(19)
(11)EP 3 433 797 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 16763285.0

(22)Date of filing:  12.09.2016
(51)International Patent Classification (IPC): 
G06K 19/077(2006.01)
G06K 19/07(2006.01)
(86)International application number:
PCT/EP2016/071438
(87)International publication number:
WO 2017/162313 (28.09.2017 Gazette  2017/39)

(54)

METHOD OF MANUFACTURING A SMARTCARD

VERFAHREN ZUR HERSTELLUNG EINER CHIPKARTE

PROCÉDÉ DE FABRICATION D'UNE CARTE À PUCE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 24.03.2016 US 201662312773 P
22.04.2016 GB 201607029

(43)Date of publication of application:
30.01.2019 Bulletin 2019/05

(73)Proprietor: Zwipe AS
0151 Oslo (NO)

(72)Inventors:
  • SNELL, Devin
    Monument, Colorado 80132 (US)
  • LAVIN, Jose Ignacio Wintergerst
    Colorado Springs, Colorado 80905 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A1- 2 034 429
WO-A1-2009/078810
WO-A1-2008/035883
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to a smartcard and to its method of manufacture, and more particularly to the manner in which a component to be exposed from the smartcard is mounted to an embedded circuit board of the smartcard during manufacture.

    [0002] The term smartcard refers generally to any pocket-sized card that has one or more integrated circuits embedded therein. Examples of common smartcard applications include payment cards, access cards, and the like.

    [0003] The contact pad is the designated surface area of the smartcard that permits electrical contact to be made with an external device. Where the smartcard contains sensitive data, such as in the case of payment cards and the like, a secure element is used to store the data. A secure element is a tamper-proof chip that provides a secure memory and execution environment in which application code and application data can be securely stored and administered. The secure element ensures that access to the data stored on the card is provided only when authorised. In conventional smartcards, the secure element is mounted to the back of the contact pad such that the contact pad and secure element form a single unit. The combined unit, including both a contact pad and a secure element, is often referred to as a contact module.

    [0004] Recent developments in smartcards technology have allowed for the incorporation of biometric sensors, such as fingerprint sensors, into smartcards to provide improved security. The biometric sensor reads detected biometric data and supplies this to a microcontroller for user verification, and once verified the microcontroller instructs or allows the secure element to communicate with a payment terminal or the like through the contact pad. This requires the biometric module to communicate directly with the secure element. However, the secure element in a conventional contact module is fully enclosed and there is no easy way of interacting.

    [0005] Thus, where the smartcard includes additional security measures, such as the biometric authentication described above, it has been found to be advantageous to configure the contact pad and secure element separately within the smartcard, i.e. such that each component occupies its own "real estate" on the circuit board of the smartcard. This arrangement permits simpler control of the secure element by a biometric authentication module. For example, in low security applications, a simple switch controlled by the biometric authentication module can be provided between the secure element and the contact pad to permit or disable communication. However, this configuration also gives rise to manufacturing difficulties.

    [0006] WO 2009/078810 discloses a smartcard comprising a dual interface module connected in a cavity to an antenna in the smartcard via antenna contact leads that are exposed by a milling process used to form the cavity.

    [0007] EP 2034429 discloses a smartcard having a dual interface module connected to an antenna within the card via antenna contacts exposed by punching openings in the various layers making up the card body.

    [0008] WO 2008/035883 discloses an electronic card comprising an integrated circuit chip electrically connected to an electrode formed on a flexible circuit board in the card.

    [0009] The present invention provides a smartcard comprising: a card body enclosing a flexible circuit; a cavity formed in the card body; and a contact pad received in the cavity; characterised in that conductive extension members extend away from the flexible circuit, wherein a material forming the extension members has a melting temperature higher than the melting temperature of a material forming the card body, and wherein the extension members have a height of at least 200µm; the cavity exposes the extension members; and the contact pad is connected to the extension members by an electrical connection, wherein the electrical connection was formed at a temperature below the melting temperature of the material forming the card body.

    [0010] In this smartcard, the contact pad is raised off of the flexible circuit in order for it to be exposed at the correct height from the card body, whilst still being electrically connecting the contact pad to the circuit, by the extension members. This configuration allows a secure element to be located elsewhere than directly behind the contact pad.

    [0011] In order to ensure sufficient longevity of the card, it is necessary to be aware of the temperature sensitivity of the materials used typically for smartcards, which do not allow for traditional soldering. For example, most typical solders must be heated to temperatures of over about 240°C to become molten, whereas polyvinyl chloride (PVC), which is the most common material used to produce laminated cards, has a melting temperature of only 160°C (and a glass transition temperature of only 80°C). Polyurethane (PU), which is also commonly used as filler for laminated cards, would also be damaged by exposure to temperatures in the region of 240°C.

