(19)
(11)EP 3 436 612 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 17726983.4

(22)Date of filing:  21.03.2017
(51)International Patent Classification (IPC): 
C14B 5/00(2006.01)
B26D 5/12(2006.01)
A43D 8/02(2006.01)
(86)International application number:
PCT/IB2017/051625
(87)International publication number:
WO 2017/168286 (05.10.2017 Gazette  2017/40)

(54)

A PNEUMATIC CUTTING DEVICE HAVING AN OSCILLATING BLADE FOR LEATHER CUTTING MACHINES

PNEUMATISCHE SCHNEIDVORRICHTUNG MIT EINER OSZILLIERENDEN KLINGE FÜR LEDERSCHNEIDMASCHINEN

DISPOSITIF PNEUMATIQUE DE COUPE PRÉSENTANT UNE LAME OSCILLANTE POUR MACHINES DE DÉCOUPE DU CUIR


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 01.04.2016 IT UA20162207

(43)Date of publication of application:
06.02.2019 Bulletin 2019/06

(73)Proprietor: Teseo S.p.A.
63900 Fermo (IT)

(72)Inventor:
  • GALLUCCI, Gianni
    63813 Monte Urano (FM) (IT)

(74)Representative: Dall'Olio, Christian et al
INVENTION S.r.l. Via delle Armi, 1
40137 Bologna
40137 Bologna (IT)


(56)References cited: : 
WO-A1-2015/154830
DE-C- 518 958
CN-U- 201 778 031
US-A1- 2013 126 200
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention relates to the technical sector concerning cutting machines for cutting material in sheet or roll form, such as leathers, skins, synthetic leathers, etc.

    [0002] In particular, the present invention relates to a pneumatic cutting device having an oscillating blade able to be used and mounted on the cutting machines.

    DESCRIPTION OF THE PRIOR ART



    [0003] In this particular sector cutting machines comprise a frame, situated above a work plane when the materials to be cut, such as for example skins (leathers, skins), the synthetic leathers and the like, a cutting machine inferiorly provided with a cutting blade and movement means, borne by the frame and mobile with respect thereto, for moving the cutting device according to the three Cartesian axis above the work plane and positioning it above the material to be cut so that the cutting blade can be activated for cutting the material and being moved according to a given cutting pathway for cutting the material on the basis of profiles and/or predetermined or desired profiles.

    [0004] The cutting devices used for this purpose are predisposed so that the cutting blade can be made to oscillate vertically during the cutting of the material, from a lower cutting position to an upper cutting position, always remaining within the thickness of the material to be scored/cut.

    [0005] A type of cutting device at present used includes causing the cutting blade to oscillate vertically by means of a pneumatic activating mechanism.

    [0006] The known pneumatic cutting devices, i.e. with a pneumatic activation for vertical oscillation of the cutting blade, comprise an oscillating chamber, having an upper travel limit wall and a lower travel limit wall, an oscillating piston, predisposed with the head thereof in the oscillating chamber and with the relative stem connected to the cutting blade, and a pneumatic activating system, connected to a compressed air source, comprising a discharge and communicating with the oscillating chamber for oscillating the piston in the oscillating chamber between the lower stroke limit wall and the upper stroke limit wall, and therefore for vertically oscillating the cutting blade between a lower cutting position and an upper cutting position.

    [0007] Usually, the pneumatic activating system and the discharge are predisposed and configured so that the part of the oscillating chamber comprised between the head of the piston and the upper stroke limit wall and the part of the oscillating chamber comprised between the head of the piston and the lower stroke limit wall are made alternatively communicating with the compressed air source and the discharge in order to make the oscillation of the piston in the oscillating chamber possible.

    [0008] In particular, when the compressed air source is placed in communication with the part of the oscillating chamber comprised between the head of the piston and the upper stroke limit wall, the part of the oscillating chamber comprised between the head of the piston and the lower stroke limit wall is in communication with the discharge, in this case the piston is pneumatically pushed downwards; while when the compressed air source is placed in communication with the part of the oscillating chamber comprised between the piston head and the lower stroke limit wall, the part of the oscillating chamber comprised between the piston head and the upper stroke limit wall is in communication with the discharge, in this case the piston is pneumatically pushed upward, thus generating an oscillating motion in the oscillating chamber and the vertical oscillation of the cutting blade between the lower cutting position and the upper cutting position.

    [0009] In this regard, the oscillating chamber comprises two openings and the pneumatic activating system comprises conduits, communicating with the openings and with a shutter or another valve organ such as to make each of the two openings of the oscillating chamber, via the conduits, alternatively communicating with the compressed air source and the discharge.

    [0010] In these pneumatic cutting devices, therefore, the entity of the oscillation stroke of the oscillating piston is determined by the dimensions of the oscillating chamber, i.e. the distance existing between the upper stroke limit wall and the lower stroke limit wall: consequently the entity of the stroke of the oscillating piston in the oscillating chamber determines and imposes a limit on the entity of the vertical oscillation stroke of the cutting blade between the lower cutting position and the upper cutting position.

    [0011] This can constitute a drawback.

    [0012] In fact there is frequently a need to carry out the cutting operations on materials, in particular leather sheets, skins, leather, synthetic leathers, having different thicknesses with respect to one another, even having thicknesses of significantly different entity.

    [0013] For example, in the case of skins, the thickness of the skin on which the cutting operations are to be carried out can vary from 1 to 3 mm, even up to 4 mm.

    [0014] Therefore it is clear that a pneumatic cutting device comprising a piston that oscillates in an oscillating chamber which imparts only one predefined entity of the vertical oscillation travel of the cutting blade is poorly adapted to work operations with skins of different thicknesses.

    [0015] For example, a pneumatic cutting device having an oscillating chamber in which the distance between the lower stroke limit wall and the upper stroke limit wall imposes an oscillation travel of the oscillating piston internally thereof of 2 mm, i.e. an entity of the oscillation travel of the cutting blade between the lower cutting position and the upper cutting position of a maximum of 2 mm can be used for the cut of leather sheets having a thickness of up to 2 mm, but cannot be used for the cutting of leather sheets having a greater thickness, for example up to 3 or 4 mm.

    [0016] At present, therefore, when cutting operations are to be carried out on leathers having different thicknesses to one another, time by time a replacement of the pneumatic cutting device is carried out with another predisposed with an oscillating chamber having suitable dimensions for the entity of the vertical oscillation travel of the cutting blade requested by the thickness of the leather sheets.

    [0017] Document WO2015/154830 discloses a cutting device having a pneumatic oscillating blade realized according to the above described prior art pneumatic cutting devices.

    SUMMARY OF THE INVENTION



    [0018] An aim of the present invention is therefore to make available a new pneumatic cutting device having an oscillating blade for leather cutting machines able to obviate the above-mentioned drawbacks present in the prior art devices.

    [0019] In particular, an aim of the present invention is therefore to make available a new pneumatic cutting device having an oscillating blade able to carry out the cutting operations on leather sheets of different thicknesses without requiring any replacement of parts or components.

    [0020] The above-mentioned aim is attained by a pneumatic cutting device with an oscillating blade for leather cutting machines according to the contents of claim 1.

    [0021] Other advantageous aspects of the cutting device with oscillating blade proposed by the present invention are set down in the various relative dependent claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0022] The characteristics of the pneumatic cutting device with oscillating blade for leather cutting machines proposed by the invention are described in the following with reference to the accompanying tables of drawings, wherein:
    • figures 1A and 1B illustrate, in a front view from a first angle, the pneumatic cutting device with oscillating blade for leather cutting machines that is the object of the invention, represented in a first possible activating modality for cutting a first leather sheet having a given thickness, and with the cutting blade illustrated in two distinct operating configurations during oscillating activation thereof for cutting the first leather sheet, with figure 1A illustrating the lower cutting position reachable by the cutting blade during oscillation thereof, while figure 1B illustrates a first upper cutting position reachable by the cutting blade during oscillation thereof;
    • figures 1C and 1D also illustrate the pneumatic cutting device with oscillating blade of the invention in a front view from a different angle with respect to the angle of figures 1A and 1B, represented in a second possible activating modality for cutting a second leather sheet having a greater thickness than the first sheet of figures 1A and 1B, and with the cutting blade illustrated in two distinct operating configurations during oscillating activation thereof for cutting the second leather sheet, with figure 1C illustrating the lower cutting position reachable by the cutting blade during oscillation thereof, while figure 1D illustrates a second upper cutting position reachable by the cutting blade during oscillation thereof, being higher than the first upper cutting position illustrated in figure 1B;
    • figure 2A illustrates the pneumatic cutting device of the invention according to a plan view;
    • figure 2B is a front view of the device of figure 2A illustrated in the configuration of figure 1A, i.e. represented in the first activating mode with the cutting blade illustrated in the lower cutting position;
    • figure 2C is a view along section plane I-I of figure 2B, in a slightly larger scale with respect to figure 2B;
    • figure 2D represents, in a considerably larger scale, the detail denoted by the letter H in figure 2C;
    • figure 2E is a front view of the cutting device of figure 2A illustrated in the configuration of figure 1B, i.e. represented in the first activating mode with the cutting blade illustrated in the upper cutting position;
    • figure 2F is a view along section plane II-II of figure 2E, in a slightly larger scale;
    • figure 2G represents, in a considerably larger scale, the detail denoted by the letter K in figure 2F;
    • figure 3A illustrates the pneumatic cutting device of the invention according to a plan view with a different orientation with respect to the orientation of figure 2A;
    • figure 3B is a front view of the device of figure 3A illustrated in the configuration of figure 1C, i.e. represented in the second activating mode with the cutting blade illustrated in the lower cutting position;
    • figure 3C is a view along section plane III-III of figure 3B, in a slightly larger scale with respect to figure 3B;
    • figure 3D represents, in a considerably larger scale, the detail denoted by the letter H' in figure 3C;
    • figure 3E is a front view of the cutting device of figure 3A illustrated in the configuration of figure 1D, i.e. represented in the second activating mode with the cutting blade illustrated in the second upper cutting position;
    • figure 3F is a view along section plane IV-IV of figure 3E, in a slightly larger scale;
    • figure 3G represents, in a considerably larger scale, the detail denoted by the letter K' in figure 3F.

    DESCRIPTION OF THE PREFERRED EMBODIMENTS



    [0023] With reference to the appended tables of drawings, reference numeral (100) denotes the pneumatic cutting device having an oscillating blade for leather cutting machines that is the object of the present invention in its entirety.

    [0024] The cutting blade (100) comprises a body (C); a cutting blade (L) for cutting a leather sheet (V1, V2) (or another like material in sheet or roll form, such as leather or synthetic materials) stretched on a work plane (PL).

    [0025] In this regard, the cutting device (100) is mountable on cutting machines, for example numerically controlled.

    [0026] The cutting device (100) comprises a stem (14) which bears the cutting blade (L) and is predisposed slidably internally of the body (C); a first oscillating chamber (1) internally of the body (C) comprising an upper stroke limit wall (11) and a lower stroke limit wall (12), and a first oscillating piston (10), mounted on the stem (14), and which is predisposed in the first oscillating chamber (1), between the upper stroke limit wall (11) and the lower stroke limit wall (12) (see for example figures 2C and 2F).

    [0027] The first oscillating chamber (1) is dimensioned so that the upper stroke limit wall (11) and the lower stroke limit wall (12) are distanced from one another by a first distance (d1) (see for example figures 2D and 2G).

    [0028] The cutting device (100) comprises a first pneumatic activating system (P1), connectable to a compressed air source (A1), which communicates with the first oscillating chamber (1) and comprises at least a discharge (S1, S2).

    [0029] The first pneumatic activating system (P1) and the at least a discharge (S1, S2) are predisposed in the body (C) and configured so that, when the first pneumatic activating system (P1) is connected to a compressed air source (A1), and the compressed air source (A1) is activated, a first part (1A) of the first oscillating chamber (1) comprised between the first oscillating piston (10) and the lower stroke limit wall (12) and a second part (1B) of the first oscillating chamber (1) comprised between the first oscillating piston (10) and the upper stroke limit wall (11) are placed in communication alternatively with the compressed air source (A1) and the at least a discharge (S1, S2).

    [0030] In this way, the first oscillating piston (10) is pneumatically activated so as to oscillate in the first oscillating chamber (1), between the lower stroke limit wall (12) and the upper stroke limit wall (11), and therefore cause the cutting blade (L) to oscillate vertically by a first entity of vertical oscillation at most corresponding to the distance (d1) between the lower stroke limit wall (12) and the upper stroke limit wall (11), between a lower cutting position (L1) and a first upper cutting position (L2) in order to be able to carry out cutting operations of leathers (V1) having a maximum thickness (m1) not greater than the first distance (d1) (see figures 1A and 1B).

    [0031] In fact, when the first part (1A) of the first oscillating chamber (1) (comprised between the first oscillating piston (10) and the lower stroke limit wall (12) of the first oscillating chamber (1)) is in communication, through the first pneumatic activating system (P1), with the compressed air source (A1), the second part (1B) of the first oscillating chamber (1) (comprised between the first oscillating piston (10) and the upper stroke limit wall (11) of the first oscillating chamber (1)) is in communication with the at least a discharge (S1, S2) of the first pneumatic activating system (P1), so that the first oscillating piston (10) can be pneumatically pushed upwards [see for example figures 2C and 2D which illustrate this situation, with the first oscillating piston (10), which is in contact with the lower stroke limit wall (12) of the first oscillating chamber (1), and therefore in the condition of being pushed upwards, i.e. towards the upper stroke limit wall (11) of the first oscillating chamber (1) by the compressed air flow coming from the compressed air source (A1)].

    [0032] In a specular fashion, when the first part (1A) of the first oscillating chamber (1) (comprised between the first oscillating piston (10) and the lower stroke limit wall (12) of the first oscillating chamber (1)) is in communication with the at least a discharge (S1, S2) of the first pneumatic activating system (P1), the second part (1B) of the first oscillating chamber (1) (comprised between the first oscillating piston (10) and the upper stroke limit wall (11) of the first oscillating chamber (1)) is in communication, by means of the first pneumatic activating system (P1), with the compressed air source (A1), so that the first oscillating piston (10) can be pneumatically pushed downwards [see for example figures 2F and 2G which illustrate this situation, with the first oscillating piston (10), which is in contact with the upper stroke limit wall (11) of the first oscillating chamber (1), and therefore in the condition of being pushed downwards, i.e. towards the lower stroke limit wall (12) of the first oscillating chamber (1), by the compressed air flow coming from the compressed air source (A1)].

    [0033] The peculiarities of the cutting device (100) of the present invention consist in the fact that it comprises a second oscillating chamber (2), also predisposed internally of the body (C), arranged superiorly of the first oscillating chamber (1), and having an upper stroke limit surface (21) and a lower stroke limit surface (22); a second oscillating piston (20), mounted on the stem (14), and which is predisposed in the second oscillating chamber (2), between the upper stroke limit surface (21) and the lower stroke limit surface (22).

    [0034] In particular, the second oscillating chamber (2) is dimensioned so that the upper stroke limit surface (21) and the lower stroke limit surface (22) are distanced from one another by a second distance (d2) greater than the first distance (d1) by which the upper stroke limit wall (11) and the lower stroke limit wall (12) of the first oscillating chamber (1) are mutually distanced (see for example figures 3D and 3G).

    [0035] The cutting device (100) further has a second pneumatic activating system (P2), connectable to a compressed air source (A2), which communicates with the second oscillating chamber (2) and comprises at least a discharge (S3, S4).

