentation est asymétrique par rapport à l'axe de sortie de pulvérisation.
     
    9. Embout de buse (100) selon l'une quelconque des revendications 1 à 8, dans lequel le corps de surface d'étanchéité de pivot (105) définit une bride ayant une plus grande dimension depuis la ligne centrale que le corps d'orifice d'alimentation (101).
     
    10. Embout de buse (100) selon la revendication 9, dans lequel la sortie de pulvérisation (109) s'échappe du corps de surface d'étanchéité de pivot (105).
     
    11. Embout de buse (100) selon l'une quelconque des revendications 1 à 10, dans lequel les orifices d'alimentation (103) sont évidés vers l'intérieur depuis la surface d'étanchéité (107) de sorte que la surface d'étanchéité s'étend au moins partiellement sur les orifices d'alimentation (103).
     
    12. Embout de buse (100) selon la revendication 11, dans lequel les orifices d'alimentation (103) ont une forme non linéaire.
     
    13. Embout de buse (100) selon la revendication 12, dans lequel la forme non linéaire est en forme de tentacule.
     
    14. Embout de buse (100) selon l'une quelconque des revendications 1 à 13, dans lequel le corps d'orifice d'alimentation (101) est solidaire du corps de surface d'étanchéité de pivot (105),
    dans lequel, éventuellement, le corps d'orifice d'alimentation (101) est formé pour être entouré par un pivot (413) afin de permettre au pivot de se sceller contre la surface d'étanchéité de pivot (105) pour empêcher un écoulement vers les orifices d'alimentation (103), et/ou dans lequel, éventuellement, le corps de surface d'étanchéité (105) comporte une cavité configurée pour recevoir un pivot (413) afin de permettre au pivot d'interagir avec la surface d'étanchéité de pivot (105) pour empêcher un écoulement vers les orifices d'alimentation (103).
     
    15. Buse de pulvérisation de fluide d'échappement diesel pour un système de réduction catalytique sélectif, la buse comprenant :

    un boîtier définissant une cavité d'écoulement ;

    un embout de buse (100) disposé au niveau d'une extrémité du boîtier, comprenant :

    un corps d'orifice d'alimentation (101) qui définit une pluralité d'orifices d'alimentation (103) ; et

    caractérisé par un corps de surface d'étanchéité de pivot (105) s'étendant depuis le corps d'orifice d'alimentation (101) et configuré pour permettre à un pivot (413) de se sceller contre une surface d'étanchéité (107) de celui-ci,

    dans lequel au moins l'un du corps d'orifice d'alimentation (101) et du corps de surface d'étanchéité de pivot (105) définit une sortie de pulvérisation (109) en communication fluidique directe avec la pluralité d'orifices d'alimentation (103) sans une chambre de rotation amont ; et

    un pivot (413) disposé à l'intérieur de la cavité d'écoulement et configuré pour y être actionné axialement entre une position ouverte où les orifices d'alimentation (103) sont en communication fluidique avec la cavité d'écoulement, et une position fermée où le pivot interagit avec la surface d'étanchéité du pivot (105) pour sceller les orifices d'alimentation (103) depuis la cavité d'écoulement ;

    dans lequel les orifices d'alimentation (103) sont définis selon un angle non perpendiculaire par rapport à un axe de ligne centrale de l'embout de buse (100) où l'au moins un orifice d'alimentation (103) croise la sortie de pulvérisation (109).


     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description