    [0012] To avoid overheating the card body materials, the above smartcard uses a high melting point material to form extension members on the flexible circuit, which will survive a lamination process or the like, and then a low temperature connection to conductively join the contact pad to the extension members. The use of a low temperature electrical connection avoids any physical deformation of the card material.

    [0013] Whilst the above embodiment relates to a secure element, it will be appreciated that the same configuration may also be employed for other elements that are required to be connected to the flexible circuit and exposed from the body of the smartcard.

    [0014] Various forms of electrical connection may be used. For example, the electrical connection may be any one of a mechanical connection, a conductive adhesive connection, and a metallic solder connection. As discussed above, a formation temperature (e.g. a curing temperature, or a melting temperature, or a reflow temperature) of the electrical connection is lower than a melting temperature of the material of the card body. Thus, forming the electrical connection will not cause deformation of the card. In one embodiment, the electrical connection may have a formation temperature below 150°C, and preferably below 140°C.

    [0015] Where the electrical connection comprises a conductive adhesive, the conductive adhesive preferably has a curing temperature below the melting temperature of the material forming the card body. Exemplary conductive adhesives include conductive epoxies, and in one preferred embodiment the connection comprises an anisotropic conductive film (ACF). However, other adhesives such as conductive resins may also be used to provide the electrical connections.

    [0016] A mechanical connection does not typically require heating. This has the advantage of not requiring thermal or physico-chemical processes, and enables room temperature manufacturing with no preparation or wait times. One exemplary mechanical connection is an elastomeric connector (sometimes known as a Zebra connector ®). The elastomeric connector comprise mated male and female terminals, each having alternating conductive and non-conductive stages that engage the respective stages of the corresponding terminal. In another example, the mechanical connection may comprise embedded conductive stubs that are configured to deform so as to conform to uneven surfaces. The stubs may be made of carbon or silver or copper.

    [0017] Where the electrical connection comprises a solder connection, a solder material forming the solder connection preferably has a reflow temperature below the melting temperature of the material forming the card body, and in various embodiments a melting temperature of the solder material may also be below the melting of the material forming the card body.

    [0018] If a solder material is used, the solder material may be a tin-bismuth solder. Such solders have typical melting temperatures of approximately 139°C. This is below the typical lamination temperatures discussed above, and is particularly below the 160°C melting temperature of PVC.

    [0019] Preferably the melting temperature of the material forming the extension members is at least 10°C above the melting temperature of the material forming the card body. This permits a clear range in which the card body can be thermally laminated, i.e. by melting and combining layers of material to form the card body around the circuit, without damaging the extension members. Preferably, the material forming the extension members has a melting temperature above 200°C, and preferably above 210°C.

    [0020] The extension members may be formed from any suitable material, but are preferably formed from a metallic material. The use of a metallic material allows for the card to employ a metal-to-metal connection between the contact pad and the flexible circuit, which provides high durability to provide maximum life to the smartcard - a typical payment card, for example, must have a minimum lifetime of three years.

    [0021] In one embodiment the material forming the conductive extension members is a solder material. This solder material may comprise any suitable conductive solder, and preferably a RoHS-compliant, lead-free solder is used, such as a tin-based solder or a copper-based solder. In a preferred embodiment, the solder material is Sn-Ag-Cu solder, which has ternary eutectic behaviour (217 °C), which is below the Sn-3.5Ag (wt.%) eutectic of 221°C and the Sn-0.7Cu eutectic of 227°C.

    [0022] The extension members have a height of at least 200µm, and preferably at least 300µm. The extension members preferably have a height of less than 762µm, i.e. the thickness of a ISO 7816 smartcard, and preferably less than 500µm.

    [0023] One or more components in addition to the contact pad may also be connected to the flexible circuit. These components may be embedded within the card body (e.g. attached before a lamination process) or may be exposed from the card body.

    [0024] For example, a secure element may be connected to the flexible circuit. The secure element is preferably embedded within the card body. The flexible circuit may be arranged to permit communication between a secure element and the contact pad via the extension members. The circuit is preferably arranged such that the secure element does not to overlap with a contact pad connected to the extension members (i.e. viewed in a direction perpendicular to the face of the smartcard).

    [0025] In another example, either with or without a secure element, a biometric authentication module may be connected to the flexible circuit. The biometric authentication module may be configured to detect a biometric characteristic of a bearer of the card and authenticate their identity based on stored biometric data. The biometric authentication module may be configured to command the secure element of the smartcard (if present) to transmit data responsive to authentication of the bearer of the card. In one particular embodiment, the biometric is a fingerprint.