    [0036] In particular, the second pneumatic activating system (P2), and the at least a discharge (S3, S4) are predisposed in the body (C) and are configured so that, when the second pneumatic activating system (P2) is connected to a compressed air source (A2), and this compressed air source (A2) is activated, a first part (2A) of the second oscillating chamber (2) comprised between the second oscillating piston (20) and the lower stroke limit surface (22) and a second part (2B) of the second oscillating chamber (2) comprised between the second oscillating piston (20) and the upper stroke limit surface (21) are placed in communication alternatively with the compressed air source (A2) and the at least a discharge (S3, S4).

    [0037] In this way, the second oscillating piston (20) is pneumatically activated to oscillate in the second oscillating chamber (2), between the lower stroke limit surface (22) and the upper stroke limit surface (21), and therefore cause the cutting blade (L) to be oscillated vertically with a second entity of vertical oscillation at most corresponding to the distance (d2) between the lower stroke limit surface (22) and the upper stroke limit surface (21), between a lower cutting position (L1) and a second upper cutting position (L2') at a greater height than the first upper cutting position (L2) with respect to the work plane (PL) in order to be able to carry out cutting operations of leathers (V2) having a maximum thickness (m2) not greater than (d2) (see figures 1C and 1D).

    [0038] In fact, when the first part (2A) of the first oscillating chamber (2) (comprised between the second oscillating piston (20) and the lower stroke limit surface (22) of the second oscillating chamber (2)) is in communication, through the second pneumatic activating system (P2), with the compressed air source (A2), the second part (2B) of the second oscillating chamber (2) (between the second oscillating piston (20) and the upper stroke limit surface (21) of the second oscillating chamber (2)) is in communication with the at least a discharge (S3, S4) of the second pneumatic activating system (P2), so that second oscillating chamber (20) can be pneumatically pushed upwards [see for example figures 3C and 3D which illustrate this situation, with the second oscillating piston (20), which is in contact with the lower stroke limit surface (22) of the second oscillating chamber (2), and therefore in the condition of being pushed upwards, i.e. towards the upper stroke limit surface (21) of the second oscillating chamber (2) by the compressed air flow coming from the compressed air source (A2)].

    [0039] In a specular fashion, when the first part (2A) of the second oscillating chamber (2) (comprised between the second oscillating piston (20) and the lower stroke limit surface (22) of the second oscillating chamber (2)) is in communication with the at least a discharge (S3, S4) of the second pneumatic activating system (P2), the second part (2B) of the second oscillating chamber (2) (comprised between the second oscillating piston (20) and the upper stroke limit surface (21) of the second oscillating chamber (2)) is in communication, through the second pneumatic activating system (P2), with the compressed air source (A2), so that the second oscillating piston (20) can be pneumatically pushed downwards [see for example figures 3F and 3G which illustrate this situation, with the second oscillating piston (20), which is in contact with the upper stroke limit surface (21) of the second oscillating chamber (2), and therefore in the condition of being pushed downwards, i. e. towards the lower stroke limit surface (22) of the second oscillating chamber (2) by the compressed air flow coming from the compressed air source (A2)].

    [0040] An aspect of particular significance of the cutting device (100) of the invention consists in the fact that the first pneumatic activating system (P1) and the second pneumatic activating system (P2) are independent of one another, in the sense that they are predisposed internally of the body (C) so as to be alternatively connectable to a compressed air source (A1, A2), so that the first oscillating chamber (1) and the second oscillating chamber (2) are alternatively placed in communication, singly and one at a time, to the compressed air source (A1, A2).

    [0041] Therefore, when the first pneumatic activating system (P1) is connected to the compressed air source (A1), and this compressed air source (A1) is activated, the cutting device (100) is able to pneumatically activate the first oscillating piston (10) to oscillate in the first oscillating chamber (1), between the relative lower stroke limit wall (12) and the relative upper stroke limit wall (11), and consequently cause the cutting blade (L) to oscillate vertically.

    [0042] In particular, the cutting blade (L) is thus made to oscillate vertically between a lower cutting position (L1) (see figures 1A, 2B, 2C, 2D), defined when the first oscillating piston (10) reaches abutment against the lower stroke limit wall (12) of the first oscillating chamber (1), and a first upper cutting position (L2) (see figures 1B, 2E, 2F, 2G), defined when the first oscillating piston (10) reaches abutment against the upper stroke limit wall (11) of the first oscillating chamber (1).

    [0043] In this way, the cutting blade (L) is made to oscillate vertically by a first entity of vertical oscillation at most corresponding to the distance (d1) between the lower stroke limit wall (12) and the upper stroke limit wall (11) of the first oscillating chamber (1), in order to be able to carry out cutting operations of leathers (V1) having a maximum thickness (m1) not greater than (d1) (see figures 1A and 1B).

    [0044] Instead, when the second pneumatic activating system (P2) is connected to the compressed air source (A2), and this compressed air source (A2) is activated, the cutting device (100) is able to pneumatically activate the second oscillating piston (20) to oscillate in the second oscillating chamber (2), between the relative lower stroke limit surface (22) and the relative upper stroke limit surface (21), and consequently cause the cutting blade (L) to oscillate vertically.

    [0045] In particular, the cutting blade (L) is thus made to oscillate vertically between a lower cutting position (L1) (see figures 1C, 3B, 3C, 3D), defined when the second oscillating piston (20) reaches abutment against the lower stroke limit surface (22) of the second oscillating chamber (2), and a second upper cutting position (L2) (see figures 1D, 3E, 3F, 3G), defined when the second oscillating piston (20) reaches abutment against the upper stroke limit surface (21) of the second oscillating chamber (2).

    [0046] In this way, the cutting blade (L) is made to oscillate vertically with a second entity of vertical oscillation at most corresponding to the distance (d2) between the lower stroke limit surface (22) and the upper stroke limit surface (21) of the second oscillating chamber (2), between a lower cutting position (L1) and a second upper cutting position (L2') at a greater height than the first upper cutting position (L2) with respect to the work plane (PL) in order to be able to carry out cutting operations of leathers (V2) having a maximum thickness (m2) not greater than (d2) (see figures 1C and 1D).

    [0047] In order to be able to activate the cutting blade (L) with these two possible vertical oscillations with two different entities of vertical oscillation (the second greater than the first), when the two pneumatic activating systems are activated alternatively to one another, i.e. when the two oscillating pistons are pneumatically activated alternatingly, in turn one at a time, to oscillate in the relative oscillating chamber, a further fundamental aspect and specification of the cutting device (100) of the invention consists in the particular way the upper stroke limit wall (11) of the first oscillating chamber (1) is configured and predisposed internally of the body (C).

    [0048] In fact, the upper stroke limit wall (11) of the first oscillating chamber (1) being configured in the body (C) in such a way as to be movable and positionable between a first static configuration (C1), in which it is positioned at the distance (d1) from the lower stroke limit wall (12) of the first oscillating chamber (1), and a second static configuration (C2) in which it is positioned in an upper position, and is dynamically movable from one to another static configuration (C1), (C2), and maintained in one or the other static configuration (C1), (C2), according to which between the two pneumatic activating systems (P1) (P2) is connected to a compressed air source.

    [0049] In particular:

    when the first pneumatic activating system (P1) is connected to the compressed air source (A1) and the second pneumatic activating system (P2) is not connected to the compressed air source (A2), the upper stroke limit wall (11) is pushed downwards and maintained in the first static configuration (C1) at the distance (d1) from the lower stroke limit wall (12), so as to define the upper stroke limit for the oscillation of the first oscillating piston (10) in the first oscillating chamber (1) (see in particular figures 2C, 2D, 2F, 2G);

    and when the first pneumatic activating system (P1) is not connected to the compressed air source (A1) and the second pneumatic activating system (P2) is connected to the compressed air source (A2), the upper wall (11) is pushed upwards with respect the lower stroke limit wall (12) of the first oscillating chamber (1) up to the second static configuration (C2), and maintained in this second static configuration (C2) so as to enable an upwards raising of the first oscillating piston (10) beyond the upper stroke limit thereof so as to enable the second pneumatic piston (20) to oscillate in the second oscillating chamber (2) up to reaching abutment against the upper stroke limit surface (21) of the second oscillating chamber (2), so that the cutting blade (L) can be made to oscillate vertically up to reaching the second upper cutting position (L2') for cutting a leather (V2) with a maximum thickness (m2) that is not greater than (d2) and greater than (d1) (in this regard figures 3C, 3D, 3F and 3G).



    [0050] Further and other advantageous characteristics and aspects of the cutting device (100) of the invention are set down in the following.

    [0051] In a preferred aspect, the upper stroke limit wall (11) of the first oscillating chamber (1) is configured and predisposed in the body (C) so that, when the first pneumatic activating system (P1) is not connected to the compressed air source (A1) and the second pneumatic activating system (P2) is connected to the compressed air source (A2), it can be movable upwards with respect to the body (C) up to a second static configuration (C2) in a position at a distance (d3) from the lower stroke limit wall (12) of the first oscillating chamber (1) that is greater than or equal to the distance (d2) between the lower stroke limit surface (22) and the upper stroke limit surface (21) of the second oscillating chamber (2) (see for example figures 3C and 3F).

    [0052] In this way, when the second oscillating piston (20) is pneumatically activated to oscillate in the second oscillating chamber (2) between the lower stroke limit surface (22) and the upper stroke limit surface (21) of the second oscillating chamber (2), which are distanced from one another by a distance (d2) that is greater than distance (d1), the first oscillating piston (10) can be freely made to oscillate without abutting against the upper stroke limit wall (11) positioned in the second static configuration (C2), before the second oscillating piston (20) reaches the upper stroke limit in abutment against the upper stroke limit surface (21) of the second oscillating chamber (2).

    [0053] In a further preferred aspect, the first oscillating chamber (1) and the second oscillating chamber (2) are predisposed internally of the body (C) at a reciprocal distance from one another so that when the first oscillating piston (10) is in abutment against the lower stroke limit wall (12) of the first oscillating chamber (1), the second oscillating piston (20) is also in abutment against the lower stroke limit surface (22) of the second oscillating chamber (2), and vice versa, so as to have a single lower cutting position (L1) for the cutting blade (V), both when the first pneumatic activating system (P1) is connected to the compressed air source (A1) and when the second pneumatic activating system (P2) is connected to the compressed air source (A2).

    [0054] In a particularly preferred and advantageous aspect, the cutting device (100) of the invention is such as to comprise a manoeuvring chamber (4) predisposed inside the body (C), arranged in a position between the first oscillating chamber (1) and the second oscillating chamber (2), and having a lower abutment surface (42) and an upper abutment surface (41); a piston (40) predisposed in the manoeuvring chamber (4) between the lower abutment surface (42) and the upper abutment surface (41) and which is provided with a through-hole (43) for enabling free passage of the stem (14); an abutting element (44) having a lower abutment wall (45) predisposed so that the lower abutment wall (45) is arranged in the first oscillating chamber (1) so as to constitute the upper stroke limit wall (11) of the first oscillating chamber (1); a connecting element (46), internally hollow for the passage of the stem (14), which connects and solidly constrains the piston (40) to the abutting element (44) through a passage hole (28) present in the lower abutment surface (42) of the manoeuvring chamber (4).

    [0055] The manoeuvring chamber (4) is such as to comprise: a first opening (4a), at or in proximity of the relative upper abutment surface (41), which is predisposed so as to be in communication with the first pneumatic activating system (P1) (see for example the figures 2C and 2F); and a second opening (4b), at or in proximity of the relative lower abutment surface (42), which in turn is predisposed so as to be in communication with the second pneumatic activating system (P2) (see for example figures 3C and 3F).

    [0056] In this way, owing to these special details, when the first pneumatic activating system (P1) is connected to the compressed air source (A1), and the compressed air source (A1) is activated to as to pneumatically activate the first oscillating piston (10) to oscillate in the first oscillating chamber (1), a compressed air flow can enter the manoeuvring chamber (4) through the first opening (4a) above the piston (40) so as to push the piston (40) downwards and maintain it against the lower abutment surface (42) of the manoeuvring chamber (4), and thus maintain, by means of the connecting element (46), the lower abutment wall (45) of the abutting element (44) positioned in the first static configuration (C1) at the distance (d1) from the lower stroke limit wall (12) of the first oscillating chamber (1), to constitute the upper stroke limit wall (11) for the first oscillating piston (10).

    [0057] Instead, when the second pneumatic activating system (P2) is connected to the compressed air source (A2), and the compressed air source (A2) is activated to pneumatically activate the second oscillating piston (20) to oscillate in the second oscillating chamber (2), a compressed air flow can enter the manoeuvring chamber (4) through the second opening (4b) below the piston (40) so as to push and raise the piston (40) upwards and against the upper abutment surface (41) of the manoeuvring chamber (4), and therefore raise the abutting element (44) upwards, by means of the connecting element (46), so that the relative lower abutment wall (45), which constitutes the upper stroke limit wall (11) of the first oscillating chamber (1), is raised and distanced from the lower stroke limit wall (12) of the first oscillating chamber (1) up to being positioned in the second static configuration (C2), for enabling an upward raising of the first oscillating piston (10) beyond the upper stroke limit thereof so as to enable the pneumatic piston (20) to oscillate in the second oscillating chamber (2) up to reaching abutment against the upper stroke limit surface (21) of the second oscillating chamber (2).

    [0058] Further and other particularly preferred aspects of the cutting device (100) proposed by the invention, as illustrated in the accompanying figures of the drawings, are as follows.

    [0059] The body (C) is conformed so as to comprise a lower cylindrical portion (16) and an upper cylindrical portion (17), the first oscillating chamber (1) being contained in the lower cylindrical portion (16) and the second oscillating chamber (2) being contained in the upper cylindrical portion (17) and the stem (14), which bears the cutting blade (L), being predisposed so as to be alternatingly slidable with a first part (14a) thereof in the lower cylindrical portion (16) and a second part (14b) thereof in the upper cylindrical portion (17).

    [0060] The first part (14a) of the stem (14) is conformed so as to exhibit: two annular portions (141, 142) in sliding contact with the walls of the lower cylindrical portion (16), an annular recess (140) comprised between the two annular portions (141, 142), and an internal conduit (143).

    [0061] The first part (14a) of the stem (14) further comprises through-holes (144) predisposed in a position below the annular recess (140) in order to place the outside of the second part (14a) of the stem (14) in communication with the internal conduit (143).

    [0062] The first oscillating piston (10) is provided with through-holes (130) (visible for example in figures 3C and 3F) that are predisposed so as to place the internal conduit (143) of the first part (14a) of the stem (14) in communication with the second part (1B) of the first oscillating chamber (10) comprised between the first oscillating piston (10) and the upper stroke limit wall (11) of the first oscillating chamber (1).

    [0063] The first pneumatic activating system (P1) is designed and conformed so as to comprise:

    a switching chamber (8) predisposed in a portion of the internal walls of the lower cylindrical portion (16) facing the first part (14a) of the stem (14);

    a main conduit (81) predisposed in the body (C) and involving the lower cylindrical portion (16) so as to be connectable and in communication with the compressed air source (A1) and with a lower part of the switching chamber (8),

    a secondary conduit (82) predisposed in the lower cylindrical portion (16) of the body (C) so as to be in communication with an upper part of the switching chamber (8) and with the first oscillating chamber (1) through a passage hole (83) in the lower stroke limit wall (12) of the first oscillating chamber (1);

    an upper discharge (S1), realised in the lower cylindrical portion (16) in a position above and in communication with the switching chamber (8) so as to be in communication with the outside;

    and a lower discharge (S2), realised in the lower cylindrical portion (16) in a position below the switching chamber (8) so as to be in communication with the outside.



