(19)
(11)EP 3 438 274 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
17.02.2021 Bulletin 2021/07

(21)Application number: 16896958.2

(22)Date of filing:  31.03.2016
(51)International Patent Classification (IPC): 
C12Q 1/04(2006.01)
G01N 33/68(2006.01)
G01N 27/62(2021.01)
G01N 33/569(2006.01)
(86)International application number:
PCT/JP2016/060866
(87)International publication number:
WO 2017/168741 (05.10.2017 Gazette  2017/40)

(54)

MICROORGANISM IDENTIFICATION METHOD

MIKROORGANISMUSIDENTIFIZIERUNGSVERFAHREN

PROCÉDÉ D'IDENTIFICATION D'UN MICRO-ORGANISME


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
06.02.2019 Bulletin 2019/06

(73)Proprietors:
  • Shimadzu Corporation
    Kyoto-shi, Kyoto 604-8511 (JP)
  • Meijo University
    Nagoya-shi, Aichi 468-8502 (JP)

(72)Inventors:
  • TAMURA, Hiroto
    Nagoya-shi Aichi 468-8502 (JP)
  • YAMAMOTO, Naomi
    Nagoya-shi Aichi 468-8502 (JP)
  • KATO, Teruyo
    Toyota-shi Aichi 470-0356 (JP)
  • SHIMA, Keisuke
    Kyoto-shi Kyoto 604-8511 (JP)
  • FUNATSU, Shinji
    Kyoto-shi Kyoto 604-8511 (JP)

(74)Representative: Mewburn Ellis LLP 
Aurora Building Counterslip
Bristol BS1 6BX
Bristol BS1 6BX (GB)


(56)References cited: : 
WO-A2-2010/022400
  
  • MANDRELL RE ET AL.: 'Speciation of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry' APPL. ENVIRON. MICROBIOL. vol. 71, no. 10, 2005, ISSN 1098-5336 pages 6292 - 6307, XP055426763
  • FAGERQUIST CK ET AL.: 'Composite sequence proteomic analysis of protein biomarkers of Campylobacter coli, C. lari and C. concisus for bacterial identification' ANALYST vol. 132, no. 10, 2007, ISSN 1364-5528 pages 1010 - 1023, XP055426766
  • FAGERQUIST CK ET AL.: 'Sub-speciating Campylobacter jejuni by proteomic analysis of its protein biomarkers and their post- translational modifications' J. PROTEOME RES. vol. 5, no. 10, 2006, ISSN 1535-3907 pages 2527 - 2538, XP055426880
  • FAGERQUIST CK: 'Amino acid sequence determination of protein biomarkers of Campylobacter upsaliensis and C. helveticus by ''composite'' sequence proteomic analysis' J. PROTEOME RES. vol. 6, no. 7, 2007, ISSN 1535-3907 pages 2539 - 2549, XP055427019
  • ALISPAHIC M ET AL.: 'Species-specific identification and differentiation of Arcobacter , Helicobacter and Campylobacter by full-spectral matrix-associated laser desorption/ionization time of flight mass spectrometry analysis' J. MED. MICROBIOL. vol. 59, 2010, ISSN 1473-5644 pages 295 - 301, XP055427021
  • HIROTO TAMURA ET AL.: 'Rapid Bacterial Discrimination by MALDI-TOF MS Based on Ribosomal Proteins as Biomarkers : Rapid Bacterial Discrimination by S10-GERMS Method' SHIMADZU REVIEW vol. 70, no. 3O4, 2014, ISSN 0371-005X pages 157 - 170, XP035354584
  • OJIMA-KATO T ET AL.: 'Discrimination of Escherichia coli 0157, 026 and 0111 from other serovars by MALDI-TOF MS based on the S10-GERMS method' PLOS ONE vol. 9, no. 11, 2014, ISSN 1932-6203 pages 1 - 11, XP055427022
  • OJIMA-KATO T ET AL.: 'Assessing the performance of novel software Strain Solution on automated discrimination of Escherichia coli serotypes and their mixtures using matrix-assisted laser desorption ionization-time of flight mass spectrometry' J. MICROBIOL. METHODS vol. 119, 2015, ISSN 1872-8359 pages 233 - 238, XP029310787
  • TAMURA H ET AL.: 'Novel accurate bacterial discrimination by MALDI-time-of-flight MS based on ribosomal proteins coding in S10-spc-alpha operon at strain level S10-GERMS' J. AM. SOC. MASS SPECTROM. vol. 24, no. 8, 2013, ISSN 1879-1123 pages 1185 - 1193, XP035354584
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] The present invention relates to a microorganism identification method that utilizes mass spectrometry, and a computer program for identifying microorganisms that utilizes mass spectrometry data.

BACKGROUND ART



[0002] Bacteria of the genus Campylobacter are asporogenous, microaerophilic, gram-negative helical bacteria, among which 33 bacterial species have so far been identified and reported (Non Patent literature 1). Of the bacterial species of this genus, Campylobacter fetus has been known for about 100 years to cause miscarriage in livestock. Today, Campylobacter jejuni and Campylobacter coli are drawing attention as pathogens for Campylobacter infections in humans. Campylobacter infections are currently on the increase in a number of advanced countries (Non Patent literature 2) and are often fraught with complications which are peripheral nerve disorders including Guillain-Barre syndrome and Fisher syndrome.

[0003] The growth of Campylobacter bacteria is slow, taking time approximately twice as long as typical bacteria. Bacteria of this genus grow in 40 to 50 minutes at 37°C and at pH 5.5 to 8.0, and perish in two to three days at room temperature under aerobic conditions. These bacteria, however, may survive over an appreciable length of time at 10°C or below under aerobic conditions, and may survive for more than a month in raw meat frozen at minus 20°C or below and in raw meat packed by vacuum packaging or gas replacement packaging. While the optimum temperature for growth may be 30°C to 37°C in many of the Campylobacter bacteria, some species may grow at 25°C or 42°C. Bacterial species of this genus that grow at 42°C are called "thermophilic Campylobacter", which include species associated with food poisoning.

[0004] Campylobacter bacteria are often widely distributed in the intestinal canal of livestock, poultry, pets, and wild animals, and bacteria of this genus deemed to derive from these animals were isolated from river water, lake water, and sewage water (Non Patent Literature 3). The source of infection of the gravest concern in the advanced countries is fowl, and meat of fowl was found to be more contaminated with these bacteria than meat of any other domestic animals (Non Patent Literature 5). According to the reports of past researches in Japan and other countries, the infection in fowl is not vertical but is horizontal, which spreads in short time. Transmission of these bacteria from migratory birds to poultry was also reported (Non Patent Literatures 4 and 5).

[0005] While two serotyping methods (Penner method, Lior method) are typically used in the epidemiological surveys on Campylobacter jejuni and Campylobacter coli (Non Patent Literatures 6 and 7), only a limited number of institutions are equipped with diagnostic serums for the Penner serotyping method, while the Lior serotyping method is a time-consuming diagnostic approach.

[0006] Under the circumstances, Campylobacter jejuni and Campylobacter coli have to be monitored and controlled in the food and medical industries as food-poisoning bacteria, and it is highly desirable to develop methods and techniques for speedy detection and identification of these bacteria.

[0007] The methods so far proposed and reported are, for example, m-PCR (Non Patent Literatures 8 and 9), Pulsed-field gel electrophoresis (Non Patent Literature 10), and Multilocus sequence typing (Non Patent Literatures 11 and 12). These methods, however, require complicated handling and investment of time.