    [0026] The biometric authentication module may be attached before or after the lamination, or a combination of the two. For example, the biometric authentication module may include a processing unit and a biometric sensor. The processing unit of the biometric authentication module may be embedded within the card body (i.e. it was connected to the circuit before a lamination process or the like) and the sensor of the biometric authentication module may be exposed from the card body. This arrangement prevents damage to the sensitive components within the sensor due to the high pressure and temperatures experienced during lamination or other manufacturing techniques.

    [0027] The circuit is preferably arranged to permit communication between the biometric authentication module (and particularly the processing unit thereof) and the secure element and/or the contact pad. In another embodiment, the circuit may include a switch to permit or prevent communication between the secure element and an external device (e.g. the switch may be located between the secure element and the contact pad). The circuit is then preferably arranged to permit the biometric authentication module (and particularly the processing unit thereof) to control the switch.

    [0028] In addition to the contact pad, the smartcard may further comprise an antenna. The antenna is preferably configured to communicate with the secure element. Thus, the smartcard may permit both contact transactions and contactless transactions.

    [0029] The smartcard may include a near field communication (NFC) transponder connected to the antenna, e.g. for additional/secondary communication with the same or a different reader. The smartcard transponder may include energy harvesting circuitry which is configured to rectify a received RF signal and store energy using an energy storage component within the smartcard.

    [0030] Preferably the cavity does not expose the flexible circuit. Thus, the flexible circuit remains fully enclosed, and also the material of the card body between the circuit and the contact pad will provide further support for the contact pad.

    [0031] The card body may be formed from a plastics material, and preferably PVC and/or PU. For example, the card body may comprise a PVC layer on either side of the flexible circuit with an intermediate layer between the PVC layers. The intermediate layer may comprise a plastics material such as PVC or PU. In various embodiments, the flexible circuit is a flexible printed circuit board, which is preferably printed on a plastics material. The plastics material preferably has a temperature above the lamination temperature and/or will not be damaged by the lamination. Exemplary plastics materials include polyimide, polyester and polyether ether ketone (PEEK).

    [0032] The smartcard may be any one of an access card, a credit card, a debit card, a pre-pay card, a loyalty card, an identity card, a cryptographic card, or the like.

    [0033] Viewed from a second aspect, the present invention provides a method of manufacturing a smartcard according to claim 10, the method comprising: providing a card body enclosing a flexible circuit, wherein a cavity is formed in the card body; and inserting a contact pad into the cavity; characterised in that the card body comprises conductive extension members that extend away from the flexible circuit, wherein a material forming the extension members has a melting temperature higher than the melting temperature of a material forming the card body, and wherein the extension members have a height of at least 200µm; the cavity exposes the extension members; and the method further comprises electrically connecting the contact pad to the extension members using at a temperature below the melting temperature of the material forming the card body.

    [0034] In various embodiments, the smartcard is a smartcard as described in the first aspect, and any one or more or all of the preferred features thereof may apply also this method.

    [0035] As discussed above, various forms of electrical connection may be used. For example, the electrical connection may be any one of a mechanical connection, a conductive adhesive connection, and a metallic solder connection. In one embodiment, the step of electrically connecting the contact pad to the extension members may take place at a temperature below 150°C, and preferably below 140°C.

    [0036] Where the electrical connection uses a conductive adhesive, the method may comprise applying a conductive adhesive to the contact pad and/or to the extension members. This step preferably takes place before inserting the contact pad into the cavity. The method preferably further comprises curing the conductive adhesive at a temperature below the melting temperature of the material forming the card body. The conductive adhesive may comprise a conductive epoxy, and in one example the electrical connection comprises an anisotropic conductive film (ACF).

    [0037] Where the electrical connection uses a mechanical connection, the extension members and/or the contact pad are preferably provided with the mechanical connections. The step of electrically connecting thus preferably comprises mechanically electrically connecting the contact pad to the extension members. The step preferably takes place at approximately ambient temperature.

    [0038] Where the electrical connection comprises a solder connection, the electrically connecting preferably comprises heating a solder material to cause it to reflow and form the electrical connection between the extension members and the contact pad. The heating is preferably to a temperature below the melting temperature of the material forming the card body. The electrically connecting the contact pad to the extension members may use ultrasonic soldering, i.e. wherein ultrasound energy is used to melt the solder material. Using an ultrasonic heating process will cause the solder to reflow at lower temperatures than if heat alone were to be applied.

    [0039] Providing the card body may comprise removing material from the card body to create the cavity and expose the extension members. Preferably, the step of removing material comprises removing sufficient that the contact pad does not project beyond the surface of the card body when received therein.