    [0064] The annular recess (140) of the first part (14a) of the stem (14) is realised and conformed so as to have dimensions such that, and with the through-holes (144) of the first part (14a) of the stem (14) being positioned with respect to the annular recess (140) such that, with the alternating sliding of the stem (14), and therefore of the first part (14a) of the stem (14) within the lower cylindrical portion (16), the following conditions and situations emerge:

    when the annular recess (140) of the first part (14a) of the stem (14) is positioned at the switching chamber (8) of the first pneumatic activating system (P1), the through-holes (144) of the first part (14a) of the stem (14) are positioned at the lower discharge (S2) of the first pneumatic activating system (P1), so that the main conduit (81) of the first pneumatic activating system (P1) is in communication via the annular recess (140) with the secondary conduit (82) and therefore the compressed air source (A1), when activated, is in communication with the first part (1A) of the first oscillating chamber (10) and the lower stroke limit wall (12), while the second part (1B) of the first oscillating chamber (11), between first oscillating piston (10) and the upper stroke limit wall (11), is in communication with the lower discharge (S2) via the through-holes (130) of first oscillating piston (10), the internal conduit (143) and the through-holes (144) of the first part (14a) of the stem (14), so that the first oscillating piston (10) can be pneumatically pushed upwards (see figures 2C and 2D in this regard);

    and when the annular recess (140) of the first part (14a) of the stem (14) is positioned at both the upper discharge (S1) and the upper part of the switching chamber (8) communicating with the secondary conduit (82) of the first pneumatic activating system (P1), the through-holes (144) of the first part (14a) of the stem (14) are in the lower part of the switching chamber (8) and communicating with the main conduit (81) of the first pneumatic activating system (P1), so that the compressed air source (A1), when activated, is in communication, through the through-holes (144) and the internal conduit (143) of the first part (14a) of the stem (14), and the through-holes (130) present in the first oscillating piston (10), with the second part (1B) of the first oscillating chamber (1) between the upper stroke limit wall (11) and the first oscillating piston (10), while the first part (1A) of the first oscillating chamber (1) between the first oscillating piston (10) and the lower stroke limit wall (12), is in communication with the upper discharge (S1) of the first pneumatic activating system (P1) through the secondary conduit (82), so that the first oscillating piston (10) can be pneumatically pushed downwards (see figures 2F and 2G in this regard).



    [0065] Further, the first pneumatic activating system (P1) comprises a service conduit (84), branching from the main conduit (81) and opening into the first opening (4a) of the manoeuvring chamber (4).

    [0066] In this way, when the first pneumatic activating system (P1) is connected to the compressed air source (A1), and this compressed air source (A1) is activated to oscillate the first oscillating piston (10) internally of the first oscillating chamber (1), a compressed air flow can enter the manoeuvring chamber through the service conduit (84) and the first opening (4a) and push the piston (40) downwards and maintain it against the lower abutment surface (42) of the manoeuvring chamber (4), and therefore push the abutting element (44) downwards, by means of the connecting element (46), so that the relative lower abutment wall (45), which constitutes the upper stroke limit wall (11) of the first oscillating chamber (1), can be maintained in the first static configuration (C1) at distance (d1) from the lower stroke limit wall (12) of first oscillating chamber (1), to define the upper stroke limit for the oscillation of the first oscillating piston (1).

    [0067] In turn, the second part (14b) of the stem (14) is conformed so as to exhibit: two annular portions (151, 152) in sliding contact with the walls of the upper cylindrical portion (17) and an annular recess (150) comprised between the two annular portions (151, 152), and an internal conduit (153).

    [0068] The second part (14b) of the stem (14) further comprises through-holes (154) predisposed in a position below the annular recess (150) in order to place the outside of the second part (14b) of the stem (14) in communication with the internal conduit (153).

    [0069] The second oscillating piston (20) is provided with through-holes (160) (see for example figures 3D and 3G) which are predisposed so as to place the internal conduit (153) of the second part (14b) of the stem (14) in communication with the second part (2B) of the second oscillating chamber (20) comprised between the second oscillating piston (20) and the upper stroke limit surface (21) of the second oscillating chamber (2).

    [0070] The second pneumatic activating system (P2) is designed and conformed so as to comprise:

    a switching chamber (9) predisposed in a portion of the internal walls of the upper cylindrical portion (17) facing the second part (14b) of the stem (14);

    a main conduit (91) predisposed in the body (C) and involving the upper cylindrical portion (17) so as to be connectable and in communication with the compressed air source (A2) and with a lower part of the switching chamber (9);

    a secondary conduit (92) predisposed in the upper cylindrical portion (17) of the body (C) so as to be in communication with an upper part of the switching chamber (9) and with the second oscillating chamber (2) through a passage hole (93) in the lower stroke limit surface (22) of the second oscillating chamber (2);

    an upper discharge (S3), realised in the upper cylindrical portion (17) in a position above and in communication with the switching chamber (9) and so as to be in communication with the outside;

    and a lower discharge (S4) communicating with the outside realised in the upper cylindrical portion (17) in a position below the switching chamber (9) and so as to be in communication with the outside.



    [0071] The annular recess (150) of the second part (14b) of the stem (14) has dimensions such that, and with the through-holes (154) of the second part (14b) of the stem (14) being positioned with respect to the annular recess (150) such that, with the alternating sliding of the stem (14), and therefore of the second part (14b) of the stem (14) internally of the upper cylindrical portion (17) the following conditions and situations result:

    when the annular recess (150) of the second part (14b) of the stem (14) is positioned at the switching chamber (9) of the second pneumatic activating system (P2), the through-holes (154) of the second part (14b) of the stem are positioned at the lower discharge (S4) of the second pneumatic activating system (P2), so that the main conduit (91) of the second pneumatic activating system (P2) is in communication through the annular recess (150) with the secondary conduit (92) and therefore the compressed air source (A2), when activated, is in communication with the first part (2A) of the second oscillating chamber (2) between the second oscillating piston (20) and the lower stroke limit surface (22), while the second part (2B) of the second oscillating chamber (2) between the second oscillating piston (20) and the upper stroke limit surface (21) is in communication with the lower discharge (S4) of the second pneumatic activating system (P2) through the through-holes (160) of the second oscillating piston (20), the internal conduit (153) and the through-holes (154) of the second part (14b) of the stem (14), so that the second oscillating piston (20) can be pneumatically pushed upwards (in this regards see figures 3C and 3D);

    and when the annular recess (150) of the second part (14b) of the stem (14) is positioned at both the upper discharge (S3) and the upper part of the switching chamber (9) communicating with the secondary conduit (92) of the second pneumatic activating system (P2), the through-holes (154) of the second part (14b) of the stem (14) are in the lower part of the switching chamber (9) and communicating with the main conduit (91) of the second pneumatic activating system (P2), so that the compressed air source (A2) when activated, is in communication, through the through-holes (154) and the internal conduit (153) of the second part (14b) of the stem (14), and the through-holes (160) present in the second oscillating piston (20), with the second part (2B) of the second oscillating chamber (2) between the upper stroke limit surface (21) and the second oscillating piston (20), while the first part (2A) of the second oscillating chamber (2) between the second oscillating piston (20) and the lower stroke limit surface (22) is in communication with the upper discharge (S3) of the second pneumatic activating system (P2), via the secondary conduit (92), so that the second oscillating piston (20) can be pneumatically pushed downwards (in this regard see figures 3F and 3G).



    [0072] The second pneumatic activating system (P2) comprises a service conduit (94), branching from the main conduit (91) and which is predisposed in such a way as to open into the second opening (4b) of the manoeuvring chamber (4).

    [0073] In this way, when the second pneumatic activating system (P2) is connected to the compressed air source (A2), and this compressed air source (A2) is activated to oscillate the second oscillating piston internally of the second oscillating chamber (2), a compressed air flow can enter the manoeuvring chamber through the service conduit (94) and the second opening (4b) and push the piston (40) upwards and maintain it against the upper abutment surface (41) of the manoeuvring chamber (4), and therefore push the abutting element (44) upwards, by means of the connecting element (46), so that the relative lower abutment wall (45), which constitutes the upper stroke limit wall (11) of the first oscillating chamber (1), can be raised upwards and positioned in the second static configuration (C2), at a distance (d3) from the lower stroke limit wall (12) of the first oscillating chamber (1) that is greater than or equal to the distance (d2) between the lower stroke limit surface (22) and the upper stroke limit surface (21) of the second oscillating chamber (2), so as to enable the first oscillating piston (10) to be raised upwards beyond the upper oscillation stroke limit thereof, so as to enable the second pneumatic piston (20) to oscillate in the second oscillating chamber (2) up to reaching abutment against the upper stroke limit surface (21) of the second oscillating chamber (2).

    [0074] In a possible embodiment, the first pneumatic activating system (P1) is connected to and in communication with a first compressed air source (A1) and the second pneumatic activating system (P2) is connected to and in communication with a second compressed air source (A2), the first compressed air source (A1) and the second compressed air source (A2) being predisposed to be activated alternatively and independently of one another.

    [0075] In a further possible embodiment, the first pneumatic activating system (P1) and the second pneumatic activating system (P2) can be connected to and in communication with a second compressed air source (A1, A2) by means of a valve organ (not illustrated in the accompanying figures as of known type) predisposed and commandable so that the compressed air source (A1, A2) can direct the compressed air flow alternatively to the first pneumatic activating system (P1) or to the second pneumatic activating system (P2).

    [0076] In the accompanying figures of the drawings, the compressed air sources, in the first case, or the compressed air source, in the second case, have been schematically denoted only with references (A1) and (A2) and with relative arrows indicating the compressed air flow coming therefrom and destined to supply the first pneumatic activating system (P1) or the second pneumatic activating system (P2), according to the type and thickness of the leather sheet to be scored and cut.

    [0077] By way of example, in the following a description is made of a possible functioning cycle of the cutting device (100) according to the invention, for example in a case in which it is desired to carry out a cut of a first leather sheet (V1), having a first thickness (m1) not greater than the distance (d1), i.e. the working dimensions of the first oscillating chamber (1) (see figure 1A), starting for example from the situation illustrated in figures 2B, 2C and 2D, wherein the first pneumatic activating system (P1) is connected to a compressed air source (A1) while the second pneumatic activating system (P2) is not connected to any compressed air source, the first oscillating piston (10) being in contact with the lower stroke limit wall (12) of first oscillating chamber (1), i.e. with the cutting blade (L) which is in the lower cutting position (L1), with the second oscillating piston (20) in contact with the lower stroke limit surface (22) of the second oscillating chamber (2) and with the piston (40) which is in contact with the lower abutment surface (42) of the manoeuvring chamber (4), and therefore the upper stroke limit wall (11) of the first oscillating chamber (1) positioned in the first static configuration (c1) at distance (d1) from the lower stroke limit wall (12) of the first oscillating chamber (1).

    [0078] In this situation, the first part (14a) of the stem (14) is positioned with respect to the lower cylindrical portion (16) of the body (C) in a position such that the recess (140) of the first part (14a) of the stem (14) is positioned at the switching chamber (8) of the first pneumatic activating system (P1), thus placing the main conduit (81) in communication with the secondary conduit (82), while the holes (144) of the first part (14a) of the stem (14) are at the lower discharge (S2) of the first pneumatic activating system (P1).

    [0079] Therefore the compressed air source (A1), by means of the main conduit (81), the switching chamber (8), the secondary conduit (82) of the first pneumatic activating system (P1), and the passage hole (83) present in the lower stroke limit surface (12) of the first oscillating chamber (1), is in communication with the first part (1A) of the first oscillating chamber (1) comprised between the second oscillating piston (10) and lower stroke limit wall (12) of the oscillating chamber (1), while the second part (1B) of the second oscillating chamber (1) comprised between the first oscillating piston (10) and the upper stroke limit wall (11) of the first oscillating chamber (1), via the holes (130) present in the first oscillating piston (10), the internal conduit (143) and the holes (144) of the first part (14a) of the stem (14), is in communication with the lower discharge (S2).

    [0080] The compressed air flow coming from the compressed air source (A1) arrives therefore in the first part (1A) of the first oscillating chamber (1), below first oscillating piston (10), pushing it consequently upwards, since the second part (1B) of the first oscillating chamber (1), above first oscillating piston (10), is connected with the lower discharge (S2) of the first pneumatic activating system (P1), and then with the outside.

    [0081] The first oscillating piston (10) is pushed upwards, with a contextual sliding upwards of the stem (14) in the body (C) and an upwards displacement of the cutting blade (L).

    [0082] At the same time, a part of the compressed air flow coming from the compressed air source (A1), via the service conduit (84) of the first pneumatic activating system (P1) and via the first opening (4a) present in the manoeuvring chamber (4), enters the manoeuvring chamber (4) above the piston (40), maintaining it in contact and in abutment against the lower abutment surface (42) of the manoeuvring chamber (4).

    [0083] In this way, the piston (40), by means of the connecting element (46), maintains the lower abutment wall (45) of the abutting element (44) positioned in the first static configuration (C1) at distance (d1) from the lower stroke limit wall (12) of the first oscillating chamber (1), for constituting the upper stroke limit wall (11) of the first oscillating chamber (1) and constituting the upper stroke limit for oscillation of the first oscillating piston (10).

    [0084] When the first oscillating piston (10) reaches abutment against the upper stroke limit wall (11) of the first oscillating chamber (1) (see figures 2F, 2G), the cutting blade (L) reaches the first upper cutting position (L2) (see figure 1B), while the sliding upwards of the first part (14a) of the stem (14) in the lower cylindrical portion (16) of the body (C) determines the following condition (see in particular figure 2G):
    the holes (144) of the first part (14a) of the stem (14) are at the lower part of the switching chamber (8) and therefore in communication with the main conduit (81) of the first pneumatic activating system (P1), the recess (140) of first part (14a) of the stem (14) is positioned both at the upper discharge (S1) and in the upper part of the switching chamber (8), and therefore in communication with the secondary conduit (82) of the first pneumatic activating system (P1).

    [0085] In this situation, the main conduit (81), via the holes (144) and the internal conduit (143) of the first part (14a) of the stem (14) and the holes (130) of the second oscillating piston (10), is in communication with the second part (1B) of the first oscillating chamber (1) comprised between the first oscillating piston (10) and the upper stroke limit wall (11) of the first oscillating chamber (1), while the first part (1A) of the first oscillating chamber (1) below the first oscillating piston (10), via the passage hole (83), present in the lower stroke limit wall (12) of the first oscillating chamber (1), and the secondary conduit (82) is in communication with the upper discharge (S1) of the first pneumatic activating system (P1).

    [0086] Therefore the compressed air flow coming from the compressed air source (A1) arrives therefore in the second part (1B) of the first oscillating chamber (1), below first oscillating piston (10), pushing it consequently downwards, since the first part (1A) of the first oscillating chamber (1), below the first oscillating piston (10), is connected with the upper discharge (S1) of the first pneumatic activating system (P1), and therefore with the outside.

    [0087] The first oscillating piston (10) is pushed upwards, with a contextual sliding downwards of the stem (14) in the body (C) and a downwards displacement of the cutting blade (L), for returning into the preceding situation of figure 1A, i.e. into the lower cutting position (L1).

    [0088] During the above-described oscillation of the first oscillating piston (10) in the first oscillating chamber (1), the part of compressed air flow entering the manoeuvring chamber (4) maintains the piston (40) always in abutment against the lower abutment surface (42) of the manoeuvring chamber (4), and therefore the upper stroke limit wall (11) of the first oscillating chamber (1) fixed and stationary in the first static configuration (C1) at the distance (d1) from the lower stroke limit wall (12) of the first oscillating chamber (1).