[0008] In the meantime, the microorganism identification method using Matrix Assisted Laser Desorption-ionization/time-of-flight Mass Spectrometry (MALDI-TOF MS) has been introduced and is rapidly spreading in the clinical field and in the food industry. This microorganism identification method identifies microorganisms based on mass spectral patterns obtained with trace amounts of microbial samples. According to this method, an analysis result can be obtained in short time, and multiple samples can be continuously analyzed. This method is, therefore, expected to facilitate and accelerate identification of microorganisms.

[0009] Some study groups have attempted to identify bacteria of the genus Campylobacter using the MALDI-TOF MS (Non Patent Literatures, 13, 14, 15, 16, and 17). According to Non Patent Literature 13, six bacterial species of the genus Campylobacter are identified by different proteins, as follows. Campylobacter coli (hereinafter, "Campylobacter" may be abbreviated to "C.") is identified by ribosomal protein L7/L12 and the DNA binding protein HU, C. jejuni is identified by ribosomal protein S13 and the DNA binding protein HU, C. lari is identified by ribosomal protein L7/L12, chaperonin GroES, and unknown protein of 9651 Da, C. spectorum is identified by unknown proteins of 12786 Da and 9796 Da, C. helveticus is identified by unknown protein of 9404 Da and the DNA binding protein HU, and C. upsaliensi is identified by the DNA binding protein HU. This report, however, is not supported by any genetic evidences.

[0010] It is described in Non Patent Literature 13 that the DNA binding protein HU is used to identify, based on genetic evidences, six bacterial species of the genus Campylobacter (C. coli, C. jejuni, C. lari, C. spectorum, C. helveticus, and C. upsaliensi). In our reproducibility test, however, steady detection of the DNA binding protein HU was not possible with the MALDI-TOF MS.

[0011] According to Non Patent Literature 17, groups of C. jejuni according to the multilocus sequence typing were identified by the MALDI-TOF MS. This paper, however, failed to articulate the origins of biomarker peaks.

[0012] Patent Literature 3 describes the identification of proteins using laser desorption ionization mass spectrometry and the identification of source organisms comprising the identified proteins.

[0013] Non-Patent Literature 18 describes the identification of protein biomarkers of Campylobacter coli, C. lari and C. concisus for bacterial identification.

[0014] Non-Patent Literature 19 describes sub-species separation of Campylobacter jejuni by proteomic analysis of its protein biomarkers and their post-translational modifications.

[0015] Non-Patent Literature 20 describes protein biomarkers of Campylobacter upsaliensis and C. helveticus.

CITATION LIST


PATENT LITERATURE



[0016] 

Patent Literature 1: JP 2006-191922 A

Patent Literature 2: JP 2013-085517 A

Patent Literature 3: WO 2010/022400 A2


NON PATENT LITERATURE



[0017] 

Non Patent Literature 1: List of prokaryotic names with standing in nomenclature, (Internet search on March 25, 2016; URL:http://www.bacterio.net/)

Non Patent Literature 2: Rosenquist, H.et.al., Int. J. Food Microbiol., 2003, 83(1), 87-103

Non Patent Literature 3: Corr J. et.al., Appl. Microbiol. 2011, 96S-114S

Non Patent Literature 4: Hald, B.et.al., Acta Vet Scand, 2016, 58 (1), 1

Non Patent Literature 5: Newell G. et.al., ASM press, 2000, 497-509

Non Patent Literature 6: Penner, J. et.al., J. Clin.Microbiol. 1980, 12: 732-737

Non Patent Literature 7: Lior, H. et al. J. Clin. Microbiol. 1980, 15: 761-768

Non Patent Literature 8: Samosornsuk, W. et al. Microbiol. Immunol., 2007, 51 (9), 909-917

Non Patent Literature 9: Asakura, M., et al., Microb. Pathog., 2007, 42, 174-183

Non Patent Literature 10: Gibson, J. et al., Letters in Applied Microbiology, 1994, 19(5), 357-358

Non Patent Literature 11: Behringer, M., et al., Journal of Microbiological Methods, 2011, 84 (2), 194-201

Non Patent Literature 12: Zautner, A. E., et al., Applied and environmental microbiology, 2011, 77 (7), 2359-2365

Non Patent Literature 13: Mandrell, R. E., Harden, L. A., Bates, A., Miller, W. G., Haddon, W. F., & Fagerquist, C. K., Applied and environmental microbiology, 2005, 71 (10), 6292-6307

Non Patent Literature 14: Fagerquist, C. K., Miller, W. G., Harden, L. A., Bates, A. H., Vensel, W. H., Wang, G., & Mandrell, R. E., Analytical chemistry, 2005, 77 (15), 4897-4907

Non Patent Literature 15: Alispahic, M., et.al., Journal of medical microbiology, 2010, 59 (3), 295-301

Non Patent Literature 16: Bessede, E., et.al., 2011, Clinical Microbiology and Infection, 17 (11), 1735-1739

Non Patent Literature 17: Zautner, A. E., et.al., BMC microbiology, 2013, 13:247 Non Patent Literature 18: Fagerquist, C. L., etal., Analyst, 2007, 132(10), 1010-1023

Non Patent Literature 19: Fagerquist, C. L., et al., Journal of Proteome Research, 2006, 5(10), 2527-2538

Non Patent Literature 20: Fagerquist, C. L., et al., Journal of Proteome Research, 2007, 6(7), 2539-2549


SUMMARY OF INVENTION


TECHNICAL PROBLEM



[0018] While these different literatures have so far reported on identification and classification of the bacterial species of the genus Campylobacter using the MALDI-TOF MS, none of them refers to how to identify bacterial subspecies and/or strains of this genus, and few of them successfully determined which ones of the proteins are the origins of biomarker peaks and peaks that appear on the obtained mass spectrum. Thus, most of the study results reported in these papers are unreproducible, which means that marker proteins showing high reliability and suitable for identification of bacterial subspecies and strains of the genus Campylobacter still remain unascertained today.

[0019] Patent Literature 1 describes an effective method which, based on the fact that about a half of peaks obtained through mass spectrometry of microbial bacteria is associated with ribosomal proteins, determines types of proteins which may be the origins of peaks obtained through mass spectrometry by associating mass-to-charge ratios of the peaks with calculated masses deduced from amino acid sequences translated from information on the base sequences of ribosomal protein genes (S 10-GERMS). This method, by thus using the mass spectrometry and dedicated software, may enable very reliable identification of microorganisms supported by theoretical evidences (Patent Literature 2).

[0020] The present invention is directed to providing a genetic information-based biomarker that excels in reliability in order to identify bacterial subspecies of the genus Campylobacter and C. jejuni strains.

SOLUTION TO PROBLEM



[0021] To this end, the inventors of the present invention were committed to various studies, experiments, and discussions, and were led to the following findings: the following 18 ribosomal proteins, S10, L23, S19, L22, L16, L29, S17, L14, L24, S14, L18, L15, L36, S13, S11 (Me), L32, and L7/L12 may be useful marker proteins for identifying, through mass spectrometry, which bacterial species of the genus Campylobacter are included in a sample and also identifying bacterial subspecies and strains (serotype) of this genus; bacterial species, subspecies and strains (serotype) of the genus Campylobacter may be identifiable by using at least one selected from the before-mentioned ribosomal proteins; and bacterial species, subspecies and strains (serotype) of the genus Campylobacter may be reproducibly and expeditiously identifiable by, among the before-mentioned ribosomal proteins, at least one of the following seven proteins, L23, L24, S14, L36, L32, L7/L12, and S11. Then, the inventors finally accomplished the present invention.