    [0040] The step of removing material may include removing material from the extension members to create a flat, contact surface for connection with the contact pad. This is particularly useful where a soldered or adhesive connection is to be made between the extension members and the contact pad, to ensure a good electrical connection.

    [0041] The step of removing material preferably does not expose the flexible circuit. Thus, the remaining material of the card body will provide further support for the contact pad.

    [0042] The removal of material may be performed by any suitable process, such as milling.

    [0043] The step of removing material may be performed after the card has been laminated or before lamination, e.g. in case the components are already in place. In alternative embodiments, the card body may be formed in a manner such that removal of material is not required to form the cavity. For example, the cavity may be cut before lamination of the card, or may be moulded during a lamination process. For example, the laminate sheets may die-cut before lamination to avoid a lengthier milling process.

    [0044] Providing the card body may comprise forming the card body. In one embodiment, the card body is formed by a thermal lamination process. The thermal lamination process may take place at temperatures above about 150°C. Typical lamination temperatures are often below 200°C. For example, in one embodiment, the lamination may take place at a temperature between 160°C and 190°C.

    [0045] The melting temperature of the material forming the extension members is preferably higher than the temperature of the thermal lamination. In some embodiments, the lamination may include two or more stages at different temperatures. In such a circumstance, reference to the "the temperature of the thermal lamination" should be understood to refer to the peak temperature that is sustained during the lamination process. Thus, the extension members will not be deformed by the heating applied during the lamination process.

    [0046] The card body may be formed from a plastics material suitable for thermal lamination. For example, the card body may comprise one or more layers of PVC and/or PU. In one embodiment, the card body comprises an outer layer (e.g. a PVC layer) on either side of the flexible circuit with an intermediate layer between the outer layers. The intermediate layer may comprise a plastics material such as PVC or PU, or other materials such as silicone. The intermediate layer may comprise a liquid or semi-solid/pelletized material.

    [0047] Whilst the flexible circuit may be provided already including the extension members, in some embodiments these must be added. Thus, the method may comprise forming the extension members by melting a conductive metallic material and depositing the molten conductive metallic material onto the flexible circuit.

    [0048] In some embodiments, a secure element may be connected to the flexible circuit. In this case, the secure element is preferably connected before a lamination process, i.e. such that it is enclosed within the card body.

    [0049] In some embodiment, a biometric authentication module may be connected to the flexible circuit. The biometric authentication module may be attached before or after the lamination process, or a combination of the two. For example, the biometric authentication module may include a processing unit and a biometric sensor. The processing unit of the biometric authentication module may be connected to the circuit before the lamination and the sensor may be installed after lamination.

    [0050] Certain preferred embodiments of the present invention will now be described in greater detail, by way of example only and with reference to the accompanying drawings, in which:

    Figures 1 to 5 illustrate the steps of a method of mounting a contact pad to a flexible printed circuit board assembly of a smartcard; and

    Figure 6 illustrates a smartcard manufactured by this method.



    [0051] It should be noted that for clarity the thicknesses of the various parts shown in Figures 1 to 5 has been exaggerated significantly. In implementations of smartcards of the type illustrated in the Figures, the width of the card might be 7cm whereas the thickness of the card would be less than 1mm. A total thickness between the outer surfaces of 762 µm is typical.

    [0052] Figure 1 illustrates a flexible printed circuit board assembly (FPCBA) 10 for a smartcard. The circuit board assembly 10 comprises a flexible printed circuit board 12 on which are mounted various components to be embedded within the smartcard. These components should each be capable of withstanding the temperatures and pressures arising during a thermal lamination process, such as that described later.

    [0053] Illustrated in Figure 1 are a secure element 14 and a fingerprint processing unit 16, which are both connected to the flexible circuit board 12. However, in various embodiments, one or other of these may not be present, and/or further components may also be present.

    [0054] The fingerprint processing unit 16 will form part of a fingerprint authentication module, when connected to a fingerprint sensor 130, such as the area fingerprint reader 130 shown in Figure 6. The processing unit 16 comprises a microprocessor that is chosen to be of very low power and very high speed, so as to be able to perform biometric matching in a reasonable time.

    [0055] The fingerprint authentication engine is arranged to scan a finger or thumb presented to the fingerprint reader 130 and to compare the scanned fingerprint of the finger or thumb to pre-stored fingerprint data using the processing unit 16. A determination is then made as to whether the scanned fingerprint matches the pre-stored fingerprint data.