    [0089] Again, during the oscillation of the first oscillating chamber (10) in the first oscillating chamber (1), the second oscillating piston (20) can oscillate freely in the second oscillating chamber (2), without constituting an impediment to the oscillation of the first oscillating piston (10), since the second oscillating chamber (2) has larger dimensions with respect to the first oscillating chamber (1), i.e. the relative upper and lower stroke limit surface (21, 22) are distanced by a distance (d2) greater than the above-mentioned distance (d1).

    [0090] The cycle described in the following is repeated as long as the first pneumatic activating system (P1) is connected to the compressed air source (A1), and this is maintained active, while the second pneumatic activating system (P2) is not connected to any compressed air source, thus determining the oscillation of the cutting blade (L) with a first entity of vertical oscillation, between the lower cutting position (L1) and the first upper cutting position (L2) (figures 1A and 1B).

    [0091] At a moment when in becomes necessary to carry out cutting and scoring operations on a second leather sheet (V2) having a greater thickness (m2), in particular a greater thickness (m2) than the above-mentioned distance (d1), it is sufficient to deactivate/interrupt the connection between the first pneumatic activating system (P1) and the compressed air source (A1), and instead connect the second pneumatic activating system (P2) with the compressed air source (A2) and activate the compressed air source (A2).

    [0092] In this case, the compressed air flow coming from the compressed air source (A2) will only supply the second pneumatic activating system (P2), and therefore a part of the compressed air flow, via the service conduit (94) and the second opening (4b) of the manoeuvring chamber (4), will enter the manoeuvring chamber (4) below the piston (4) so as to push and raise the piston (40) upwards and against the upper abutment surface (41) of the manoeuvring chamber (4), and therefore raise the abutting element (44) upwards by means of the connecting element (46) so that the relative lower abutment wall (45), which constitutes the upper stroke limit wall (11) of the first oscillating chamber (1), is raised and distanced from the lower stroke limit wall (12) of the first oscillating chamber (1) up to being positioned in the second static configuration (C2).

    [0093] In this way, the compressed air flow supplying the second pneumatic activating system (P2) can activate the oscillation of the second oscillating piston (20) in the second oscillating chamber (2), since the first oscillating piston (10) can be freely raised beyond its upper oscillation stroke limit (when it is activated by the first pneumatic activating system P1)), as it is not impeded by the presence of the upper stroke limit wall (11) which is positioned in the second static configuration (C2), at a distance (d3) from the lower stroke limit wall (12) of the first oscillating chamber (1) that is greater than or equal to the distance (d2) between the upper and lower stroke limit surfaces (11, 12) of the second oscillating chamber (2) (see figures 3C and 3D).

    [0094] Therefore, in this case, the operating cycle is as follows, considering a start from the situation illustrated in figures 3B, 3C and 3D, in which the second pneumatic activating system (P2) is connected to a compressed air source (A2) while the first pneumatic activating system (P1), as mentioned, is not connected to any compressed air source, with the second oscillating piston (20) being in contact with the lower stroke limit surface (22) of the second oscillating chamber (2) (and also the first oscillating piston (10) being in contact with the lower stroke limit wall (12) of the first oscillating chamber (1)), i.e. with the cutting blade (L) in the lower cutting position (L1) and with the piston (40) which is maintained pushed upwards and in contact with the upper abutment surface (42) of the manoeuvring chamber (4), so as to maintain the upper wall (11) of the first oscillating chamber (1) in the second above-mentioned static configuration (C2).

    [0095] In this situation, the second part (14b) of the stem (14) is positioned with respect to the upper cylindrical portion (17) of the body (C) in a position such that the recess (150) of the second part (14b) of the stem (14) is positioned at the switching chamber (9) of the second pneumatic activating system (P2), thus placing the main conduit (91) in communication with the secondary conduit (92), while the holes (154) of the second part (14b) of the stem (14) are at the lower discharge (S4) of the second pneumatic activating system (P2).

    [0096] Therefore the compressed air source (A2), by means of the main conduit (91), the switching chamber (9), the secondary conduit (92) of the second pneumatic activating system (P2), and the passage hole (93) present in the lower stroke limit surface (22) of the second oscillating chamber (2), is in communication with the first part (2A) of the second oscillating chamber (2) comprised between the second oscillating piston (20) and the lower stroke limit surface (22) of the second oscillating chamber (2), while the second part (2B) of the second oscillating chamber (2) comprised between the oscillating piston (20) and the upper stroke limit surface (21) of the second oscillating chamber (2), via the holes (160) present in the second oscillating piston (20), the internal conduit (153) and the holes (154) of the second part (14b) of the stem (14), is in communication with the lower discharge (S4) of the second pneumatic activating system (P2).

    [0097] The compressed air flow coming from the compressed air source (A2) arrives in the first part (2A) of the second oscillating chamber (2), below the second oscillating piston (20), pushing it consequently upwards, since the second part (2B) of the second oscillating chamber (2), above the second oscillating piston (20), is connected with the lower discharge (S4) of the second pneumatic activating system (P2), and therefore with the outside.

    [0098] The second oscillating piston (20) is therefore pushed upwards, with a contextual sliding upwards of the stem (14) in the body (C) and an upwards displacement of the cutting blade (L).

    [0099] When the second oscillating piston (20) reaches abutment against the upper stroke limit surface (21) of the second oscillating chamber (2) (see figures 3F, 3G), the cutting blade (L) reaches the second upper cutting position (L2') (see figure 1D) at a greater height from the work plane (PL) with respect to the previous first upper cutting position (L2) (when it was the first pneumatic activating system (P1) that was connected with the compressed air source), while the sliding upwards of the second part (14b) of the stem (14) in the upper cylindrical portion (17) of the body (C) determines the following condition (see in particular figure 3G):
    the holes (154) of the second part (14b) of the stem (14) are at the lower part of the switching chamber (9) and therefore in communication with the main conduit (91) of the second pneumatic activating system (P2), the recess (150) of the first part (14b) of the stem (14) is positioned both at the upper discharge (S3) and in the upper part of the switching chamber (9), and therefore in communication with the secondary conduit (92) of the second pneumatic activating system (P2).

    [0100] In this situation, the main conduit (91), via the holes (154) and the internal conduit (153) of the second part (14b) of the stem (14) and the holes (160) of the second oscillating piston (20), is in communication with the second part (2B) of the second oscillating chamber (2), comprised between the second oscillating piston (20) and the upper stroke limit surface (21) of the second oscillating chamber (2), while the first part (2A) of the second oscillating chamber (2) below the second oscillating piston (20), via the passage hole (93), present in the lower stroke limit surface (22) of the second oscillating chamber (2), and the secondary conduit (92) is in communication with the upper discharge (S3) of the second pneumatic activating system (P2).

    [0101] Therefore the compressed air flow coming from the compressed air source (A2) arrives in the second part (2B) of the second oscillating chamber (2), below the second oscillating piston (20), pushing it consequently downwards, since the first part (2A) of the second oscillating chamber (2), below the second oscillating piston (20), is connected with the upper discharge (S3) of the second pneumatic activating system (P2), and therefore with the outside.

    [0102] The second oscillating piston (20) is therefore pushed downwards, with a contextual sliding downwards of the stem (14) in the body (C) and a downwards displacement of the cutting blade (L), for returning into the preceding situation of figure 1C, i.e. in the lower cutting position (L1).

    [0103] During the above-described oscillation of the second oscillating piston (20) in the second oscillating chamber (2), the part of compressed air flow entering the manoeuvring chamber (4) maintains the piston (40) always in abutment against the upper abutment surface (42) of the manoeuvring chamber (4), and therefore the upper stroke limit wall (11) of the first oscillating chamber (1) fixed and stationary in the second static configuration (C2) at the distance (d3) from the lower stroke limit wall (12) of the first oscillating chamber (1), enabling the first oscillating piston (10) to freely oscillate upwards with no constraint.

    [0104] The cycle described in the following is repeated until the second pneumatic activating system (P2) is connected to the compressed air source (A2), and this is maintained active, thus determining the oscillation of the cutting blade (L) with a second entity of vertical oscillation, between the lower cutting position (L1) and the second upper cutting position (L2') (figures 1A and 1D), at a greater height from the work plane (PL) with respect to the first upper cutting position (L2) reachable when it is the first pneumatic activating system (P1) that is connected to the compressed air source.

    [0105] The cutting device (100) of the invention has been described above, and illustrated in the accompanying figures, with the second oscillating chamber (2) arranged superiorly of the first oscillating chamber (1): in a different possible arrangement that is entirely equivalent and therefore falling within the scope of the invention as claimed, the second oscillating chamber (2) might also be arranged inferiorly of the first oscillating chamber (1).

    [0106] According to other possible equivalent arrangements, and therefore also falling within the scope of the invention as it is claimed, instead of the upper stroke limit wall (11) of the first oscillating chamber (1) (i.e. the smaller one) it might be the lower stroke limit wall (12) of the first oscillating chamber (1) that is predisposed and configured so as to be mobile and movable between two static configurations so as to be able to increase the distance from the upper stroke limit wall (11) when it is necessary to supply, with compressed air, the second pneumatic activating system (P2) in order to oscillate the second oscillating piston (20) in the second oscillating chamber (2) for cutting and scoring leather sheets having a greater thickness.


    Claims

    1. A cutting device (100) having an oscillating blade for leather cutting machines,
    comprising:

    a body (C);

    a cutting blade (L) for cutting a leather sheet (V1, V2) stretched on a work plane (PL);

    a stem (14) which bears the cutting blade (L) and predisposed slidably internally of the body (C);

    a first oscillating chamber (1) internally of the body (C) comprising an upper stroke limit wall (11) and a lower stroke limit wall (12), the first oscillating chamber (1), being dimensioned so that the upper stroke limit wall (11) and the lower stroke limit wall (12) are distanced from one another by a first distance (d1);

    a first oscillating piston (10), mounted on the stem (14), and which is predisposed in the first oscillating chamber (1), between the upper stroke limit wall (11) and the lower stroke limit wall (12),

    a first pneumatic activating system (P1), connectable to a compressed air source (A1), communicating with the first oscillating chamber (1) and comprising at least a discharge (S1, S2), the first pneumatic activating system (P1) and the at least a discharge (S1, S2) being predisposed in the body (C) and configured so that, when the first pneumatic activating system (P1) is connected to a compressed air source (A1), a first part (1A) of the first oscillating chamber (1) comprised between the first oscillating piston (10) and the lower stroke limit wall (12) and a second part (1B) of the first oscillating chamber (1) comprised between the first oscillating piston (10) and the upper stroke limit wall (11) are placed in communication alternatively with the compressed air source (A1) and the at least a discharge (S1, S2), so as to pneumatically activate the first oscillating piston (10) to oscillate in the first oscillating chamber (1), between the lower stroke limit wall (12) and the upper stroke limit wall (11), and therefore cause the cutting blade (L) to oscillate vertically by a first entity of vertical oscillation at most corresponding to the distance (d1) between the lower stroke limit wall (12) and the upper stroke limit wall (11), between a lower cutting position (L1) and a first upper cutting position (L2) in order to be able to carry out cutting operations of leathers (V1) having a maximum thickness (m1) not greater than the first distance (d1);

    characterised in that it comprises:

    a second oscillating chamber (2) internally of the body (C), arranged superiorly of the first oscillating chamber (1), and having an upper stroke limit surface (21) and a lower stroke limit surface (22); the second oscillating chamber (2), being dimensioned so that the upper stroke limit surface (21) and the lower stroke limit surface (22) are distanced from one another by a second distance (d2) greater than the first distance (d1) with which the upper stroke limit wall (11) and the lower stroke limit wall (12) of the first oscillating chamber (1) are distanced;

    a second oscillating piston (20), mounted on the stem (14), and which is predisposed in the second oscillating chamber (2), between the upper stroke limit surface (21) and the lower stroke limit surface (22),

    a second pneumatic activating system (P2), connectable to a compressed air source (A2), communicating with the second oscillating chamber (2) and comprising at least a discharge (S3, S4), the second pneumatic activating system (P2), and the at least a discharge (S3, S4) being predisposed in the body (C) and being configured so that, when the second pneumatic activating system (P2) is connected to a compressed air source (A2), a first part (2A) of the second oscillating chamber (2) comprised between the second oscillating piston (20) and the lower stroke limit wall (22) and a second part (2B) of the second oscillating chamber (2) comprised between the second oscillating piston (20) and the upper stroke limit surface (21) are placed in communication alternatively with the compressed air source (A2) and the at least a discharge (S3, S4), so as to pneumatically activate the second oscillating piston (20) to oscillate in the second oscillating chamber (2), between the lower stroke limit surface (22) and the upper stroke limit surface (21), and therefore cause the cutting blade (L) to oscillate vertically with a second entity of vertical oscillation at most corresponding to the distance (d2) between the lower stroke limit surface (22) and the upper stroke limit surface (21), between a lower cutting position (L1) and a second upper cutting position (L2') at a greater height than the first upper cutting position (L2) with respect to the work plane (PL) in order to be able to carry out cutting operations of leathers (V2) having a maximum thickness (m2) not greater than (d2);

    and in that the first pneumatic activating system (P1) and the second pneumatic activating system (P2) are predisposed internally of the body (C) so as to be alternatively connectable to a compressed air source (A1, A2), so that the first oscillating chamber (1) and the second oscillating chamber (2) are alternatively placed in communication, singly and one at a time, to the compressed air source (A1, A2); the upper stroke limit wall (11) of the first oscillating chamber (1) being configured and predisposed in the body (C) in such a way as to be movable and positionable between a first static configuration (C1), in which it is positioned at the distance (d1) from the lower stroke limit wall (12) of the first oscillating chamber (1), and a second static configuration (C2) in which it is positioned in a superior position so that: when the first pneumatic activating system (P1) is connected to the compressed air source (A1) and the second pneumatic activating system (P2) is not connected to the compressed air source (A2), the upper stroke limit wall (11) can be movable and maintained in the first static configuration (C1) at the distance (d1) from the lower stroke limit wall (12), so as to define the upper stroke limit for the oscillation of the first oscillating piston (10) in the first oscillating chamber (1), and when the first pneumatic activating system (P1) is not connected to the compressed air source (A1) and the second pneumatic activating system (P2) is connected to the compressed air source (A2), the upper stroke limit wall (11) can be movable upwards with respect the lower stroke limit wall (12) of the first oscillating chamber (1) up to the second static configuration (C2), and maintained in this second static configuration (C2) so as to enable an upwards raising of the first oscillating piston (10) beyond the upper stroke limit thereof so as to enable the second oscillating piston (20) to oscillate in the second oscillating chamber (2) up to reaching abutment against the upper stroke limit surface (21) of the second oscillating chamber (2), so that the cutting blade (L) can be made to oscillate vertically up to reaching the second upper cutting position (L2') for cutting a leather (V2) with a maximum thickness (m2) that is not greater than (d2) and greater than (d1).


     
    2. The cutting device of claim 1, characterised in that: the upper stroke limit wall (11) of the first oscillating chamber (1) is configured and predisposed in the body (C) so that, when the first pneumatic activating system (P1) is not connected to the compressed air source (A1) and the second pneumatic activating system (P2) is connected to the compressed air source (A2), it can be dynamically movable upwards with respect to the body (C) up to a second static configuration (C2) at a distance (d3) from the lower stroke limit wall (12) of the first oscillating chamber (1) that is greater than or equal to the distance (d2) between the lower stroke limit surface (22) and the upper stroke limit surface (21) of the second oscillating chamber (2).
     