[0022] A microorganism identification method according to the present invention was made to address the issues of the known art. The microorganism identification method includes steps of:
  1. a) obtaining a mass spectrum through mass spectrometry of a sample including microorganisms;
  2. b) reading, from the mass spectrum, a mass-to-charge ratio m/z of a peak associated with a marker protein; and
  3. c) identifying which bacterial species of the genus Campylobacter are included in the microorganisms in the sample based on the mass-to-charge ratio m/z, wherein
the marker protein is at least one of the ribosomal proteins L23, S14, L36, L32, and S11.

[0023] The microorganism identification method is suitably used to identify whether the bacterial species of the genus Campylobacter is any one of five species, Campylobacter jejuni subsp. jejuni, Campylobacter jejuni subsp. doylei, Campylobacter coli, Campylobacter fetus, and Campylobacter lari.

[0024] When the bacterial species of the genus Campylobacter is Campylobacter jejuni subsp. jejuni, the marker protein preferably includes at least L24, any one of L32, L23, S14, and L7/L12, and L23.

[0025] When the bacterial species of the genus Campylobacter is Campylobacter coli, the marker protein preferably includes at least any one selected from L32, S14, and a group consisting of L23 and L24.

[0026] When the bacterial species of the genus Campylobacter is Campylobacter fetus, the marker protein is at least one of L23, S14, L36, L32, and S11.

[0027] When the bacterial species of the genus Campylobacter is Campylobacter lari, the marker protein includes at least one of L24, S14, and L32.

[0028] When the bacterial species of the genus Campylobacter is Campylobacter jejuni, the serotype of this species may be used in the microorganism identification method disclosed herein. Specifically, when the bacterial species of the genus Campylobacter is Campylobacter jejuni and is identified as having serotype R, the marker protein preferably includes at least L23.

[0029] When the bacterial species of the genus Campylobacter is Campylobacter jejuni and is identified as having serotype A, the marker protein preferably includes at least L23 or L32 and L7/L12.

[0030] When the bacterial species of the genus Campylobacter is Campylobacter jejuni and is identified as having serotype B, the marker protein preferably includes at least L7/L12.

[0031]  When the bacterial species of the genus Campylobacter is Campylobacter jejuni and is identified as having serotype U, the marker protein preferably includes at least L7/L12.

[0032] When the bacterial species of the genus Campylobacter is Campylobacter jejuni and is identified as having serotype D, the marker protein preferably includes at least L32 and L23 or L32 and L24.

[0033] When the bacterial species of the genus Campylobacter is Campylobacter jejuni and is identified as having serotypes DF complex, the marker protein preferably includes at least L32.

[0034] In the microorganism identification method, cluster analysis using, as indicator, at least mass-to-charge ratios m/z associated with L24, S14, and S11 may be employed to accurately determine which bacterial species of the genus Campylobacter are included in the microorganisms in the sample.

[0035] In the cluster analysis, the indicator may further include at least mass-to-charge ratios m/z associated with L24, S14, and L36.

[0036] In this instance, the microorganism identification method may further include a step of generating a dendrogram that shows an identification result obtained by the cluster analysis.

[0037] In the microorganism identification method disclosed herein, the serotype when the bacterial species of the genus Campylobacter is Campylobacter jejuni may be determined by employing cluster analysis using, as indicator, at least mass-to-charge ratios m/z associated with L32, L7/L12, L23, and S11 or L32, L7/L12, L24, and S11.

[0038] In this instance, the indicator preferably further includes mass-to-charge ratios m/z associated with L23, L24, S14, L32, and L7/L12, and may further include m/z associated with L23, L24, S14, L36, L32, and L7/L12.

[0039] A computer program according to the present invention comprises instructions which, when the program is executed by a computer, cause the computer to carry out the steps of:

reading, from a mass spectrum obtainable through mass spectrometry of a sample including microorganisms, a mass-to-charge ratio m/z of a peak associated with a marker protein; and

identifying which bacterial species of the genus Campylobacter are included in the microorganisms in the sample based on the mass-to-charge ratio m/z, wherein

the marker protein is at least one of the ribosomal proteins, L23, S14, L36, S11 (Me), and L32.


ADVANTAGEOUS EFFECTS OF THE INVENTION



[0040] In the microorganism identification method according to the present invention described thus far, the Campylobacter bacterial species may be reproducibly and expeditiously identified by using the marker protein selected from the ribosomal proteins that exhibit mutations specific to the Campylobacter bacteria.
This microorganism identification method uses, as marker protein, the marker protein selected from the ribosomal proteins that exhibit mutations specific to the Campylobacter bacteria, and further employs cluster analysis using, as indicator, mass-to-charge ratios m/z of marker protein-associated peaks marked on the mass spectrum. This method thus advantageously characterized may collectively identify at once bacteria of the genus Campylobacter possibly included in different samples.

BRIEF DESCRIPTION OF DRAWINGS



[0041] 

Fig. 1 is a block diagram illustrating principal structural elements of a microorganism identification system used with the microorganism identification method according to the present invention.

Fig. 2 is a flow chart of steps illustrated by way of an example, in the microorganism identification method according to the present invention.

Fig. 3 is a table showing a list of bacterial species, subspecies, and strains of the genus Campylobacter used in an example.

Fig. 4 is a table showing a list of primers used in the example.

Fig. 5 is a table showing masses of amino acids.

Fig. 6 is a table showing a list of theoretical masses and actual values measured by the MALDI-TOF-MS of ribosomal proteins in the Campylobacter bacteria used in the example.

Fig. 7A is a table showing the assignment result of seven ribosomal proteins determined based on measured values.

Fig. 7B is a table showing a relationship between theoretical mass values and assignment numbers of Fig. 7A.

Fig. 7C is a dendrogram drawn by using four of the ribosomal proteins of Fig. 7A.

Fig. 8 is a chart obtained from measurements by the MALDI-TOF MS.

Fig. 9 is an identification result obtained by the SARAMIS.

Fig. 10 is a drawing presenting peak charts obtained from measurements by the MALDI-TOF MS.

Fig. 11A is a table showing the assignment result of six ribosomal proteins determined based on measured values.

Fig. 11B is a table showing a relationship between theoretical mass values and assignment numbers of Fig 11A.

Fig. 11C is a dendrogram drawn by using the six ribosomal proteins of Fig. 11A.

Fig. 12A is a table showing the assignment result of four ribosomal proteins determined based on measured values.

Fig. 12B is a table showing a relationship between theoretical mass values and assignment numbers of Fig 12A.

Fig. 12C is a dendrogram drawn by using the four ribosomal proteins of Fig. 12A.

Fig. 13A is a table showing the assignment result of another combination of four ribosomal proteins determined based on measured values (serotyping).

Fig. 13B is a table showing a relationship between theoretical mass values and assignment numbers of Fig 13A.

Fig. 13C is a dendrogram drawn by using the four ribosomal proteins of Fig. 13A.

Fig. 14A is a table showing the assignment result of three ribosomal proteins determined based on measured values (serotyping).

Fig. 14B is a table showing a relationship between theoretical mass values and assignment numbers of Fig. 14A.

Fig. 14C is a dendrogram drawn by using the three ribosomal proteins of Fig. 14A.

Fig. 15A is a table showing the assignment result of another combination of three ribosomal proteins determined based on measured values (serotyping).

Fig. 15B is a table showing a relationship between theoretical mass values and assignment numbers of Fig. 15A.

Fig. 15C is a dendrogram drawn by using the three ribosomal proteins of Fig. 15A.