    [0056] If a match is determined, then the fingerprint authentication engine will authorise the secure element 14 to transmit data from the card via a contact pad 20 (shown in phantom on Figure 1). On the FPCBA 10 are formed a plurality of electrically-conductive extension members 18 to which the contact pad will be connected. The extension members 18 extend away from the flexible circuit board 12 in a direction that is generally perpendicular to the face of the smartcard. The extension members 18 are formed for connection to a contact pad 20 so as to permit the contact pad 20 to communicate with the circuit board 12.

    [0057] The extension members 18 are formed from a metallic solder material that can withstand a lamination process. Exemplary solder materials include tin-based or a copper-based solders having a melting temperature over about 200°C (so as to withstand lamination), but below 300°C (so as to still be easily soldered). The extension members 18 are formed as solder blobs on suitable contacts of the flexible circuit board 12 so as to extend in a direction substantially perpendicular to the surface of the circuit board 12. The extension members have a height of about 300µm to 400µm and do not need to be completely uniform as they will be milled to a flat surface after lamination.

    [0058] To form the main body 22 of the smartcard, the FPCBA 10 is encased in polyurethane (PU) filler 24 and a sandwiched between two polyvinyl chloride (PVC) sheets 26, 28. The two PVC sheets 26, 28 each have a thickness of approximately 80µm and the intermediate layer formed by the FPCBA 10 and the PU filler 24 has a thickness of approximately 540µm. The pre-laminated card body is then compressed and heated to a temperature between 160°C and 190°C to form a single, laminated card body 22. The laminated card body 22 is illustrated in Figure 2.

    [0059] Next, a cavity 30 is milled into the laminated card body 22. The cavity 30 is milled to a depth sufficient to receive the contact pad 20 such that the surface of the contact pad 20 will be flush with the surface of the card body 22. The milling also cuts into the extension members 18 such that the solder bumps are flattened to form a uniform, flat surfaces 32 to which the contact pad 20 can be attached. The cavity 30 is illustrated in Figure 3.

    [0060] In order to install the contact pad 20 into the smartcard, a tin-bismuth solder is used to form solder blobs 34 on the rear contacts of the contact pad 20. The contact pad 20 is then inserted into the cavity 30 such that the contacts of the contact pad align with the surfaces 32 of the extension members 18, as illustrated in Figure 4.

    [0061] In order to form a permanent connection between the contact pad 20 and the extension members 18, ultrasonic energy is used to heat the tin-bismuth solder blobs 34 above their melting temperatures (approx. 139°C). Using tin-bismuth solder allows the components to be reflowed at a lower temperature which does not damage the materials of the card body 22. Tin-bismuth solder is sufficiently conducive to provide the connection needed for the contact pad 20 to communicate with the secure element 16 and the other components 14 of the FPCBA 10.

    [0062] Figures 5 and 6 illustrate the assembled card 102 where the contact pad 20 is permanently connected to the flexible circuit board 12 via the tin-bismuth solder 34 and the extension members 18.


    Claims

    1. A smartcard comprising:

    a card body (22) enclosing a flexible circuit (10);

    a cavity (30) formed in the card body; and

    a contact pad (20) received in the cavity;

    characterised in that conductive extension members (18) extend away from the flexible circuit, wherein a material forming the extension members has a melting temperature higher than the melting temperature of a material forming the card body, and wherein the extension members have a height of at least 200µm;

    the cavity exposes the extension members; and

    the contact pad is connected to the extension members by an electrical connection, wherein the electrical connection was formed at a temperature below the melting temperature of the material forming the card body.


     
    2. A smartcard according to claim 1, wherein the electrical connection has a formation temperature below 150°C, and preferably below 140°C.
     
    3. A smartcard according to claim 1 or 2, wherein the electrical connection comprises a solder connection, a solder material forming the solder connection having a reflow temperature below the melting of the material forming the card body (22), preferably wherein the solder material is a tin-bismuth solder.
     
    4. A smartcard according to claim 1 or 2, wherein the electrical connection comprises a conductive adhesive having a curing temperature below the melting temperature of the material forming the card body (22), preferably wherein the electrical connection comprises an anisotropic conductive film.
     
    5. A smartcard according to claim 1 or 2, wherein the electrical connection comprises a mechanical connection.
     
    6. A smartcard according to any preceding claim, wherein the extension members (18) are formed from a metallic material, preferably wherein the metallic material is a solder material.
     
    7. A smartcard according to any preceding claim, wherein the extension members (18) have a height of at least 300µm.
     
    8. A smartcard according to any preceding claim, further comprising a secure element (16) connected to the flexible circuit (10), wherein the circuit is arranged such that the secure element does not to overlap with the contact pad (20), preferably wherein the smartcard further comprises a biometric authentication module, the biometric authentication module being configured to authenticate the identity of a bearer of the smartcard, and to command the secure element of the smartcard to transmit data responsive to authentication of the bearer of the card, and preferably wherein the smartcard comprises an antenna configured to communicate with the secure element.
     