    3. The cutting device of any one of the preceding claims, characterised in that the first oscillating chamber (1) and the second oscillating chamber (2) are predisposed internally of the body (C) at a reciprocal distance from one another so that when the first oscillating piston (10) is in abutment against the lower stroke limit wall (12) of the first oscillating chamber (1), the second oscillating piston (20) is also in abutment against the lower stroke limit surface (22) of the second oscillating chamber (2), and viceversa, so as to have a single lower cutting position (L1) for the cutting blade (V), both when the first pneumatic activating system (P1) is connected to the compressed air source (A1) and when the second pneumatic activating system (P2) is connected to the compressed air source (A2).
     
    4. The cutting device of any one of the preceding claims, characterised in that it comprises: a manoeuvring chamber (4) predisposed inside the body (C), between the first oscillating chamber (1) and the second oscillating chamber (2), and having a lower abutment surface (42) and an upper abutment surface (41); a piston (40) predisposed in the manoeuvring chamber (4) between the lower abutment surface (42) and the upper abutment surface (41) and which is provided with a through-hole (43) for enabling free passage of the stem (14); an abutting element (44) having a lower abutment wall (45) predisposed so that the lower abutment wall (45) is arranged in the first oscillating chamber (1) so as to constitute the upper stroke limit wall (11) of the first oscillating chamber (1); a connecting element (46), internally hollow for the passage of the stem (14), which connects and solidly constrains the piston (40) to the abutting element (44) through a passage hole (28) present in the lower abutment surface (42) of the manoeuvring chamber (4);
    the manoeuvring chamber (4) comprising a first opening (4a), at or in proximity of the upper abutment surface (41) and communicating with the first pneumatic activating system (P1), and a second opening (4b), at or in proximity of the lower abutment surface (42) and communicating with the second pneumatic activating system (P2) so that, when the first pneumatic activating system (P1) is connected to the compressed air source (A1), a compressed air flow can enter the manoeuvring chamber (4) above the piston (40) so as to push the piston (40) downwards and maintain the piston (40) against the lower abutment surface (42) of the manoeuvring chamber (4) and therefore maintain, by means of the connecting element (46), the lower abutment wall (45) of the abutting element (44) positioned in the first static configuration (C1) at distance (d1) from the lower stroke limit wall (12) of the first oscillating chamber (1), in order to constitute the upper stroke limit wall (11) for the first oscillating piston (10), and so that, when the second pneumatic activating system (P2) is connected to the compressed air source (A2), a compressed air flow can enter the manoeuvring chamber (4) below the piston (40) so as to push and raise the piston (40) upwards and against the upper abutment surface (41), and therefore raise the abutting element (44) upwards by means of the connecting element (46), so that the relative lower abutment wall (45), which constitutes the upper stroke limit wall (11) of the first oscillating chamber (1) is raised and distanced from the lower stroke limit wall (12) of the first oscillating chamber (1) up to the second static configuration (C2), so as to enable an upwards raising of the first oscillating piston (10) beyond the upper stroke limit thereof so as to enable the second oscillating piston (20) to oscillate in the second oscillating chamber (2) up to reaching abutment against the upper stroke limit surface (21) of the second oscillating chamber (2).
     
    5. The cutting device of any one of the preceding claims, characterised in that: the body (C) comprises a lower cylindrical portion (16) and an upper cylindrical portion (17), the first oscillating chamber (1) being contained in the lower cylindrical portion (16) and the second oscillating chamber (2) being contained in the upper cylindrical portion (17) and the stem (14) being predisposed so as to be alternatingly slidable with a first part (14a) thereof in the lower cylindrical portion (16) and a second part (14b) thereof in the upper cylindrical portion (17).
     
    6. The cutting device of claim 5, characterised in that: the first part (14a) of the stem (14) is conformed so as to exhibit: two annular portions (141, 142) in sliding contact with the walls of the lower cylindrical portion (16) and an annular recess (140) comprised between the two annular portions (141, 142), an internal conduit (143), the first part (14a) of the stem (14) being provided with through-holes (144) predisposed in a position below the annular recess (140) in order to place the outside of the first part (14a) of the stem (14) in communication with the internal conduit (143);
    the first oscillating piston (10) being provided with through-holes (130) for placing the internal conduit (143) of the first part (14a) of the stem (14) in communication with the second part (1B) of the first oscillating chamber (1) comprised between the first oscillating piston (10) and the upper stroke limit wall (11) of the first oscillating chamber (1);
    the first pneumatic activating system (P1) comprising: a switching chamber (8) in a portion of the internal walls of the lower cylindrical portion (16) facing the first part (14a) of the stem (14), a main conduit (81) predisposed in the body (C) and involving the lower cylindrical portion (16) so as to be in communication with the compressed air source (A1) and with a lower part of the switching chamber (8), a secondary conduit (82) predisposed in the lower cylindrical portion (16) of the body (C) so as to be in communication with an upper part of the switching chamber (8) and with the first oscillating chamber (1) through a passage hole (83) in the lower stroke limit wall (12) of the first oscillating chamber (1), an upper discharge (S1) communicating with the outside in the lower cylindrical portion (16) in a position above and in communication with the switching chamber (8) and a lower discharge (S2) communicating with the outside realised in the lower cylindrical portion (16) in a position below the switching chamber (8);
    the annular recess (140) of the first part (14a) of the stem (14) having dimensions such that, and with the through-holes (144) of the first part (14a) of the stem (14) being positioned with respect to the annular recess (140) such that, with the alternating sliding of the stem (14), and therefore of the first part (14a) of the stem (14) within the lower cylindrical portion (16):

    when the annular recess (140) of the first part (14a) of the stem (14) is positioned at the switching chamber (8), the through-holes (144) are positioned at the lower discharge (S2) so that the main conduit (81) is in communication through the annular recess (140) with the secondary conduit (82) and therefore the compressed air source (A1), when activated, is in communication with the first part (1A) of the first oscillating chamber (1) between the first oscillating piston (10) and the lower stroke limit wall (12), while the second part (1B) of the first oscillating chamber (1) between the first oscillating piston (10) and the upper stroke limit wall (11) is in communication with the lower discharge (S2) through the through-holes (130) of the first oscillating piston (10), the internal conduit (143) of the first part (14a) of the stem (14) and the through-holes (144) of the first part (14a) of the stem (14), so that the first oscillating piston (10) can be pneumatically pushed upwards;

    and when the annular recess (140) of the first part (14a) of the stem (14) is positioned at both the upper discharge (S1) and the upper part of the switching chamber (8) communicating with the secondary conduit (82), the through-holes (144) of the first part (14a) of the stem (14) are in the lower part of the switching chamber (8) and communicating with the main conduit (81), so that the compressed air source (A1), when activated, is in communication, through the through-holes (144) of the first part (14a) of the stem (14), the internal conduit (143) of the first part (14a) of the stem (14) and the through-holes (130) present in the first oscillating piston (10), with the second part (1B) of the first oscillating chamber (1) between the upper stroke limit wall (11) and the first oscillating piston (10), while the first part (1A) of the first oscillating chamber (1) between the first oscillating piston (10) and the lower stroke limit wall (12), is in communication with the upper discharge (S1) through the secondary conduit (82), so that the first oscillating piston (10) can be pneumatically pushed downwards.


     
    7. The cutting device of claim 6, characterised in that: the first pneumatic activating system (P1) comprises a service conduit (84), branching from the main conduit (81) and opening into the first opening (4a) of the manoeuvring chamber (4).
     
    8. The cutting device of any one of claims from 5 to 7, characterised in that:

    the second part (14b) of the stem (14) is conformed so as to exhibit: two annular portions (151, 152) in sliding contact with the walls of the upper cylindrical portion (17) and an annular recess (150) comprised between the two annular portions (151, 152), an internal conduit (153) and being provided with through-holes (154) predisposed in a position below the annular recess (150) in order to place the outside of the second part (14b) of the stem (14) in communication with the internal conduit (153);

    the second oscillating piston (20) being provided with through-holes (160) for placing the internal conduit (153) of the second part (14b) of the stem (14) in communication with the second part (2B) of the second oscillating chamber (20) comprised between the second oscillating piston (20) and the upper stroke limit surface (21) of the second oscillating chamber (2);

    the second pneumatic activating system (P2) comprising: a switching chamber (9) in a portion of the internal walls of the upper cylindrical portion (17) facing the second part (14b) of the stem (14), a main conduit (91) predisposed in the body (C) and involving the upper cylindrical portion (17) so as to be in communication with the compressed air source (A2) and with a lower part of the switching chamber (9), a secondary conduit (92) predisposed in the upper cylindrical portion (17) of the body (C) so as to be in communication with an upper part of the switching chamber (9) and with the second oscillating chamber (2) through a passage hole (93) in the lower stroke limit surface (22) of the second oscillating chamber (2), an upper discharge (S3) communicating with the outside in the upper cylindrical portion (17) in a position above and in communication with the switching chamber (9) and a lower discharge (S4) communicating with the outside realised in the upper cylindrical portion (17) in a position below the switching chamber (9);

    the annular recess (150) of the second part (14b) of the stem (14) having dimensions such that, and with the through-holes (154) of the second part (14b) of the stem (14) being positioned with respect to the annular recess (150) such that, with the alternating sliding of the stem (14), and therefore of the second part (14b) of the stem (14) internally of the upper cylindrical portion (17):

    when the annular recess (150) of the second part (14b) of the stem (14) is positioned at the switching chamber (9), the through-holes (154) are positioned at the lower discharge (S4), so that the main conduit (91) is in communication through the annular recess (150) with the secondary conduit (92) and therefore the compressed air source (A2), when activated, is in communication with the first part (2A) of the second oscillating chamber (2) between the second oscillating piston (20) and the lower stroke limit surface (22), while the second part (2B) of the second oscillating chamber (2) between the second oscillating piston (20) and the upper stroke limit surface (21) is in communication with the lower discharge (S4) through the through-holes (160) of the second oscillating piston (20), the internal conduit (153) of the second part (14b) of the stem (14) and the through-holes (154) of the second part (14b) of the stem (14), so that the second oscillating piston (20) can be pneumatically pushed upwards;

    and when the annular recess (150) of the second part (14b) of the stem (14) is positioned at both the upper discharge (S3) and the upper part of the switching chamber (9) communicating with the secondary conduit (92), the through-holes (154) of the second part (14b) of the stem (14) are in the lower part of the switching chamber (9) and communicating with the main conduit (91), so that the compressed air source (A2) when activated, is in communication, through the through-holes (154) of the second part (14b) of the stem (14), the internal conduit (153) of the second part (14a) of the stem (14) and the through-holes (160) present in the second oscillating piston (20), with the second part (2B) of the second oscillating chamber (2) between the upper stroke limit surface (21) and the second oscillating chamber (20), while the first part (2A) of the second oscillating chamber (2) between the second oscillating piston (20) and the lower stroke limit surface (22) is in communication with the upper discharge (S3) through the secondary conduit (92), so that the second oscillating piston (20) can be pneumatically pushed downwards;


     
    9. The cutting device of claim 8, characterised in that: the second pneumatic activating system (P2) comprises a service conduit (94), branching from the main conduit (91) and opening into the second opening (4b) of the manoeuvring chamber (4).
     
    10. The cutting device of any one of the preceding claims, characterised in that: the first pneumatic activating system (P1) is connected to and in communication with a first compressed air source (A1) and the second pneumatic activating system (P2) is connected to and in communication with a second compressed air source (A2), the first compressed air source (A1) and the second compressed air source (A2) being predisposed to be activated alternatively and independently of one another.
     
    11. The cutting device of any one of claims from 1 to 9, characterised in that: the first pneumatic activating system (P1) and the second pneumatic activating system (P2) are connected and in communication with a same compressed air source (A1, A2) by means of a valve organ commandable so that the compressed air source (A1, A2) can direct the compressed air flow alternatively to the first pneumatic activating system (P1) or to the second pneumatic activating system (P2).
     


    Ansprüche

    1. Schneidvorrichtung (100) mit einem oszillierenden Messer für Lederschneidemaschinen,
    umfassend:

    einen Körper (C);

    ein Schneidmesser (L) zum Schneiden eines auf einer Arbeitsfläche (PL) ausgelegten Leders (V1, V2);

    einen Schaft (14), der das Schneidmesser (L) trägt und gleitbar innerhalb des Körpers (C) vorgesehen ist;

    eine erste Schwingkammer (1) innerhalb des Körpers (C), umfassend eine obere Hubbegrenzungswand (11) und eine untere Hubbegrenzungswand (12), wobei die erste Schwingkammer (1) so bemessen ist, dass die obere Hubbegrenzungswand (11) und die untere Hubbegrenzungswand (12) um einen ersten Abstand (d1) voneinander beabstandet sind;

    einen ersten oszillierenden Kolben (10), der auf dem Schaft (14) montiert ist und der in der ersten Schwingkammer (1), zwischen der oberen Hubbegrenzungswand (11) und der unteren Hubbegrenzungswand (12) vorgesehen ist,

    ein erstes pneumatisches Antriebssystem (P1), das mit einer Druckluftquelle (A1) verbindbar ist, mit der ersten Schwingkammer (1) in Verbindung steht und zumindest einen Auslass (S1, S2) umfasst, wobei das erste pneumatische Antriebssystem (P1) und der zumindest eine Auslass (S1, S2) in dem Körper (C) derart angeordnet und konfiguriert sind, dass, wenn das erste pneumatische Antriebssystem (P1) mit einer Druckluftquelle (A1) verbunden ist, ein erster Teil (1A) der ersten Schwingkammer (1), der zwischen dem ersten oszillierenden Kolben (10) und der unteren Hubbegrenzungswand (12) enthalten ist, und ein zweiter Teil (1B) der ersten Schwingkammer (1), der zwischen dem ersten oszillierenden Kolben (10) und der oberen Hubbegrenzungswand (11) enthalten ist, wechselweise mit der Druckluftquelle (A1) und dem zumindest einen Auslass (S1, S2) in Verbindung gesetzt werden, um den ersten oszillierenden Kolben (10) pneumatisch so anzutreiben, dass er innerhalb der ersten Schwingkammer (1) eine Schwingbewegung zwischen der unteren Hubbegrenzungswand (12) und der oberen Hubbegrenzungswand (11) ausführt und dadurch bewirkt, dass das Schneidmesser (L) eine vertikale Schwingbewegung mit einem ersten vertikalen Schwinghub, der höchstens dem Abstand (d1) zwischen der unteren Hubbegrenzungswand (12) und der oberen Hubbegrenzungswand (11) entspricht, ausführt, und zwar zwischen einer unteren Schneidposition (L1) und einer ersten oberen Schneidposition (L2), um an den Ledern (V1) Schnitte mit einer maximalen Dicke (m1) ausführen zu können, die nicht größer ist als der erste Abstand (d1);

    dadurch gekennzeichnet, dass sie umfasst:

    eine zweite Schwingkammer (2) innerhalb des Körpers (C), die oberhalb der ersten Schwingkammer (1) angeordnet ist, und eine obere Hubbegrenzungsfläche (21) und eine untere Hubbegrenzungsfläche (22) aufweist; wobei die zweite Schwingkammer (2) so bemessen ist, dass die obere Hubbegrenzungsfläche (21) und die untere Hubbegrenzungsfläche (22) um einen zweiten Abstand (d2) voneinander beabstandet sind, der größer ist als der erste Abstand (d1), der zwischen der oberen Hubbegrenzungswand (11) und der unteren Hubbegrenzungswand (12) der ersten Schwingkammer (1) besteht;

    einen zweiten oszillierenden Kolben (20), der auf dem Schaft (14) montiert ist und der in der zweiten Schwingkammer (2), zwischen der oberen Hubbegrenzungsfläche (21) und der unteren Hubbegrenzungsfläche (22) vorgesehen ist,