DESCRIPTION OF EMBODIMENTS



[0042] An embodiment of the microorganism identification method according to the present invention is hereinafter described in detail.

[0043] Fig. 1 is a block diagram, illustrating the overall structure of a microorganism identification system used with the microorganism identification method according to the present invention. Main structural elements of this microorganism identification system are a mass spectrometric device 10 and a microorganism discriminating device 20. The mass spectrometric device 10 includes an ionizing unit 11 and a time-of-flight mass segregating unit (TOF) 12. The ionizing unit 11 ionizes molecules and atoms in a sample using the Matrix Assisted Laser Desorption-ionization (MALDI). The time-of-flight mass segregating unit 12 segregates various ions emitted from the ionizing unit 11 in accordance with mass-to-charge ratios.

[0044] The TOF 12 includes a feeder electrode 13 and a detector 14. The feeder electrode 13 draws ions out of the ionizing unit 11 and guides the ions into an ion-flying space formed in the TOF 12. The detector 14 detects the ions subjected to mass segregation in the ion-flying space.

[0045] A computer such as a work station or a personal computer constitutes the microorganism discriminating device 20. The microorganism discriminating device 20 includes a Central Processing Unit (CPU) 21, a memory 22, a display unit 23 including, for example, Liquid Crystal Display (LCD), an input unit 24 including, for example, a keyboard and a mouse, and a storage unit 30 including a mass storage device such as a hard disc and/or a Solid State Drive (SSD). The memory 22, display unit 23, input unit 24, and storage unit 30 are interconnected and coupled to the CPU 21. The storage unit 30 is a storage for an Operating System (OS) 31, a spectrum generating program 32, a genus/species deciding program 33, a subclassification deciding program 35 (program according to the present invention), a first database 34, and a second database 36. The microorganism discriminating device 20 is further equipped with an interface (I/F) 25 that allows for direct connection with an external device and indirect connection with an external device through a network such as Local Area Network (LAN). The microorganism discriminating device 20 is coupled through the interface 25 to the mass spectrometric device 10 with a network cable NW (or through wireless LAN).

[0046] Referring to Fig. 1, a spectrum obtaining section 37, an m/z reading section 38, a subclassification determining section 39, a cluster analysis section 40, and a dendrogram (genealogical chart) generating section 41 are illustrated in the form of a tree view expanded from the subclassification deciding program 35. These sections are essentially functional means implemented in a software-based manner when the CPU 21 runs the subclassification deciding program 35. The subclassification deciding program 35 is not necessarily an independent program. The subclassification deciding program 35 may be configured otherwise, for example, as a function embedded in part of a genus/species deciding program 33 or a program run to control the mass spectrometric device 10. The genus/species deciding program 33 may be selected from, for example, programs configured to identify microorganisms using the known finger print method.

[0047] In Fig. 1, the spectrum generating program 32, genus/species deciding program 33, subclassification deciding program 35, first database 34, and second database 36 are installed in a terminal operated by a user. Instead, at least some of these programs and databases or all of them may be installed in a different apparatus coupled to the terminal through a computer network. In this instance, the databases and/or the programs installed in the apparatus may be accessed and/or processed under instructions transmitted from the terminal.

[0048] The first database 34 of the storage unit 30 contains a vast number of mass lists registered relating to the known microorganisms. The mass lists each contain a list of mass-to-charge ratios of ions detected in the mass spectrometry of a microbial cell, and further contain, in addition to the mass-to-charge ratio information, at least information on a taxonomic group (taxonomic information) that the microbial cell belongs to (for example, family, genus, species). Such mass lists may desirably be generated based on real data obtained through mass spectrometry of microbial cells by using similar ionization and mass segregation methods to the methods employed by the mass spectrometric device 10 (actually measured data).

[0049] To generate the mass list from actually measured data, first, peaks that appear in a predetermined range of mass-to-charge ratios are extracted from a mass spectrum obtained as the measured data. At the time, peaks associated with proteins may be mostly extracted by setting the predetermined range of mass-to-charge ratios to approximately 2,000 to 35,000, and undesired peaks (noise) may be removed by selectively extracting any peak of a height (relative intensity) greater than or equal to a predetermined threshold. Because of abundant ribosomal proteins being expressed in cells, when an appropriate value is set as the threshold, most of the mass-to-charge ratios recited in the mass lists may be associated with ribosomal proteins. Then, a list of mass-to-charge ratios (m/z) of the peaks thus extracted is registered per cell, with the taxonomic information appended thereto, in the first database 34. Importantly, culturing conditions for microbial cells used to obtain the measured data may desirably be standardized beforehand to minimize possible variability of gene expression under different culturing conditions.

[0050] In the second database 36 of the storage unit 30 is registered information relating to marker proteins used to identify the known microorganisms to the level of a lower taxonomic rank than species (for example, subspecies, pathotype, serotype, strain). The marker protein-related information includes at least information on mass-to-charge ratios (m/z) of the marker proteins in the known microorganisms. In the second database 36 according to this embodiment is stored information relating to marker proteins used to determine whether a test target microorganism is any one of bacteria of the genus Campylobacter. This information stored in the second database 36 specifically contains values of mass-to-charge ratios of at least the following ribosomal proteins, S10, L23, S19, L22, L16, L29, S17, L14, L24, S14, L18, L15, L36, S13, S11 (Me), L32, and L7/L12. The values of these mass-to-charge ratios of the ribosomal proteins will be described later in detail.

[0051] The values of the mass-to-charge ratios of the marker proteins stored in the second database 36 may desirably be selected and decided through comparison of mass-to-charge ratios actually measured to calculated masses obtained by translating base sequences of the respective ribosomal proteins into amino acid sequences. The base sequences of the marker proteins may be decided by sequencing or may be obtained from a public database, for example, National Center for Biotechnology Information (NCBI) database. To obtain the calculated masses from the amino acid sequences, the excision of N-terminal methionine residue may desirably be taken into account as posttranslational modification. Specifically, a theoretical value may be calculated based on the assumption that N-terminal methionine is excised when the second amino acid residue to the last is Gly, Ala, Ser, Pro, Val, Thr, or Cys. Since it is proton-attached molecules that are observed in the MALDI-TOF MS, the calculated masses may desirably be obtained, with protons being included in the calculation (theoretical values of mass-to-charge ratios of ions obtained by analysis of the proteins using the MALDI-TOF MS).

[0052] Steps of an operation to identify bacteria of the genus Campylobacter using the microorganism identification method according to this embodiment are hereinafter described with reference to a flow chart.

[0053] First, a user prepares a sample containing components of a test target microorganism, sets the prepared sample in the mass spectrometric device 10, and prompts the mass spectrometric device 10 to start mass spectrometry. The sample prepared then may be a cell extract or a material prepared by refining cell components, such as ribosomal proteins, in the cell extract. Optionally, a bacteria or cell suspension may be directly used as the sample.

[0054] The spectrum generating program 32 obtains a detection signal from the detector 14 of the mass spectrometric device 10 through the interface 25, and then generates a mass spectrum of the microorganism based on the detection signal (Step S101).