    9. A smartcard according to any preceding claim, wherein the card body (22) is formed from a plastics material, and preferably comprises polyvinyl chloride (PVC) and/or polyurethane (PU).
     
    10. A method of manufacturing a smartcard comprising:

    providing a card body (22) enclosing a flexible circuit (10), wherein a cavity (30) is formed in the card body; and

    inserting a contact pad (20) into the cavity;

    characterised in that the card body comprises conductive extension members that extend away from the flexible circuit, wherein a material forming the extension members has a melting temperature higher than the melting temperature of a material forming the card body, and wherein the extension members have a height of at least 200µm;

    the cavity exposes the extension members; and

    the method further comprises electrically connecting the contact pad to the extension members using at a temperature below the melting temperature of the material forming the card body.


     
    11. A method according to claim 10, wherein the step of electrically connecting the contact pad (20) to the extension members (18) takes place at a temperature below 150°C, and preferably below 140°C.
     
    12. A method according to claim 10 or 11, wherein the electrical connection comprises a metallic solder connection, preferably wherein the metallic solder connection is formed from a tin-bismuth solder, and preferably wherein the step of electrically connecting the contact pad to the extension members uses ultrasonic soldering.
     
    13. A method according to claim 10 or 11, wherein the electrical connection comprises a mechanical connection or a conductive adhesive connection.
     
    14. A method according to any one of claims 10 to 13, wherein the step of providing the card body (22) comprises removing material from the card body to create the cavity (30) and expose the extension members (18), preferably wherein the step of removing material includes removing material from the extension members to create a flat, contact surface for connection with the contact pad (20).
     
    15. A method according to any one of claims 10 to 14, wherein the step of providing the card body (22) comprises forming the card body by a thermal lamination process, preferably wherein the melting temperature of the material forming the extension members (18) is higher than the temperature of the thermal lamination.
     


    Ansprüche

    1. Chipkarte, umfassend:

    einen Kartenkörper (22), der eine flexible Schaltung (10) umschließt;

    einen Hohlraum (30), der im Kartenkörper ausgebildet ist; und

    ein Kontaktfeld (20), das in dem Hohlraum aufgenommen ist;

    dadurch gekennzeichnet, dass sich leitende Verlängerungselemente (18) von der flexiblen Schaltung weg erstrecken, wobei ein die Verlängerungselemente bildendes Material eine Schmelztemperatur aufweist, die höher ist als die Schmelztemperatur eines den Kartenkörper bildenden Materials, und wobei die Verlängerungselemente eine Höhe von mindestens 200µm aufweisen;

    der Hohlraum die Verlängerungselemente freilegt; und

    das Kontaktfeld mit den Verlängerungselementen durch eine elektrische Verbindung verbunden ist, wobei die elektrische Verbindung bei einer Temperatur unterhalb der Schmelztemperatur des den Kartenkörper bildenden Materials gebildet wurde.


     
    2. Chipkarte nach Anspruch 1, wobei die elektrische Verbindung eine Bildungstemperatur unter 150°C, und bevorzugt unter 140°C aufweist.
     
    3. Chipkarte nach Anspruch 1 oder 2, wobei die elektrische Verbindung eine Lötverbindung umfasst, wobei ein die Lötverbindung bildendes Lötmaterial eine Aufschmelztemperatur unterhalb der Schmelztemperatur des den Kartenkörper (22) bildenden Materials aufweist, wobei das Lötmaterial bevorzugt ein Zinn-Wismut-Lot ist.
     
    4. Chipkarte nach Anspruch 1 oder 2, wobei die elektrische Verbindung einen leitfähigen Klebstoff mit einer Aushärtungstemperatur unterhalb der Schmelztemperatur des den Kartenkörper (22) bildenden Materials aufweist, wobei die elektrische Verbindung bevorzugt einen anisotropen leitfähigen Film umfasst.
     
    5. Chipkarte nach Anspruch 1 oder 2, wobei die elektrische Verbindung eine mechanische Verbindung umfasst.
     
    6. Chipkarte nach einem der vorstehenden Ansprüche, wobei die Verlängerungselemente (18) aus einem metallischen Material gebildet sind, wobei das metallische Material bevorzugt ein Lötmaterial ist.
     
    7. Chipkarte nach einem der vorstehenden Ansprüche, wobei die Verlängerungselemente (18) eine Höhe von mindestens 300µm aufweisen.
     