    ein zweites pneumatisches Antriebssystem (P2), das mit einer Druckluftquelle (A2) verbindbar ist, mit der zweiten Schwingkammer (2) in Verbindung steht und zumindest einen Auslass (S3, S4) umfasst, wobei das zweite pneumatische Antriebssystem (P2) und der zumindest eine Auslass (S3, S4) in dem Körper (C) derart angeordnet und konfiguriert sind, dass, wenn das zweite pneumatische Antriebssystem (P2) mit einer Druckluftquelle (A2) verbunden ist, ein erster Teil (2A) der zweiten Schwingkammer (2), der zwischen dem zweiten oszillierenden Kolben (20) und der unteren Hubbegrenzungsfläche (22) enthalten ist, und ein zweiter Teil (2B) der zweiten Schwingkammer (2), der zwischen dem zweiten oszillierenden Kolben (20) und der oberen Hubbegrenzungsfläche (21) enthalten ist, wechselweise mit der Druckluftquelle (A2) und dem zumindest einen Auslass (S3, S4) in Verbindung gesetzt werden, um den zweiten oszillierenden Kolben (20) pneumatisch so anzutreiben, dass er innerhalb der zweiten Schwingkammer (2) eine Schwingbewegung zwischen der unteren Hubbegrenzungsfläche (22) und der oberen Hubbegrenzungsfläche (21) ausführt und dadurch bewirkt, dass das Schneidmesser (L) eine vertikale Schwingbewegung mit einem zweiten vertikalen Schwinghub, der höchstens dem Abstand (d2) zwischen der unteren Hubbegrenzungsfläche (22) und der oberen Hubbegrenzungsfläche (21) entspricht, ausführt, und zwar zwischen einer unteren Schneidposition (L1) und einer zweiten oberen Schneidposition (L2'), die bezogen auf die Arbeitsfläche (PL) höher liegt als die erste obere Schneidposition (L2), um an den Ledern (V2) Schnitte mit einer maximalen Dicke (m2) ausführen zu können, die nicht größer ist als (d2);

    und dadurch, dass das erste pneumatische Antriebssystem (P1) und das zweite pneumatische Antriebssystem (P2) innerhalb des Körpers (C) so vorgesehen sind, dass sie wechselweise mit einer Druckluftquelle (A1, A2) verbindbar sind, so dass die erste Schwingkammer (1) und die zweite Schwingkammer (2) wechselweise, einzeln und jeweils nur eine gleichzeitig, mit der Druckluftquelle (A1, A2) in Verbindung gesetzt werden; wobei die obere Hubbegrenzungswand (11) der ersten Schwingkammer (1) derart in dem Körper (C) konfiguriert und angeordnet ist, dass sie beweglich und positionierbar ist zwischen einer ersten statischen Konfiguration (C1), in der sie im Abstand (d1) von der unteren Hubbegrenzungswand (12) der ersten Schwingkammer (1) angeordnet ist, und einer zweiten statischen Konfiguration (C2), in der sie in einer oberen Position angeordnet ist, so dass: wenn das erste pneumatische Antriebssystem (P1) mit der Druckluftquelle (A1) verbunden ist und das zweite pneumatische Antriebssystem (P2) nicht mit der Druckluftquelle (A2) verbunden ist, die obere Hubbegrenzungswand (11) in die erste statische Konfiguration (C1) beweglich ist und darin auf einem Abstand (d1) von der unteren Hubbegrenzungswand (12) gehalten werden kann, um die obere Hubbegrenzung der Schwingbewegung des ersten oszillierenden Kolbens (10) in der ersten Schwingkammer (1) zu bilden, und wenn das erste pneumatische Antriebssystem (P1) nicht mit der Druckluftquelle (A1) verbunden ist und das zweite pneumatische Antriebssystem (P2) mit der Druckluftquelle (A2) verbunden ist, die obere Hubbegrenzungswand (11) relativ zu der unteren Hubbegrenzungswand (12) der ersten Schwingkammer (1) nach oben in die zweite statische Konfiguration (C2) beweglich ist und in dieser zweiten statischen Konfiguration (C2) gehalten werden kann, um ein Anheben des ersten oszillierenden Kolbens (10) über dessen obere Hubbegrenzung hinaus zu erlauben, um dem zweiten oszillierenden Kolben (20) das Schwingen in der zweiten Schwingkammer (2) bis zum Erreichen des Anschlags gegen die obere Hubbegrenzungsfläche (21) der zweiten Schwingkammer (2) zu ermöglichen, so dass das Schneidmesser (L) eine vertikale Schwingbewegung bis zum Erreichen der zweiten oberen Schneidposition (L2') ausführen kann, um ein Leder (V2) mit einer maximalen Dicke (m2) zu schneiden, die nicht größer als (d2) und größer als (d1) ist.


     
    2. Schneidvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass:
    die obere Hubbegrenzungswand (11) der ersten Schwingkammer (1) in dem Körper (C) so konfiguriert und angeordnet ist, dass sie, wenn das erste pneumatische Antriebssystem (P1) nicht mit der Druckluftquelle (A1) verbunden ist und das zweite pneumatische Antriebssystem (P2) mit der Druckluftquelle (A2) verbunden ist, dynamisch nach oben relativ zu dem Körper (C) bis zu einer zweiten statischen Konfiguration (C2) in einem Abstand (d3) von der unteren Hubbegrenzungswand (12) der ersten Schwingkammer (1) beweglich sein kann, der größer oder gleich ist wie der Abstand (d2) zwischen der unteren Hubbegrenzungsfläche (22) und der oberen Hubbegrenzungsfläche (21) der zweiten Schwingkammer (2).
     
    3. Schneidvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste Schwingkammer (1) und die zweite Schwingkammer (2) innerhalb des Körpers (C) in einem solchen Abstand voneinander angeordnet sind, dass, wenn der erste oszillierende Kolben (10) auf Anschlag gegen die untere Hubbegrenzungswand (12) der ersten Schwingkammer (1) anliegt, der zweite oszillierende Kolben (20) ebenfalls auf Anschlag gegen die untere Hubbegrenzungsfläche (22) der zweiten Schwingkammer (2) anliegt, und umgekehrt, so dass eine einzige untere Schneidposition (L1) für das Schneidmesser (L) gegeben ist, sowohl wenn das erste pneumatische Antriebssystem (P1) mit der Druckluftquelle (A1) verbunden ist, als auch wenn das zweite pneumatische Antriebssystem (P2) mit der Druckluftquelle (A2) verbunden ist.
     
    4. Schneidvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie umfasst: eine Manövrierkammer (4), die innerhalb des Körpers (C) zwischen der ersten Schwingkammer (1) und der zweiten Schwingkammer (2) vorgesehen ist, und die eine untere Anschlagfläche (42) und eine obere Anschlagfläche (41) aufweist; einen Kolben (40) der in der Manövrierkammer (4) zwischen der unteren Anschlagfläche (42) und der oberen Anschlagfläche (41) vorgesehen ist und der ein Durchgangsloch (43) aufweist, um den ungehinderten Durchgang des Schaftes (14) zu ermöglichen; ein Anschlagelement (44), das eine untere Anschlagwand (45) aufweist und so vorgesehen ist, dass die untere Anschlagwand (45) in der ersten Schwingkammer (1) derart angeordnet ist, dass sie die obere Hubbegrenzungswand (11) der ersten Schwingkammer (1) bildet; ein Verbindungselement (46), das für den Durchgang des Schaftes (14) innen hohl ist und das den Kolben (40) über ein Durchgangsloch (28) in der unteren Anschlagfläche (42) der Manövrierkammer (4) mit dem Anschlagelement (44) verbindet und an diesem festlegt;
    wobei die Manövrierkammer (4) an oder nahe der oberen Anschlagfläche (41) eine erste Öffnung (4a) umfasst, die mit dem ersten pneumatischen Antriebssystem (P1) in Verbindung steht, und an oder nahe der unteren Anschlagfläche (42) eine zweite Öffnung (4b) umfasst, die mit dem zweiten pneumatischen Antriebssystem (P2) in Verbindung steht, so dass, wenn das erste pneumatische Antriebssystem (P1) mit der Druckluftquelle (A1) verbunden ist, ein Druckluftstrom in die Manövrierkammer (4) oberhalb des Kolbens (40) eintreten kann, um den Kolben (40) nach unten zu drücken und den Kolben (40) gegen die untere Anschlagfläche (42) der Manövrierkammer (4) gedrückt zu halten und somit, mittels des Verbindungselements (46), die untere Anschlagwand (45) des Anschlagelements (44) in der ersten statischen Konfiguration (C1) in einem Abstand (d1) von der unteren Hubbegrenzungswand (12) der ersten Schwingkammer (1) positioniert zu halten, um die obere Hubbegrenzungswand (11) für den ersten oszillierenden Kolben (10) zu bilden, und so dass, wenn das zweite pneumatische Antriebssystem (P2) mit der Druckluftquelle (A2) verbunden ist, ein Druckluftstrom in die Manövrierkammer (4) unterhalb des Kolbens (40) eintreten kann, um den Kolben (40) nach oben zu drücken und gegen die obere Anschlagfläche (41) anzuheben und somit das Anschlagelement (44) mittels des Verbindungselements (46) anzuheben, so dass die entsprechende untere Anschlagwand (45), welche die obere Hubbegrenzungswand (11) der ersten Schwingkammer (1) bildet, angehoben und von der unteren Hubbegrenzungswand (12) der ersten Schwingkammer (1) beabstandet wird, bis sie die zweite statische Konfiguration (C2) einnimmt, um ein Anheben des ersten oszillierenden Kolbens (10) über dessen obere Hubbegrenzung hinaus zu ermöglichen, um dem zweiten oszillierenden Kolben (20) das Schwingen in der zweiten Schwingkammer (2) bis zum Erreichen des Anschlags gegen die obere Hubbegrenzungsfläche (21) der zweiten Schwingkammer (2) zu erlauben.
     
    5. Schneidvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass: der Körper (C) einen unteren zylindrischen Abschnitt (16) und einen oberen zylindrischen Abschnitt (17) umfasst, wobei die erste Schwingkammer (1) in dem unteren zylindrischen Abschnitt (16) und die zweite Schwingkammer (2) in dem oberen zylindrischen Abschnitt (17) enthalten ist und der Schaft (14) derart vorgesehen ist, dass er eine alternierende Gleitbewegung mit einem ersten Teil (14a) davon in dem unteren zylindrischen Abschnitt (16) und mit einem zweiten Teil (14b) davon in dem oberen zylindrischen Abschnitt (17) ausführen kann.
     
    6. Schneidvorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass:

    der erste Teil (14a) des Schaftes (14) derart beschaffen ist, dass er Folgendes aufweist: zwei ringförmige Abschnitte (141, 142) in Gleitkontakt mit den Wänden des unteren zylindrischen Abschnitts (16), eine ringförmige Aussparung (140), die zwischen den zwei ringförmigen Abschnitten (141, 142) enthalten ist, und eine innere Leitung (143), wobei der erste Teil (14a) des Schaftes (14) mit Durchgangslöchern (144) in einer Position unterhalb der ringförmigen Aussparung (140) versehen ist, um die Außenseite des ersten Teils (14a) des Schaftes (14) in Verbindung mit der inneren Leitung (143) zu setzen;

    wobei der erste oszillierende Kolben (10) mit Durchgangslöchern (130) versehen ist, um die innere Leitung (143) des ersten Teils (14a) des Schaftes (14) in Verbindung mit dem zweiten Teil (1B) der ersten Schwingkammer (1) zu setzen, der zwischen dem ersten oszillierenden Kolben (10) und der oberen Hubbegrenzungswand (11) der ersten Schwingkammer (1) enthalten ist;

    wobei das erste pneumatische Antriebssystem (P1) Folgendes umfasst: eine Schaltkammer (8) in einem Abschnitt der Innenwände des unteren zylindrischen Abschnitts (16) und dem ersten Teil (14a) des Schaftes (14) zugewandt, eine Hauptleitung (81), die in dem Körper (C) vorgesehen ist und den unteren zylindrischen Abschnitt (16) betrifft, um in Verbindung mit der Druckluftquelle (A1) und mit einem unteren Teil der Schaltkammer (8) zu stehen, eine Nebenleitung (82), die in dem unteren zylindrischen Abschnitt (16) des Körpers (C) vorgesehen ist, um über ein Durchgangsloch (83) in der unteren Hubbegrenzungswand (12) der ersten Schwingkammer (1) in Verbindung mit einem oberen Teil der Schaltkammer (8) und mit der ersten Schwingkammer (1) zu stehen, einen oberen Auslass (S1), der mit der Außenseite in dem unteren zylindrischen Abschnitt (16) in einer Position oberhalb und in Verbindung mit der Schaltkammer (8) in Verbindung steht, und einen unteren Auslass (S2), der mit der Außenseite in Verbindung steht und in dem unteren zylindrischen Abschnitt (16) in einer Position unterhalb der Schaltkammer (8) verwirklicht ist;

    wobei die ringförmige Aussparung (140) des ersten Teils (14a) des Schaftes (14) derart bemessen ist, und wobei die Durchgangslöcher (144) des ersten Teils (14a) des Schaftes (14) derart relativ zu der ringförmigen Aussparung (140) angeordnet sind, dass mit der alternierenden Gleitbewegung des Schaftes (14), und somit des ersten Teils (14a) des Schaftes (14) innerhalb des unteren zylindrischen Abschnitts (16), Folgendes eintritt:

    wenn die ringförmige Aussparung (140) des ersten Teils (14a) des Schaftes (14) an der Schaltkammer (8) angeordnet ist, sind die Durchgangslöcher (144) an dem unteren Auslass (S2) positioniert, so dass die Hauptleitung (81) über die ringförmige Aussparung (140) mit der Nebenleitung (82) in Verbindung steht und infolgedessen ist die Druckluftquelle (A1), wenn aktiviert, mit dem ersten Teil (1A) der ersten Schwingkammer (1) zwischen dem ersten oszillierenden Kolben (10) und der unteren Hubbegrenzungswand (12) verbunden, während der zweite Teil (1B) der ersten Schwingkammer (1) zwischen dem ersten oszillierenden Kolben (10) und der oberen Hubbegrenzungswand (11) über die Durchgangslöcher (130) des ersten oszillierenden Kolbens (10), die innere Leitung (143) des ersten Teils (14a) des Schaftes (14) und die Durchgangslöcher (144) des ersten Teils (14a) des Schaftes (14) mit dem unteren Auslass (S2) verbunden ist, so dass der erste oszillierende Kolben (10) pneumatisch nach oben gedrückt werden kann;

    und wenn die ringförmige Aussparung (140) des ersten Teils (14a) des Schaftes (14) sowohl am oberen Auslass (S1) als auch am oberen Teil der Schaltkammer (8) in Verbindung mit der Nebenleitung (82) angeordnet ist, sind die Durchgangslöcher (144) des ersten Teils (14a) des Schaftes (14) im unteren Teil der Schaltkammer (8) und in Verbindung mit der Hauptleitung (81), so dass die Druckluftquelle (A1), wenn aktiviert, über die Durchgangslöcher (144) des ersten Teils (14a) des Schaftes (14), die innere Leitung (143) des ersten Teils (14a) des Schaftes (14) und die Durchgangslöcher (130) in dem ersten oszillierenden Kolben (10) in Verbindung mit dem zweiten Teil (1B) der ersten Schwingkammer (1) zwischen der oberen Hubbegrenzungswand (11) und dem ersten oszillierenden Kolben (10) steht, während der erste Teil (1A) der ersten Schwingkammer (1) zwischen dem ersten oszillierenden Kolben (10) und der unteren Hubbegrenzungswand (12) über die Nebenleitung (82) in Verbindung mit dem oberen Auslass (S1) steht, so dass der erste oszillierende Kolben (10) pneumatisch nach unten gedrückt werden kann.