[0055] The genus/species deciding program 33 collates the mass spectrum of the target microorganism with the mass lists of the known microorganisms stored in the first database 34, and then extracts the mass list of a known microorganism whose mass-to-charge ratio has a pattern similar to that of the mass spectrum of the target microorganism, for example, a mass list abundantly including peaks that are substantially consistent with peaks on the mass spectrum of the target microorganism within a predetermined error range (Step S102). Then, the genus/species deciding program 33 consults the taxonomic information stored in the first database 34 in connection with the mass list extracted in Step S102 and identifies species of the known microorganism corresponding to the extracted mass list (Step S103). In case the species is found to be none of bacteria of the genus Campylobacter (No in Step S104), the species is outputted to the display unit 23 as species of the target microorganism (Step S116), and the operation ends. In case the species is found to be one of bacteria of the genus Campylobacter (Yes in Step S104), the operation proceeds to steps executed by the subclassification deciding program 35. In case the presence of any bacteria of the genus Campylobacter is already determined and confirmed by any other means, the operation may skip the species deciding program using the mass spectrum and directly proceed to the steps of the subclassification deciding program 35.

[0056] In the subclassification deciding program 35, the subclassification determining section 39 reads, from the second database 36, the mass-to-charge ratio values of the following seven ribosomal proteins L23, L24, S14, L36, L32, L7/L12, and S11 which are marker proteins (Step S105). Then, the spectrum obtaining section 37 obtains the mass spectrum of the target microorganism generated in Step S101. The m/z reading section 38 selects, as peaks corresponding to the marker proteins, peaks that appear on the mass spectrum within a range of mass-to-charge ratios stored in the second database 36 in association with the marker proteins, and then reads their mass-to-charge ratios (Step S106). Then, cluster analysis is executed, with the read mass-to-charge ratios being used as indicator. Specifically, the subclassification determining section 39 compares these mass-to-charge ratios to the mass-to-charge ratios of the marker proteins read from the second database 36 and decides assignment of the proteins based on the read mass-to-charge ratios (Step S107). Then, species of the target microorganism is determined by cluster analysis executed based on the decided assignment (Step S108) and is outputted to the display unit 23 as the identification result of the target microorganism (Step S109).

[0057] While the embodiment of the present invention was described thus far with reference to the accompanying drawings, the present invention includes but is not limited to the embodiment.

EXAMPLE


(1) Bacterial strains used



[0058] Bacteria of the genus Campylobacter used for analysis were obtained from the Collections of Bacterial Strains illustrated in Fig. 3; RIKEN, Japan, Bioresource Center, Microbe Division (JCM) (located in Tsukuba city, Japan), and American Type Culture Collection (Manassas, VA, USA). The serotypes of Campylobacter jejuni (Penner serotypes) were decided according to the Campylobacter antiserum "SEIKEN" (DENKA SEIKEN Co., Ltd.).

(2) DNA analysis



[0059] The inventors conducted DNA sequence analysis for ribosomal protein genes in S10-spc-alpha operons using primers illustrated in Fig. 4 which were designed based on upstream and downstream consensus sequences in a target region of genome-sequenced strain. Specifically, genomes were extracted from bacterial strains by a conventional means and used as template to perform the PCR using KOD plus and amplify a target gene region. The obtained PCR product was purified and used as template for sequence analysis. In the sequence analysis was used Big Dye ver. 3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, US). Subsequent to transformation into amino acid sequences of genes from their DNA sequences, mass-to-charge ratios were calculated based on masses of amino acids illustrated in Fig. 5 and used as theoretical mass values.

(3) Analysis using MALDI-TOF MS



[0060] The sample prepared for analysis was bacteria grown in Trypticase Soy Agar with 5% sheep blood (Becton, Dickinson and Company, Tokyo, Japan) or EG MEDIUM culture medium. The prepared sample in an amount approximately equivalent to one colony was added to and stirred in 10 µL of a sinapic acid-containing matrix agent (20 mg/mL of sinapic acid added to a solution containing 50 v/v% of acetonitrile and 1 v/v% of trifluoroacetic acid (Wako Pure Chemical Industries, Ltd., Osaka, Japan)). Then, 1.2 µL of the resulting material was dropped on a sample plate and naturally dried. The AXIMA Microorganism Identification System (Shimadzu Corporation, Kyoto, Japan) was used for measurements using the MALDI-TOF MS, in which the sample was measured under the conditions; positive linear mode, and spectral range of 2,000 m/z to 35,000 m/z. The theoretical mass values calculated by the method described earlier were matched to the measured mass-to-charge ratios within the margin of error of 500 ppm, which were then reviewed and corrected as appropriate. Colon bacillus DH5 α was used for calibration of a mass spectrometer, and mass spectrometry was carried out as directed in the instruction manual.

(4) Building a database for identifying bacterial strains of the genus Campylobacter



[0061] The theoretical mass values of the ribosomal proteins obtained as described in (2) were collated with the peak chart obtained by the MALDI-TOF MS in (3), which confirmed no difference between the measured values and the theoretical mass values calculated from gene sequences as for any proteins actually detected. Then, a test was conducted to look into a relationship between theoretical mass values and measured values of ribosomal proteins in S10-spc-α operons and other 26 ribosomal proteins as potential biomarkers which differed in mass with different strains. Fig. 6 shows the result of this test.

[0062] Fig. 6 is a table showing theoretical mass values of mass-to-charge ratios (m/z) calculated from genes and actually measured mass peaks, marked with circle, triangle, and cross, of bacterial species of the genus Campylobacter. The peaks marked with circle were detected within 500 ppm of the theoretical values in default peak setting of the AXIMA Microorganism Identification System (Threshold offset: 0.015 mV, Threshold response: 1.200). The cross indicates possible detection failure, and the triangle indicates that differences to theoretical mass values in bacterial strains or peaks of the other proteins were less than or equal to 500 ppm, suggesting that peaks were possibly detected but differences in mass were indistinguishable. Among the 26 ribosomal proteins listed in Fig. 6, methylation occurred with S11 in some bacterial species, in which case the mass-to-charge ratios subsequent to the methylation were the theoretical mass values and collated with the measured values. In Fig. 6, the theoretical values with (Me) indicate the mass-to-charge ratios subsequent to the methylation used as theoretical mass value.

[0063] As is known from Fig. 6, theoretical mass values of the ribosomal proteins coded in S10-spc-alpha operons, S10, L23, L22, L16, L29, S17, L14, L24, S14, L18, L15, L36, S11, and S13 and other ribosomal proteins L32 and L7/L12 (16 ribosomal proteins in total) are variable with different bacterial strains of the genus Campylobacter. This may demonstrate that these ribosomal proteins are very useful protein markers for strain identification.

[0064]  However, the ribosomal proteins, S10, L22, L16, L29, S17, L14, L18, L15, and S13, include admixture peaks, which may be considered unsuitable as biomarker. On the other hand, seven ribosomal proteins, L23, L24, S14, L36, S11, L32, and L7/L12, are expected to ensure detection stability irrespective of bacterial strains, and differences in mass with different bacterial strains were greater than or equal to 500 ppm. These seven ribosomal proteins were accordingly found to be useful biomarkers for identification of bacterial strains of the genus Campylobacter using the MALDI-TOF MS. In the test hereinafter described, these seven ribosomal proteins were used as biomarker.

(5) Software-based assignment of measured values by the MALDI-TOF MS



[0065] First, the theoretical mass values of the before-mentioned seven ribosomal proteins were registered in a software application described in Patent Literature 2.
Measured values obtained by the MALDI-TOF MS were analyzed by the software to check whether the respective biomarkers were correctly assignable to the registered mass peaks, and the mass peaks of all of the biomarkers were consequently assigned to the registered mass numbers for all of the bacterial strains, as illustrated in Fig. 7A. Fig. 7B shows a relationship between the registered theoretical mass values and assignment numbers. In comparison to Penner serotypes, Penner serotypes of Campylobacter jejuni were respectively identified as A, B, D, DF complex, U, and R.