    8. Chipkarte nach einem der vorstehenden Ansprüche, weiter umfassend ein Sicherheitselement (16), das mit der flexiblen Schaltung (10) verbunden ist, wobei die Schaltung so eingerichtet ist, dass sich das Sicherheitselement nicht mit dem Kontaktfeld (20) überlappt, wobei die Chipkarte weiter ein biometrisches Authentifizierungsmodul umfasst, wobei das biometrische Authentifizierungsmodul konfiguriert ist, um die Identität eines Trägers der Chipkarte zu authentifizieren und das Sicherheitselement der Chipkarte anzuweisen, als Reaktion auf die Authentifizierung des Trägers der Karte Daten zu übertragen, und wobei die Chipkarte bevorzugt eine Antenne umfasst, die konfiguriert ist, um mit dem Sicherheitselement zu kommunizieren.
     
    9. Chipkarte nach einem der vorstehenden Ansprüche, wobei der Kartenkörper (22) aus einem Kunststoffmaterial gebildet ist und bevorzugt Polyvinylchlorid (PVC) und/oder Polyurethan (PU) umfasst.
     
    10. Verfahren zur Herstellung einer Chipkarte, umfassend:

    Bereitstellen eines Kartenkörpers (22), der eine flexible Schaltung (10) umschließt, wobei in dem Kartenkörper ein Hohlraum (30) ausgebildet ist; und

    Einsetzen eines Kontaktfeldes (20) in den Hohlraum;

    dadurch gekennzeichnet, dass der Kartenkörper leitende Verlängerungselemente umfasst, die sich von der flexiblen Schaltung weg erstrecken, wobei ein die Verlängerungselemente bildendes Material eine Schmelztemperatur aufweist, die höher ist als die Schmelztemperatur eines den Kartenkörper bildenden Materials, und wobei die Verlängerungselemente eine Höhe von mindestens 200µm aufweisen;

    der Hohlraum die Verlängerungselemente freilegt; und

    das Verfahren weiter das elektrische Verbinden des Kontaktfeldes mit den Verlängerungselementen bei einer Temperatur unterhalb der Schmelztemperatur des den Kartenkörper bildenden Materials umfasst.


     
    11. Verfahren nach Anspruch 10, wobei der Schritt des elektrischen Verbindens des Kontaktfeldes (20) mit den Verlängerungselementen (18) bei einer Temperatur unter 150°C, und bevorzugt unter 140°C, stattfindet.
     
    12. Verfahren nach Anspruch 10 oder 11, wobei die elektrische Verbindung eine metallische Lötverbindung umfasst, wobei die metallische Lötverbindung bevorzugt aus einem Zinn-Wismut-Lot gebildet ist, und wobei bevorzugt der Schritt des elektrischen Verbindens des Kontaktfeldes mit den Verlängerungselementen Ultraschalllöten verwendet.
     
    13. Verfahren nach Anspruch 10 oder 11, wobei die elektrische Verbindung eine mechanische Verbindung oder eine leitfähige Klebeverbindung umfasst.
     
    14. Verfahren nach einem der Ansprüche 10 bis 13, wobei der Schritt des Bereitstellens des Kartenkörpers (22) das Entfernen von Material von dem Kartenkörper umfasst, um den Hohlraum (30) zu erzeugen und die Verlängerungselemente (18) freizulegen, wobei der Schritt des Entfernens von Material bevorzugt das Entfernen von Material von den Verlängerungselementen umfasst, um eine flache Kontaktoberfläche zur Verbindung mit dem Kontaktfeld (20) zu erzeugen.
     
    15. Verfahren nach einem der Ansprüche 10 bis 14, wobei der Schritt des Bereitstellens des Kartenkörpers (22) das Bilden des Kartenkörpers durch ein thermisches Laminierungsverfahren umfasst, wobei die Schmelztemperatur des Materials, das die Verlängerungselemente (18) bildet, bevorzugt höher ist als die Temperatur der thermischen Laminierung.
     


    Revendications

    1. Carte à puce comprenant :

    un corps de carte (22) renfermant un circuit flexible (10) ;

    une cavité (30) formée dans le corps de carte ; et

    un plot de contact (20) reçu dans la cavité ;

    caractérisée en ce que des éléments d'extension conducteurs (18) s'éloignent du circuit flexible, dans laquelle un matériau formant les éléments d'extension a une température de fusion supérieure à la température de fusion d'un matériau formant le corps de carte, et dans laquelle les éléments d'extension ont une hauteur d'au moins 200 µm ;

    la cavité expose les éléments d'extension ; et

    le plot de contact est connecté aux éléments d'extension par une connexion électrique, dans lequel la connexion électrique a été formée à une température inférieure à la température de fusion du matériau formant le corps de carte.