     
    7. Schneidvorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass: das erste pneumatische Antriebssystem (P1) eine Hilfsleitung (84) umfasst, die sich von der Hauptleitung (81) abzweigt und in die erste Öffnung (4a) der Manövrierkammer (4) mündet.
     
    8. Schneidvorrichtung nach einem der Ansprüche von 5 bis 7, dadurch gekennzeichnet, dass: der zweite Teil (14b) des Schaftes (14) derart beschaffen ist, dass er Folgendes aufweist: zwei ringförmige Abschnitte (151, 152) in Gleitkontakt mit den Wänden des oberen zylindrischen Abschnitts (17), eine ringförmige Aussparung (150), die zwischen den zwei ringförmigen Abschnitten (151, 152) enthalten ist, und eine innere Leitung (153), und mit Durchgangslöchern (154) versehen ist, die in einer Position unterhalb der ringförmigen Aussparung (150) angeordnet sind, um die Außenseite des zweiten Teils (14b) des Schaftes (14) in Verbindung mit der inneren Leitung (153) zu setzen;
    wobei der zweite oszillierende Kolben (20) mit Durchgangslöchern (160) versehen ist, um die innere Leitung (153) des zweiten Teils (14b) des Schaftes (14) in Verbindung mit dem zweiten Teil (2B) der zweiten Schwingkammer (2) zu setzen, der zwischen dem zweiten oszillierenden Kolben (20) und der oberen Hubbegrenzungsfläche (21) der zweiten Schwingkammer (2) enthalten ist;
    wobei das zweite pneumatische Antriebssystem (P2) Folgendes umfasst:

    eine Schaltkammer (9) in einem Abschnitt der Innenwände des oberen zylindrischen Abschnitts (17) und dem zweiten Teil (14b) des Schaftes (14) zugewandt, eine Hauptleitung (91), die in dem Körper (C) vorgesehen ist und den oberen zylindrischen Abschnitt (17) betrifft, um in Verbindung mit der Druckluftquelle (A2) und mit einem unteren Teil der Schaltkammer (9) zu stehen, eine Nebenleitung (92), die in dem oberen zylindrischen Abschnitt (17) des Körpers (C) vorgesehen ist, um über ein Durchgangsloch (93) in der unteren Hubbegrenzungsfläche (22) der zweiten Schwingkammer (2) in Verbindung mit einem oberen Teil der Schaltkammer (9) und mit der zweiten Schwingkammer (2) zu stehen, einen oberen Auslass (S3), der mit der Außenseite in dem oberen zylindrischen Abschnitt (17) in einer Position oberhalb und in Verbindung mit der Schaltkammer (9) in Verbindung steht, und einen unteren Auslass (S4), der mit der Außenseite in Verbindung steht und in dem oberen zylindrischen Abschnitt (17) in einer Position oberhalb der Schaltkammer (9) verwirklicht ist;

    wobei die ringförmige Aussparung (150) des zweiten Teils (14b) des Schaftes (14) derart bemessen ist, und wobei die Durchgangslöcher (154) des zweiten Teils (14b) des Schaftes (14) derart relativ zu der ringförmigen Aussparung (150) angeordnet sind, dass mit der alternierenden Gleitbewegung des Schaftes (14), und somit des zweiten Teils (14b) des Schaftes (14) innerhalb des oberen zylindrischen Abschnitts (17), Folgendes eintritt:

    wenn die ringförmige Aussparung (150) des zweiten Teils (14b) des Schaftes (14) an der Schaltkammer (9) angeordnet ist, sind die Durchgangslöcher (154) an dem unteren Auslass (S4) positioniert, so dass die Hauptleitung (91) über die ringförmige Aussparung (150) mit der Nebenleitung (92) in Verbindung steht und infolgedessen ist die Druckluftquelle (A2), wenn aktiviert, mit dem ersten Teil (2A) der zweiten Schwingkammer (2) zwischen dem zweiten oszillierenden Kolben (20) und der unteren Hubbegrenzungsfläche (22) verbunden, während der zweite Teil (2B) der zweiten Schwingkammer (2) zwischen dem zweiten oszillierenden Kolben (20) und der oberen Hubbegrenzungsfläche (21) über die Durchgangslöcher (160) des zweiten oszillierenden Kolbens (20), die innere Leitung (153) des zweiten Teils (14b) des Schaftes (14) und die Durchgangslöcher (154) des zweiten Teils (14b) des Schaftes (14) mit dem unteren Auslass (S4) verbunden ist, so dass der zweite oszillierende Kolben (20) pneumatisch nach oben gedrückt werden kann;

    und wenn die ringförmige Aussparung (150) des zweiten Teils (14b) des Schaftes (14) sowohl am oberen Auslass (S3) als auch im oberen Teil der Schaltkammer (9) in Verbindung mit der Nebenleitung (92) angeordnet ist, sind die Durchgangslöcher (154) des zweiten Teils (14b) des Schaftes (14) im unteren Teil der Schaltkammer (9) und in Verbindung mit der Hauptleitung (91), so dass die Druckluftquelle (A2) wenn aktiviert, über die Durchgangslöcher (154) des zweiten Teils (14b) des Schaftes (14), die innere Leitung (153) des zweiten Teils (14a) des Schaftes (14) und die Durchgangslöcher (160) in dem zweiten oszillierenden Kolben (20) in Verbindung mit dem zweiten Teil (2B) der zweiten Schwingkammer (2) zwischen der oberen Hubbegrenzungsfläche (21) und dem zweiten oszillierenden Kolben (20), während der erste Teil (2A) der zweiten Schwingkammer (2) zwischen dem zweiten oszillierenden Kolben (20) und der unteren Hubbegrenzungsfläche (22) über die Nebenleitung (92) in Verbindung mit dem oberen Auslass (S3) steht, so dass der zweite oszillierende Kolben (20) pneumatisch nach unten gedrückt werden kann.


     
    9. Schneidvorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass:
    das zweite pneumatische Antriebssystem (P2) eine Hilfsleitung (94) umfasst, die sich von der Hauptleitung (91) abzweigt und in die zweite Öffnung (4b) der Manövrierkammer (4) mündet.
     
    10. Schneidvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass: das erste pneumatische Antriebssystem (P1) mit einer ersten Druckluftquelle (A1) verbunden ist und in Verbindung steht, und das zweite pneumatische Antriebssystem (P2) mit einer zweiten Druckluftquelle (A2) verbunden ist und in Verbindung steht, wobei die erste Druckluftquelle (A1) und die zweite Druckluftquelle (A2) dafür vorgesehen sind, wechselweise und unabhängig voneinander aktiviert zu werden.
     
    11. Schneidvorrichtung nach einem der Ansprüche von 1 bis 9, dadurch gekennzeichnet, dass: das erste pneumatische Antriebssystem (P1) und das zweite pneumatische Antriebssystem (P2) mittels eines steuerbaren Ventilorgans mit einer selben Druckluftquelle (A1, A2) verbunden sind und in Verbindung stehen, so dass die Druckluftquelle (A1, A2) den Druckluftstrom wechselweise an das erste pneumatische Antriebssystem (P1) oder an das zweite pneumatische Antriebssystem (P2) leiten kann.
     


    Revendications

    1. Un dispositif de coupe (100) présentant une lame oscillante pour machines de découpe du cuir, comprenant :

    un corps (C) ;

    une lame de coupe (L) pour découper une feuille de cuir (V1, V2) étalée sur un plan de travail (PL) ;

    une tige (14) qui porte la lame de coupe (L) et prédisposée de façon coulissante à l'intérieur du corps (C) ;

    une première chambre d'oscillation (1) à l'intérieur du corps (C) comprenant une paroi supérieure de fin de course (11) et une paroi inférieure de fin de course (12), la première chambre d'oscillation (1) étant dimensionnée de manière à ce que la paroi supérieure de fin de course (11) et la paroi inférieure de fin de course (12) soient espacées l'une de l'autre d'une première distance (d1) ;

    un premier piston oscillant (10), monté sur la tige (14), et qui est prédisposé dans la première chambre d'oscillation (1), entre la paroi supérieure de fin de course (11) et la paroi inférieure de fin de course (12),

    un premier système d'actionnement pneumatique (P1), pouvant être raccordé à une source d'air comprimé (A1), communiquant avec la première chambre d'oscillation (1) et comprenant au moins une évacuation (S1, S2), le premier système d'actionnement pneumatique (P1) et ladite au moins une évacuation (S1, S2) étant prédisposés dans le corps (C) et configurés de manière à ce que, lorsque le premier système d'actionnement pneumatique (P1) est raccordé à une source d'air comprimé (A1), une première partie (1A) de la première chambre d'oscillation (1) comprise entre le premier piston oscillant (10) et la paroi inférieure de fin de course (12) et une deuxième partie (1B) de la première chambre d'oscillation (1) comprise entre le premier piston oscillant (10) et la paroi supérieure de fin de course (11) soient mises en communication alternativement avec la source d'air comprimé (A1) et ladite au moins une évacuation (S1, S2), afin d'actionner pneumatiquement le premier piston oscillant (10) pour qu'il oscille dans la première chambre d'oscillation (1), entre la paroi inférieure de fin de course (12) et la paroi supérieure de fin de course (11), et afin de faire osciller en conséquence la lame de coupe (L) verticalement d'une première entité d'oscillation verticale correspondant au maximum à la distance (d1) entre la paroi inférieure de fin de course (12) et la paroi supérieure de fin de course (11), entre une position de coupe inférieure (L1) et une première position de coupe supérieure (L2) de manière à pouvoir exécuter des opérations de découpe de cuirs (V1) ayant une épaisseur maximum (m1) n'excédant pas la première distance (d1) ;

    caractérisé en ce qu'il comprend :

    une deuxième chambre d'oscillation (2) à l'intérieur du corps (C), disposée supérieurement à la première chambre d'oscillation (1), et ayant une surface supérieure de fin de course (21) et une surface inférieure de fin de course (22) ; la deuxième chambre d'oscillation (2) étant dimensionnée de manière à ce que la surface supérieure de fin de course (21) et la surface inférieure de fin de course (22) soient espacées l'une de l'autre d'une deuxième distance (d2) supérieure à la première distance (d1) à laquelle sont espacées la paroi supérieure de fin de course (11) et la paroi inférieure de fin de course (12) de la première chambre d'oscillation (1) ;

    un deuxième piston oscillant (20), monté sur la tige (14), et qui est prédisposé dans la deuxième chambre d'oscillation (2), entre la surface supérieure de fin de course (21) et la surface inférieure de fin de course (22),

    un deuxième système d'actionnement pneumatique (P2), pouvant être raccordé à une source d'air comprimé (A2), communiquant avec la deuxième chambre d'oscillation (2) et comprenant au moins une évacuation (S3, S4), le deuxième système d'actionnement pneumatique (P2) et ladite au moins une évacuation (S3, S4) étant prédisposés dans le corps (C) et étant configurés de manière à ce que, lorsque le deuxième système d'actionnement pneumatique (P2) est raccordé à une source d'air comprimé (A2), une première partie (2A) de la deuxième chambre d'oscillation (2) comprise entre le deuxième piston oscillant (20) et la surface inférieure de fin de course (22) et une deuxième partie (2B) de la deuxième chambre d'oscillation (2) comprise entre le deuxième piston oscillant (20) et la surface supérieure de fin de course (21) soient mises en communication alternativement avec la source d'air comprimé (A2) et ladite au moins une évacuation (S3, S4), afin d'actionner pneumatiquement le deuxième piston oscillant (20) pour qu'il oscille dans la deuxième chambre d'oscillation (2), entre la surface inférieure de fin de course (22) et la surface supérieure de fin de course (21), et afin de faire osciller en conséquence la lame de coupe (L) verticalement d'une deuxième entité d'oscillation verticale correspondant au maximum à la distance (d2) entre la surface inférieure de fin de course (22) et la surface supérieure de fin de course (21), entre une position de coupe inférieure (L1) et une deuxième position de coupe supérieure (L2') à une plus grande hauteur que la première position de coupe supérieure (L2) par rapport au plan de travail (PL) de manière à pouvoir exécuter des opérations de découpe de cuirs (V2) ayant une épaisseur maximum (m2) n'excédant pas la première distance (d2) ;

    et en ce que le premier système d'actionnement pneumatique (P1) et le deuxième système d'actionnement pneumatique (P2) sont prédisposés à l'intérieur du corps (C) de manière à pouvoir être raccordés alternativement à une source d'air comprimé (A1, A2), afin que la première chambre d'oscillation (1) et la deuxième chambre d'oscillation (2) soient mises alternativement en communication, individuellement et une à la fois, avec la source d'air comprimé (A1, A2) ; la paroi supérieure de fin de course (11) de la première chambre d'oscillation (1) étant configurée et prédisposée dans le corps (C) de manière à pouvoir être déplacée et positionnée entre une première configuration statique (C1), dans laquelle elle est positionnée à la distance (d1) de la paroi inférieure de fin de course (12) de la première chambre d'oscillation (1), et une deuxième configuration statique (C2) dans laquelle elle est positionnée dans une position supérieure de manière à ce que : lorsque le premier système d'actionnement pneumatique (P1) est raccordé à la source d'air comprimé (A1) et le deuxième système d'actionnement pneumatique (P2) n'est pas raccordé à la source d'air comprimé (A2), la paroi supérieure de fin de course (11) puisse être déplacée et maintenue dans la première configuration statique (C1) à la distance (d1) de la paroi inférieure de fin de course (12), afin de définir la fin de course supérieure pour l'oscillation du premier piston oscillant (10) dans la première chambre d'oscillation (1), et lorsque le premier système d'actionnement pneumatique (P1) n'est pas raccordé à la source d'air comprimé (A1) et le deuxième système d'actionnement pneumatique (P2) est raccordé à la source d'air comprimé (A2), la paroi supérieure de fin de course (11) puisse être déplacée vers le haut par rapport à la paroi inférieure de fin de course (12) de la première chambre d'oscillation (1) jusqu'à la deuxième configuration statique (C2), et maintenue dans cette deuxième configuration statique (C2) afin de permettre une élévation vers le haut du premier piston oscillant (10) au-delà de sa fin de course supérieure pour permettre au deuxième piston oscillant (20) d'osciller dans la deuxième chambre d'oscillation (2) jusqu'à arriver en butée contre la surface supérieure de fin de course (21) de la deuxième chambre d'oscillation (2), pour que la lame de coupe (L) puisse être entraînée en oscillation verticale jusqu'à atteindre la deuxième position de coupe supérieure (L2') pour découper un cuir (V2) ayant une épaisseur maximum (m2) qui n'est pas supérieure à (d2) et supérieure à (d1).


     
    2. Le dispositif de coupe selon la revendication 1, caractérisé en ce que : la paroi supérieure de fin de course (11) de la première chambre d'oscillation (1) est configurée et prédisposée dans le corps (C) de manière à ce que, lorsque le premier système d'actionnement pneumatique (P1) n'est pas raccordé à la source d'air comprimé (A1) et le deuxième système d'actionnement pneumatique (P2) est raccordé à la source d'air comprimé (A2), elle puisse être déplacée dynamiquement vers le haut par rapport au corps (C) jusqu'à une deuxième configuration statique (C2) à une distance (d3) de la paroi inférieure de fin de course (12) de la première chambre d'oscillation (1) qui est supérieure ou égale à la distance (d2) entre la surface inférieure de fin de course (22) et la surface supérieure de fin de course (21) de la deuxième chambre d'oscillation (2).
     