[0066] Further, mass patterns of Campylobacter jejuni (assignment result) were subjected to cluster analysis, the result of which was outputted in the form of a binary graph to generate a dendrogram using dendrogram generating software called Past (Fig. 7C). As a result, subspecies of Campylobacter jejuni; subsp. jejuni, and subsp. doylei were identified, which were all displayed in subtrees. Subspecies of Campylobacter fetus; subsp. fetus, and subsp. venerealis, were also successfully identified. Thus, the seven biomarkers were found to be useful for identifying species and subspecies of the genus Campylobacter.

[0067] The names of the biomarkers found to be useful in this example are the same as in the mass peaks, C. coli L7/L12: 12854Da and C. jejuni S13: 13735Da, reported in Non Patent Literature 13. In this example, accurate peaks were calculated from the gene information and collated with the measured values, and biomarkers including many admixture peaks, like L29 used in Non Patent Literature 15, were ruled out. Thus, a very reliable mass database may be available now for the first time.

(6) Comparison with finger print method (SARAMIS)



[0068] The identification result using the theoretical mass values of biomarkers shown in Table 6 as indicator were compared with the identification result using the existing finger print method (SARAMIS). First, the chart illustrated in Fig. 8 was obtained from the MALDI-TOF MS measurements, the result of which was analyzed by the SARAMIS, as directed in the instruction manual of the AXIMA Microorganism Identification System. Fig. 9 is a table showing the result obtained by the analysis. Campylobacter jejuni subsp. doylei ATCC49350 was identified as Campylobacter jejuni by such a low percentage as 76%. As for Campylobacter jejuni subsp. doylei ATCC49349, its genus was not even identified probably because the SARAMIS has no database that can be consulted for matching. Campylobacter coli, Campylobacter jejuni subsp. jejuni, Campylobacter fetus subsp. fetus, Campylobacter fetus subsp. venerealis, and Campylobacter lari subsp. lari were accurately identified down to the level of species by 95% or more. None of these bacteria was identified to the level of subspecies.

[0069]  The inventors attempted to find out whether different subspecies strains are identifiable based on the database of theoretical mass values illustrated in Fig. 8A. Fig. 10 shows, in an enlarged view, peaks of seven of the biomarkers in the chart of Fig. 8. As is known from Fig. 10, the respective biomarker masses being shifted allow for clear distinction between the peaks. Comparison to measured values of the seven biomarkers and subsequent assignment resulted in the same outcome as shown in Fig. 7A.

[0070] While the example used the seven ribosomal proteins as marker protein to identify species and subspecies of the genus Campylobacter, marker proteins usable for this purpose include but are not limited to these ribosomal proteins. Figs. 11A to 11C show results obtained from a dendrogram generated based on cluster analysis performed with the assignment result of six of the seven ribosomal biomarkers from which the ribosomal protein S11 has been excluded. According to this method, as illustrated in Fig. 11C, subspecies of Campylobacter jejuni; subsp. jejuni, and subsp. doylei were identified, which were all displayed in subtrees. Subspecies of Campylobacter fetus, on the other hand, failed to be identified, while species of Campylobacter jejuni and Campylobacter fetus were identified. This result may demonstrate that these six biomarkers are very useful for identifying bacterial species of the genus Campylobacter and identifying subspecies of Campylobacter jejuni.

[0071] Figs. 12A to 12C show results obtained from a dendrogram generated based on cluster analysis of four ribosomal proteins L32, L7/L12, L23, and S11 performed with the assignment result of marker proteins. According to this method, bacterial species and subspecies of the genus Campylobacter were identified, although in a manner slightly different from the result of the seven ribosomal biomarkers (result of Fig. 8C). Therefore, these four ribosomal proteins were also found to be useful for identifying bacterial species and subspecies of the genus Campylobacter.

[0072] Figs. 13A to 13C show results obtained from a dendrogram generated based on cluster analysis of four ribosomal proteins L32, L7/L12, L24, and S11 performed with the assignment result of marker proteins. According to this method, bacterial species and subspecies of the genus Campylobacter were identified, although in a manner slightly different from the result of the seven ribosomal biomarkers (result of Fig. 8C). Therefore, these four ribosomal proteins were also found to be useful for identifying bacterial species and subspecies of the genus Campylobacter.

[0073] Figs. 14A to 14C show results obtained from a dendrogram generated based on cluster analysis of three ribosomal proteins L24, S14, and S11 performed with the assignment result of marker proteins. This method succeeded in identifying bacteria of the genus Campylobacter, while failing to identify subspecies of Campylobacter jejuni.

[0074] Figs. 15A to 15C show results obtained from a dendrogram generated based on cluster analysis of three ribosomal proteins L24, S14, and L36 performed with the assignment result of marker proteins. This method succeeded in identifying bacteria of the genus Campylobacter, while failing to identify subspecies of Campylobacter jejuni or subspecies of Campylobacter fetus.

(7) Amino acid sequences and gene sequences of biomarkers



[0075] A list of sequence ID numbers show DNA sequences and amino acid sequences of six ribosomal proteins in different bacterial strains of the genus Campylobacter which showed theoretical mass values variable with the difference bacterial strains. These six ribosomal proteins include L23, L24, S14, and L36 coded in S10-spc-alpha operons, and L32 and L7/L12 coded outside of the S10-spc-alpha operons.

REFERENCE SIGNS LIST



[0076] 
10
mass spectrometric device
11
ionizing unit
12
TOF
13
feeder electrode
14
detector
20
microorganism discriminating device
21
CPU
22
memory
23
display unit
24
input unit
25
I/F
30
storage unit
31
OS
32
spectrum generating program
33
genus/species deciding program
34
first database
35
subclassification deciding program
36
second database
37
spectrum obtaining section
38
m/z reading section
39
subclassification determining section
40
cluster analysis section
41
dendrogram generating section

SEQUENCE LISTING



[0077] 

<110> Shimadzu Corporation Meijo University Aichi Science & Technology Foundation