     
    2. Carte à puce selon la revendication 1, dans laquelle la connexion électrique a une température de formation inférieure à 150 °C, et de préférence inférieure à 140 °C.
     
    3. Carte à puce selon la revendication 1 ou 2, dans laquelle la connexion électrique comprend une connexion par soudage, un matériau de soudage formant la connexion par soudage ayant une température de refusion inférieure à la fusion du matériau formant le corps de carte (22), de préférence dans laquelle le matériau de soudage est un soudage étain-bismuth.
     
    4. Carte à puce selon la revendication 1 ou 2, dans laquelle la connexion électrique comprend un adhésif conducteur ayant une température de durcissement inférieure à la température de fusion du matériau formant le corps de carte (22), de préférence dans laquelle la connexion électrique comprend un film conducteur anisotrope.
     
    5. Carte à puce selon la revendication 1 ou 2, dans laquelle la connexion électrique comprend une connexion mécanique.
     
    6. Carte à puce selon une quelconque revendication précédente, dans laquelle les éléments d'extension (18) sont formés à partir d'un matériau métallique, de préférence dans laquelle le matériau métallique est un matériau de soudage.
     
    7. Carte à puce selon une quelconque revendication précédente, dans laquelle les éléments d'extension (18) ont une hauteur d'au moins 300 µm.
     
    8. Carte à puce selon une quelconque revendication précédente, comprenant en outre un élément sécurisé (16) connecté au circuit flexible (10), dans laquelle le circuit est agencé de telle sorte que l'élément sécurisé ne chevauche pas le plot de contact (20), de préférence dans laquelle la carte à puce comprend en outre un module d'authentification biométrique, le module d'authentification biométrique étant configuré pour authentifier l'identité d'un porteur de la carte à puce, et pour commander l'élément sécurisé de la carte à puce pour transmettre des données en réponse à l'authentification du porteur de la carte, et de préférence dans laquelle la carte à puce comprend une antenne configurée pour communiquer avec l'élément sécurisé.
     
    9. Carte à puce selon une quelconque revendication précédente, dans laquelle le corps de carte (22) est formé à partir d'un matériau plastique, et de préférence comprend du polychlorure de vinyle (PVC) et/ou du polyuréthane (PU).
     
    10. Procédé de fabrication d'une carte à puce comprenant :

    la fourniture d'une carte à puce (22) renfermant un circuit flexible (10), dans lequel une cavité (30) est formée dans le corps de carte ; et

    l'insertion d'un plot de contact (20) dans la cavité ;

    caractérisé en ce que le corps de carte comprend des éléments d'extension conducteurs qui s'éloignent du circuit flexible, dans lequel un matériau formant les éléments d'extension a une température de fusion supérieure à la température de fusion d'un matériau formant le corps de carte, et dans lequel les éléments d'extension ont une hauteur d'au moins 200 µm ;

    la cavité expose les éléments d'extension ; et

    le procédé comprend en outre la connexion électrique du plot de contact aux éléments d'extension à une température inférieure à la température de fusion du matériau formant le corps de carte.


     
    11. Procédé selon la revendication 10, dans lequel l'étape de connexion électrique du plot de contact (20) aux éléments d'extension (18) s'effectue à une température inférieure à 150 °C, et de préférence inférieure à 140 °C.
     
    12. Procédé selon la revendication 10 ou 11, dans lequel la connexion électrique comprend une connexion par soudage métallique, de préférence dans lequel la connexion par soudage métallique est formée à partir d'un soudage étain-bismuth, et de préférence dans lequel l'étape de connexion électrique du plot de contact aux éléments d'extension utilise un soudage par ultrasons.
     
    13. Procédé selon la revendication 10 ou 11, dans lequel la connexion électrique comprend une connexion mécanique ou une connexion adhésive conductrice.
     
    14. Procédé selon l'une quelconque des revendications 10 à 13, dans lequel l'étape de fourniture du corps de carte (22) comprend l'enlèvement de matériau du corps de carte pour créer la cavité (30) et exposer les éléments d'extension (18), de préférence dans lequel l'étape d'enlèvement de matériau inclut l'enlèvement de matériau des éléments d'extension pour créer une surface de contact plate pour une connexion au plot de contact (20).
     
    15. Procédé selon l'une quelconque des revendications 10 à 14, dans lequel l'étape de fourniture du corps de carte (22) comprend la formation du corps de carte par un processus de stratification thermique, de préférence dans lequel la température de fusion du matériau formant les éléments d'extension (18) est supérieure à la température de la stratification thermique.
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description