    3. Le dispositif de coupe selon l'une quelconque des revendications précédentes, caractérisé en ce que la première chambre d'oscillation (1) et la deuxième chambre d'oscillation (2) sont prédisposées à l'intérieur du corps (C) à une distance réciproque l'une de l'autre de sorte que, lorsque le premier piston oscillant (10) est en butée contre la paroi inférieure de fin de course (12) de la première chambre d'oscillation (1), le deuxième piston oscillant (20) est également en butée contre la surface inférieure de fin de course (22) de la deuxième chambre d'oscillation (2), et inversement, de manière à avoir une seule position de coupe inférieure (L1) pour la lame de coupe (L), à la fois lorsque le premier système d'actionnement pneumatique (P1) est raccordé à la source d'air comprimé (A1) et lorsque le deuxième système d'actionnement pneumatique (P2) est raccordé à la source d'air comprimé (A2).
     
    4. Le dispositif de coupe selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend : une chambre de manœuvre (4) prédisposée à l'intérieur du corps (C), entre la première chambre d'oscillation (1) et la deuxième chambre d'oscillation (2), et ayant une surface inférieure de butée (42) et une surface supérieure de butée (41) ; un piston (40) prédisposé dans la chambre de manœuvre (4) entre la surface inférieure de butée (42) et la surface supérieure de butée (41) et qui est muni d'un trou traversant (43) pour permettre le libre passage de la tige (14) ; un élément de butée (44) ayant une paroi inférieure de butée (45) prédisposé de manière à ce que la paroi inférieure de butée (45) soit disposée dans la première chambre d'oscillation (1) afin de constituer la paroi supérieure de fin de course (11) de la première chambre d'oscillation (1) ; un élément de raccordement (46), intérieurement creux pour le passage de la tige (14), qui relie et assujettit solidement le piston (40) à l'élément de butée (44) à travers un trou de passage (28) présent dans la surface inférieure de butée (42) de la chambre de manœuvre (4) ;
    la chambre de manœuvre (4) comprenant une première ouverture (4a), au niveau de ou à proximité de la surface supérieure de butée (41) et communiquant avec le premier système d'actionnement pneumatique (P1), et une deuxième ouverture (4b), au niveau de ou à proximité de la surface inférieure de butée (42) et communiquant avec le deuxième système d'actionnement pneumatique (P2) de manière à ce que, lorsque le premier système d'actionnement pneumatique (P1) est raccordé à la source d'air comprimé (A1), un flux d'air comprimé puisse entrer dans la chambre de manœuvre (4) au-dessus du piston (40) afin de pousser le piston (40) vers le bas et de maintenir le piston (40) contre la surface inférieure de butée (42) de la chambre de manœuvre (4) et donc de maintenir, par le biais de l'élément de raccordement (46), la paroi inférieure de butée (45) de l'élément de butée (44) positionnée dans la première configuration statique (C1) à la distance (d1) de la paroi inférieure de fin de course (12) de la première chambre d'oscillation (1), pour constituer la paroi supérieure de fin de course (11) pour le premier piston oscillant (10), et de manière à ce que, lorsque le deuxième système d'actionnement pneumatique (P2) est raccordé à la source d'air comprimé (A2), un flux d'air comprimé puisse entrer dans la chambre de manœuvre (4) en dessous du piston (40) afin de pousser et de soulever le piston (40) vers le haut et contre la surface supérieure de butée (41), et donc de soulever l'élément de butée (44) vers le haut par le biais de l'élément de raccordement (46), afin que la paroi inférieure de butée (45) correspondante, qui constitue la paroi supérieure de fin de course (11) la première chambre d'oscillation (1), soit soulevée et espacée de la paroi inférieure de fin de course (12) de la première chambre d'oscillation (1) jusqu'à la deuxième configuration statique (C2), pour permettre une élévation vers le haut du premier piston oscillant (10) au-delà de sa fin de course supérieure afin de permettre au deuxième piston oscillant (20) d'osciller dans la deuxième chambre d'oscillation (2) jusqu'à arriver en butée contre la surface supérieure de fin de course (21) de la deuxième chambre d'oscillation (2).
     
    5. Le dispositif de coupe selon l'une quelconque des revendications précédentes, caractérisé en ce que : le corps (C) comprend une portion cylindrique inférieure (16) et une portion cylindrique supérieure (17), la première chambre d'oscillation (1) étant contenue dans la portion cylindrique inférieure (16) et la deuxième chambre d'oscillation (2) étant contenue dans la portion cylindrique supérieure (17) et la tige (14) étant prédisposée de manière à pouvoir coulisser alternativement avec une première partie (14a) respective dans la portion cylindrique inférieure (16) et une deuxième partie (14b) respective dans la portion cylindrique supérieure (17).
     
    6. Le dispositif de coupe selon la revendication 5, caractérisé en ce que : la première partie (14a) de la tige (14) est conformée de manière à présenter : deux portions annulaires (141, 142) en contact coulissant avec les parois de la portion cylindrique inférieure (16), un renfoncement annulaire (140) compris entre les deux portions annulaires (141, 142) et un conduit intérieur (143), la première partie (14a) de la tige (14) étant munie de trous traversants (144) prédisposés dans une position en dessous du renfoncement annulaire (140) de manière à mettre l'extérieur de la première partie (14a) de la tige (14) en communication avec le conduit intérieur (143) ;
    le premier piston oscillant (10) étant muni de trous traversants (130) pour mettre le conduit intérieur (143) de la première partie (14a) de la tige (14) en communication avec la deuxième partie (1B) de la première chambre d'oscillation (1) comprise entre le premier piston oscillant (10) et la paroi supérieure de fin de course (11) de la première chambre d'oscillation (1) ;
    le premier système d'actionnement pneumatique (P1) comprenant : une chambre de commutation (8) dans une portion des parois intérieures de la portion cylindrique inférieure (16) faisant face à la première partie (14a) de la tige (14), un conduit principal (81) prédisposé dans le corps (C) et intéressant la portion cylindrique inférieure (16) de manière à être en communication avec la source d'air comprimé (A1) et avec une partie inférieure de la chambre de commutation (8), un conduit secondaire (82) prédisposé dans la portion cylindrique inférieure (16) du corps (C) de manière à être en communication avec une partie supérieure de la chambre de commutation (8) et avec la première chambre d'oscillation (1) à travers un trou de passage (83) dans la paroi inférieure de fin de course (12) de la première chambre d'oscillation (1), une évacuation supérieure (S1) communiquant avec l'extérieur dans la portion cylindrique inférieure (16) dans une position au-dessus de et en communication avec la chambre de commutation (8) et une évacuation inférieure (S2) communiquant avec l'extérieur réalisée dans la portion cylindrique inférieure (16) dans une position en dessous de la chambre de commutation (8) ;
    le renfoncement annulaire (140) de la première partie (14a) de la tige (14) ayant des dimensions telles que, et avec les trous traversants (144) de la première partie (14a) de la tige (14) qui sont positionnés par rapport au renfoncement annulaire (140) de telle sorte que, avec le coulissement alterné de la tige (14), et donc de la première partie (14a) de la tige (14) dans les limites de la portion cylindrique inférieure (16) :

    lorsque le renfoncement annulaire (140) de la première partie (14a) de la tige (14) est positionné au niveau de la chambre de commutation (8), les trous traversants (144) sont positionnés au niveau de l'évacuation inférieure (S2) de sorte que le conduit principal (81) est en communication à travers le renfoncement annulaire (140) avec le conduit secondaire (82) et donc que la source d'air comprimé (A1), quand activée, est en communication avec la première partie (1A) de la première chambre d'oscillation (1) entre le premier piston oscillant (10) et la paroi inférieure de fin de course (12), tandis que la deuxième partie (1B) de la première chambre d'oscillation (1) entre le premier piston oscillant (10) et la paroi supérieure de fin de course (11) est en communication avec l'évacuation inférieure (S2) à travers les trous traversants (130) du premier piston oscillant (10), le conduit intérieur (143) de la première partie (14a) de la tige (14) et les trous traversants (144) de la première partie (14a) de la tige (14), de manière à ce que le premier piston oscillant (10) puisse être poussé pneumatiquement vers le haut ;

    et lorsque le renfoncement annulaire (140) de la première partie (14a) de la tige (14) est positionné au niveau à la fois de l'évacuation supérieure (S1) et de la partie supérieure de la chambre de commutation (8) communiquant avec le conduit secondaire (82), les trous traversants (144) de la première partie (14a) de la tige (14) sont dans la partie inférieure de la chambre de commutation (8) et communiquant avec le conduit principal (81), de sorte que la source d'air comprimé (A1), quand activée, est en communication, à travers les trous traversants (144) de la première partie (14a) de la tige (14), le conduit intérieur (143) de la première partie (14a) de la tige (14) et les trous traversants (130) présents dans le premier piston oscillant (10), avec la deuxième partie (1B) de la première chambre d'oscillation (1) entre la paroi supérieure de fin de course (11) et le premier piston oscillant (10), tandis que la première partie (1A) de la première chambre d'oscillation (1) entre le premier piston oscillant (10) et la paroi inférieure de fin de course (12) est en communication avec l'évacuation supérieure (S1) à travers le conduit secondaire (82), de manière à ce que le premier piston oscillant (10) puisse être poussé pneumatiquement vers le bas.


     
    7. Le dispositif de coupe selon la revendication 6, caractérisé en ce que : le premier système d'actionnement pneumatique (P1) comprend un conduit de service (84), partant du conduit principal (81) et débouchant dans la première ouverture (4a) de la chambre de manœuvre (4).
     
    8. Le dispositif de coupe selon l'une quelconque des revendications de 5 à 7, caractérisé en ce que : la deuxième partie (14b) de la tige (14) est conformée de manière à présenter : deux portions annulaires (151, 152) en contact coulissant avec les parois de la portion cylindrique supérieure (17), un renfoncement annulaire (150) compris entre les deux portions annulaires (151, 152) et un conduit intérieur (153), et étant munie de trous traversants (154) prédisposés dans une position en dessous du renfoncement annulaire (150) de manière à mettre l'extérieur de la deuxième partie (14b) de la tige (14) en communication avec le conduit intérieur (153) ;
    le deuxième piston oscillant (20) étant muni de trous traversants (160) pour mettre le conduit intérieur (153) de la deuxième partie (14b) de la tige (14) en communication avec la deuxième partie (2B) de la deuxième chambre d'oscillation (2) comprise entre le deuxième piston oscillant (20) et la surface supérieure de fin de course (21) de la deuxième chambre d'oscillation (2) ;
    le deuxième système d'actionnement pneumatique (P2) comprenant : une chambre de commutation (9) dans une portion des parois intérieures de la portion cylindrique supérieure (17) faisant face à la deuxième partie (14b) de la tige (14), un conduit principal (91) prédisposé dans le corps (C) et intéressant la portion cylindrique supérieure (17) de manière à être en communication avec la source d'air comprimé (A2) et avec une partie inférieure de la chambre de commutation (9), un conduit secondaire (92) prédisposé dans la portion cylindrique supérieure (17) du corps (C) de manière à être en communication avec une partie supérieure de la chambre de commutation (9) et avec la deuxième chambre d'oscillation (2) à travers un trou de passage (93) dans la surface inférieure de fin de course (22) de la deuxième chambre d'oscillation (2), une évacuation supérieure (S3) communiquant avec l'extérieur dans la portion cylindrique supérieure (17) dans une position au-dessus de et en communication avec la chambre de commutation (9) et une évacuation inférieure (S4) communiquant avec l'extérieur réalisée dans la portion cylindrique supérieure (17) dans une position en dessous de la chambre de commutation (9) ;
    le renfoncement annulaire (150) de la deuxième partie (14b) de la tige (14) ayant des dimensions telles que, et avec les trous traversants (154) de la deuxième partie (14b) de la tige (14) qui sont positionnés par rapport au renfoncement annulaire (150) de telle sorte que, avec le coulissement alterné de la tige (14), et donc de la deuxième partie (14b) de la tige (14) à l'intérieur de la portion cylindrique supérieure (17) :

    lorsque le renfoncement annulaire (150) de la deuxième partie (14b) de la tige (14) est positionné au niveau de la chambre de commutation (9), les trous traversants (154) sont positionnés au niveau de l'évacuation inférieure (S4), de sorte que le conduit principal (91) est en communication à travers le renfoncement annulaire (150) avec le conduit secondaire (92) et donc que la source d'air comprimé (A2), quand activée, est en communication avec la première partie (2A) de la deuxième chambre d'oscillation (2) entre le deuxième piston oscillant (20) et la surface inférieure de fin de course (22), tandis que la deuxième partie (2B) de la deuxième chambre d'oscillation (2) entre le deuxième piston oscillant (20) et la surface supérieure de fin de course (21) est en communication avec l'évacuation inférieure (S4) à travers les trous traversants (160) du deuxième piston oscillant (20), le conduit intérieur (153) de la deuxième partie (14b) de la tige (14) et les trous traversants (154) de la deuxième partie (14b) de la tige (14), de manière à ce que le deuxième piston oscillant (20) puisse être poussé pneumatiquement vers le haut ;

    et lorsque le renfoncement annulaire (150) de la deuxième partie (14b) de la tige (14) est positionné au niveau à la fois de l'évacuation supérieure (S3) et de la partie supérieure de la chambre de commutation (9) communiquant avec le conduit secondaire (92), les trous traversants (154) de la deuxième partie (14b) de la tige (14) sont dans la partie inférieure de la chambre de commutation (9) et communiquant avec le conduit principal (91), de sorte que la source d'air comprimé (A2), quand activée, est en communication, à travers les trous traversants (154) de la deuxième partie (14b) de la tige (14), le conduit intérieur (153) de la deuxième partie (14a) de la tige (14) et les trous traversants (160) présents dans le deuxième piston oscillant (20), avec la deuxième partie (2B) de la deuxième chambre d'oscillation (2) entre la surface supérieure de fin de course (21) et le deuxième piston oscillant (20), tandis que la première partie (2A) de la deuxième chambre d'oscillation (2) entre le deuxième piston oscillant (20) et la surface inférieure de fin de course (22) est en communication avec l'évacuation supérieure (S3) à travers le conduit secondaire (92), de manière à ce que le deuxième piston oscillant (20) puisse être poussé pneumatiquement vers le bas.


     
    9. Le dispositif de coupe selon la revendication 8, caractérisé en ce que : le deuxième système d'actionnement pneumatique (P2) comprend un conduit de service (94), partant du conduit principal (91) et débouchant dans la deuxième ouverture (4b) de la chambre de manœuvre (4).
     
    10. Le dispositif de coupe selon l'une quelconque des revendications précédentes, caractérisé en ce que : le premier système d'actionnement pneumatique (P1) est raccordé à et en communication avec une première source d'air comprimé (A1) et le deuxième système d'actionnement pneumatique (P2) est raccordé à et en communication avec une deuxième source d'air comprimé (A2), la première source d'air comprimé (A1) et la deuxième source d'air comprimé (A2) étant prédisposées pour être activées alternativement et indépendamment l'une de l'autre.
     
    11. Le dispositif de coupe selon l'une quelconque des revendications de 1 à 9, caractérisé en ce que : le premier système d'actionnement pneumatique (P1) et le deuxième système d'actionnement pneumatique (P2) sont raccordés à et en communication avec une même source d'air comprimé (A1, A2) par le biais d'un organe à vanne pouvant être commandé de manière à ce que la source d'air comprimé (A1, A2) puisse diriger le flux d'air comprimé alternativement vers le premier système d'actionnement pneumatique (P1) ou vers le deuxième système d'actionnement pneumatique (P2).
     




    Drawing
































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description