<120> Discrimination method of microorganism

<130> G226056WO

<160> 128

<170> PatentIn version 3.5

<210> 1
<211> 147
<212> DNA
<213> Campylobacter jejuni ATCC 33560T

<400> 1

<210> 2
<211> 378
<212> DNA
<213> Campylobacter jejuni ATCC 33560T

<400> 2

<210> 3
<211> 282
<212> DNA
<213> Campylobacter jejuni ATCC 33560T

<400> 3

<210> 4
<211> 234
<212> DNA
<213> Campylobacter jejuni ATCC 33560T

<4> 4

<210> 5
<211> 186
<212> DNA
<213> Campylobacter jejuni ATCC 33560T

<400> 5

<210> 6
<211> 357
<212> DNA
<213> Campylobacter jejuni ATCC 33560T

<400> 6

<210> 7
<211> 114
<212> DNA
<213> Campylobacter jejuni ATCC 33560T

<400> 7

<210> 8
<211> 393
<212> DNA
<213> Campylobacter jejuni ATCC 33560T

<400> 8

<210> 9
<211> 147
<212> DNA
<213> Campylobacter jejuni ATCC 29248=JCM 2013

<400> 9

<210> 10
<211> 378
<212> DNA
<213> Campylobacter jejuni ATCC 29248=JCM 2013

<400> 10

<210> 11
<211> 282
<212> DNA
<213> Campylobacter jejuni ATCC 29248=JCM 2013

<400> 11



<210> 12
<211> 234
<212> DNA
<213> Campylobacter jejuni ATCC 29248=JCM 2013

<400> 12

<210> 13
<211> 186
<212> DNA
<213> Campylobacter jejuni ATCC 29248=JCM 2013

<400> 13

<210> 14
<211> 357
<212> DNA
<213> Campylobacter jejuni ATCC 29248=JCM 2013

<400> 14

<210> 15
<211> 114
<212> DNA
<213> Campylobacter jejuni ATCC 29248=JCM 2013

<400> 15

<210> 16
<211> 393
<212> DNA
<213> Campylobacter jejuni ATCC 29428

<400> 16

<210> 17
<211> 147
<212> DNA
<213> Campylobacter jejuni ATCC 33291

<400> 17

<210> 18
<211> 378
<212> DNA
<213> Campylobacter jejuni ATCC 33291

<400> 18

<210> 19
<211> 282
<212> DNA
<213> Campylobacter jejuni ATCC 33291

<400> 19

<210> 20
<211> 234
<212> DNA
<213> Campylobacter jejuni ATCC 33291

<4> 20

<210> 21
<211> 186
<212> DNA
<213> Campylobacter jejuni ATCC 33291

<400> 21

<210> 22
<211> 357
<212> DNA
<213> Campylobacter jejuni ATCC 33291

<400> 22

<210> 23
<211> 114
<212> DNA
<213> Campylobacter jejuni ATCC 33291

<400> 23

<210> 24
<211> 393
<212> DNA
<213> Campylobacter jejuni ATCC 33291

<400> 24

<210> 25
<211> 147
<212> DNA
<213> Campylobacter jejuni ATCC 700819

<400> 25

<210> 26
<211> 378
<212> DNA
<213> Campylobacter jejuni ATCC 700819

<400> 26



<210> 27
<211> 282
<212> DNA
<213> Campylobacter jejuni ATCC 700819

<400> 27

<210> 28
<211> 234
<212> DNA
<213> Campylobacter jejuni ATCC 700819

<400> 28

<210> 29
<211> 186
<212> DNA
<213> Campylobacter jejuni ATCC 700819

<400> 29

<210> 30
<211> 357
<212> DNA
<213> Campylobacter jejuni ATCC 700819

<400> 30



<210> 31
<211> 114
<212> DNA
<213> Campylobacter jejuni ATCC 700819

<400> 31

<210> 32
<211> 393
<212> DNA
<213> Campylobacter jejuni ATCC 700819

<400> 32

<210> 33
<211> 147
<212> DNA
<213> Campylobacter jejuni doylei ATCC 49349T

<400> 33

<210> 34
<211> 378
<212> DNA
<213> Campylobacter jejuni doylei ATCC 49349T

<400> 34



<210> 35
<211> 282
<212> DNA
<213> Campylobacter jejuni doylei ATCC 49349T

<400> 35

<210> 36
<211> 234
<212> DNA
<213> Campylobacter jejuni doylei ATCC 49349T

<400> 36

<210> 37
<211> 186
<212> DNA
<213> Campylobacter jejuni doylei ATCC 49349T

<400> 37

<210> 38
<211> 357
<212> DNA
<213> Campylobacter jejuni doylei ATCC 49349T

<400> 38



<210> 39
<211> 114
<212> DNA
<213> Campylobacter jejuni doylei ATCC 49349T

<400> 39

<210> 40
<211> 393
<212> DNA
<213> Campylobacter jejuni doylei ATCC 49349T

<400> 40

<210> 41
<211> 147
<212> DNA
<213> Campylobacter jejuni doylei ATCC 49350

<400> 41

<210> 42
<211> 378
<212> DNA
<213> Campylobacter jejuni doylei ATCC 49350

<400> 42

<210> 43
<211> 282
<212> DNA
<213> Campylobacter jejuni doylei ATCC 49350

<400> 43

<210> 44
<211> 234
<212> DNA
<213> Campylobacter jejuni doylei ATCC 49350

<400> 44

<210> 45
<211> 186
<212> DNA
<213> Campylobacter jejuni doylei ATCC 49350

<400> 45

<210> 46
<211> 357
<212> DNA
<213> Campylobacter jejuni doylei ATCC 49350

<400> 46

<210> 47
<211> 114
<212> DNA
<213> Campylobacter jejuni doylei ATCC 49350

<400> 47

<210> 48
<211> 393
<212> DNA
<213> Campylobacter jejuni doylei ATCC 49350

<400> 48

<210> 49
<211> 147
<212> DNA
<213> Campylobacter coli

<400> 49

<210> 50
<211> 378
<212> DNA
<213> Campylobacter coli

<400> 50

<210> 51
<211> 282
<212> DNA
<213> Campylobacter coli

<400> 51

<210> 52
<211> 234
<212> DNA
<213> Campylobacter coli

<400> 52

<210> 53
<211> 186
<212> DNA
<213> Campylobacter coli

<400> 53



<210> 54
<211> 357
<212> DNA
<213> Campylobacter coli

<400> 54

<210> 55
<211> 114
<212> DNA
<213> Campylobacter coli

<400> 55

<210> 56
<211> 393
<212> DNA
<213> Campylobacter coli

<400> 56

<210> 57
<211> 147
<212> DNA
<213> Campylobacter lari

<400> 57



<210> 58
<211> 378
<212> DNA
<213> Campylobacter lari

<400> 58

<210> 59
<211> 282
<212> DNA
<213> Campylobacter lari

<400> 59

<210> 60
<211> 228
<212> DNA
<213> Campylobacter lari

<400> 60

<210> 61
<211> 186
<212> DNA
<213> Campylobacter lari

<400> 61

<210> 62
<211> 357
<212> DNA
<213> Campylobacter lari

<400> 62

<210> 63
<211> 114
<212> DNA
<213> Campylobacter lari

<400> 63

<210> 64
<211> 393
<212> DNA
<213> Campylobacter lari

<400> 64

<210> 65
<211> 48
<212> PRT
<213> Campylobacter jejuni ATCC 33560T

<400> 65

<210> 66
<211> 125
<212> PRT
<213> Campylobacter jejuni ATCC 33560T

<400> 66

<210> 67
<211> 93
<212> PRT
<213> Campylobacter jejuni ATCC 33560T

<400> 67

<210> 68
<211> 77
<212> PRT
<213> Campylobacter jejuni ATCC 33560T

<400> 68

<210> 69
<211> 61
<212> PRT
<213> Campylobacter jejuni ATCC 33560T

<400> 69



<210> 70
<211> 118
<212> PRT
<213> Campylobacter jejuni ATCC 33560T

<400> 70

<210> 71
<211> 37
<212> PRT
<213> Campylobacter jejuni ATCC 33560T

<400> 71



<210> 72
<211> 130
<212> PRT
<213> Campylobacter jejuni ATCC_1 33560T

<400> 72

<210> 73
<211> 48
<212> PRT
<213> Campylobacter jejuni ATCC 29248=JCM 2013

<400> 73



<210> 74
<211> 125
<212> PRT
<213> Campylobacter jejuni ATCC 29248=JCM 2013

<400> 74

<210> 75
<211> 93
<212> PRT
<213> Campylobacter jejuni ATCC 29248=JCM 2013

<400> 75



<210> 76
<211> 77
<212> PRT
<213> Campylobacter jejuni ATCC 29248=JCM 2013

<400> 76

<210> 77
<211> 61
<212> PRT
<213> Campylobacter jejuni ATCC 29248=JCM 2013

<400> 77

<210> 78
<211> 118
<212> PRT
<213> Campylobacter jejuni ATCC 29248=JCM 2013

<400> 78

<210> 79
<211> 37
<212> PRT
<213> Campylobacter jejuni ATCC 29248=JCM 2013

<400> 79

<210> 80
<211> 130
<212> PRT
<213> Campylobacter jejuni ATCC_1 29428

<400> 80

<210> 81
<211> 48
<212> PRT
<213> Campylobacter jejuni ATCC 33291

<400> 81

<210> 82
<211> 125
<212> PRT
<213> Campylobacter jejuni ATCC 33291

<400> 82

<210> 83
<211> 93
<212> PRT
<213> Campylobacter jejuni ATCC 33291

<400> 83

<210> 84
<211> 77
<212> PRT
<213> Campylobacter jejuni ATCC 33291

<400> 84

<210> 85
<211> 61
<212> PRT
<213> Campylobacter jejuniATCC 33291

<400> 85

<210> 86
<211> 118
<212> PRT
<213> Campylobacter jejuni ATCC 33291

<400> 86



<210> 87
<211> 37
<212> PRT
<213> Campylobacter jejuni

<400> 87

<210> 88
<211> 130
<212> PRT
<213> Campylobacter jejuni ATCC_1 33291

<400> 88



<210> 89
<211> 48
<212> PRT
<213> Campylobacter jejuni ATCC 700819

<400> 89

<210> 90
<211> 125
<212> PRT
<213> Campylobacter jejuni ATCC 700819

<400> 90



<210> 91
<211> 93
<212> PRT
<213> Campylobacter jejuni ATCC 700819

<400> 91

<210> 92
<211> 77
<212> PRT
<213> Campylobacter jejuni ATCC 700819

<400> 92



<210> 93
<211> 61
<212> PRT
<213> Campylobacter jejuni ATCC 700819

<400> 93

<210> 94
<211> 118
<212> PRT
<213> Campylobacter jejuni ATCC 700819

<400> 94



<210> 95
<211> 37
<212> PRT
<213> Campylobacter jejuni ATCC 700819

<400> 95

<210> 96
<211> 130
<212> PRT
<213> Campylobacter jejuni ATCC_1 700819

<400> 96



<210> 97
<211> 48
<212> PRT
<213> Campylobacter jejuni doylei ATCC 49349T

<400> 97

<210> 98
<211> 125
<212> PRT
<213> Campylobacter jejuni doylie ATCC 49349T

<400> 98



<210> 99
<211> 93
<212> PRT
<213> Campylobacter jejuni doylei ATCC 49349T

<400> 99

<210> 100
<211> 77
<212> PRT
<213> Campylobacter jejuni doylei ATCC 49349T

<400> 100



<210> 101
<211> 61
<212> PRT
<213> Campylobacter jejuni ATCC 49349T

<400> 101

<210> 102
<211> 118
<212> PRT
<213> Campylobacter jejuni doylei ATCC 49349T

<400> 102



<210> 103
<211> 37
<212> PRT
<213> Campylobacter jejuni ATCC 49349T

<400> 103

<210> 104
<211> 130
<212> PRT
<213> Campylobacter jejuni doylei ATCC_1 49349T

<400> 104

<210> 105
<211> 48
<212> PRT
<213> Campylobacter jejuni doylei ATCC 49350

<400> 105

<210> 106
<211> 125
<212> PRT
<213> Campylobacter jejuni doylei ATCC 49350

<400> 106

<210> 107
<211> 93
<212> PRT
<213> Campylobacter jejuni doylei ATCC 49350

<400> 107

<210> 108
<211> 77
<212> PRT
<213> Campylobacter jejuni doylei ATCC 49350

<400> 108

<210> 109
<211> 61
<212> PRT
<213> Campylobacter jejuni doylei ATCC 49350

<400> 109



<210> 110
<211> 118
<212> PRT
<213> Campylobacter jejuni doylei ATCC 49350

<400> 110

<210> 111
<211> 37
<212> PRT
<213> Campylobacter jejuni doylei ATCC 49350

<400> 111



<210> 112
<211> 130
<212> PRT
<213> Campylobacter jejuni doylei ATCC_1 49350

<400> 112

<210> 113
<211> 48
<212> PRT
<213> Campylobacter coli

<400> 113



<210> 114
<211> 125
<212> PRT
<213> Campylobacter coli

<400> 114

<210> 115
<211> 93
<212> PRT
<213> Campylobacter coli

<400> 115



<210> 116
<211> 77
<212> PRT
<213> Campylobacter coli

<400> 116

<210> 117
<211> 61
<212> PRT
<213> Campylobacter coli

<400> 117



<210> 118
<211> 118
<212> PRT
<213> Campylobacter coli

<400> 118

<210> 119
<211> 37
<212> PRT
<213> Campylobacter coli

<400> 119

<210> 120
<211> 130
<212> PRT
<213> Campylobacter coli

<400> 120

<210> 121
<211> 48
<212> PRT
<213> Campylobacter lari

<400> 121

<210> 122
<211> 125
<212> PRT
<213> Campylobacter lari

<400> 122

<210> 123
<211> 93
<212> PRT
<213> Campylobacter lari

<400> 123



<210> 124
<211> 75
<212> PRT
<213> Campylobacter lari

<400> 124

<210> 125
<211> 61
<212> PRT
<213> Campylobacter lari

<400> 125

<210> 126
<211> 118
<212> PRT
<213> Campylobacter lari

<400> 126



<210> 127
<211> 37
<212> PRT
<213> Campylobacter lari

<400> 127

<210> 128
<211> 130
<212> PRT
<213> Campylobacter lari

<400> 128






Claims

1. A microorganism identification method comprising steps of:

a) obtaining a mass spectrum through mass spectrometry of a sample including microorganisms;

b) reading, from the mass spectrum, a mass-to-charge ratio m/z of a peak associated with a marker protein; and

c) identifying which bacterial species of the genus Campylobacter are included in the microorganisms in the sample based on the mass-to-charge ratio m/z, wherein

the marker protein is at least one of the ribosomal proteins, L23, S14, L36, S11 (Me), and L32.
 
2. The microorganism identification method according to claim 1, wherein the bacterial species of the genus Campylobacter is any one of five species, Campylobacter jejuni subsp. jejuni, Campylobacter jejuni subsp. doylei, Campylobacter coli, Campylobacter fetus, and Campylobacter lari.
 
3. The microorganism identification method according to claim 2, wherein
the bacterial species of the genus Campylobacter is Campylobacter jejuni subsp. jejuni, and
the marker protein includes at least L24, any one of L32, L23, S14, and L7/L12, and L23.
 
4. The microorganism identification method according to claim 2, wherein
the bacterial species of the genus Campylobacter is Campylobacter Coli, and
the marker protein includes at least any one selected from L32, S14, and a group consisting of L23 and L24.
 
5. The microorganism identification method according to claim 2, wherein the bacterial species of the genus Campylobacter is Campylobacter fetus, and the marker protein is at least one of L23, S14, L36, L32, and S11.
 
6. The microorganism identification method according to claim 2, wherein the bacterial species of the genus Campylobacter is Campylobacter lari, and the marker protein includes at least one of L23, S14, and L32.
 
7. The microorganism identification method according to claim 2, wherein
when the bacterial species of the genus Campylobacter is Campylobacter jejuni, it is identified as having serotype R, and
the marker protein includes at least L23.
 
8. The microorganism identification method according to claim 2, wherein
when the bacterial species of the genus Campylobacter is Campylobacter jejuni, it is identified as having serotype A, and
the marker protein includes at least L23 or L32 and L7/L12.
 
9. The microorganism identification method according to claim 2, wherein
when the bacterial species of the genus Campylobacter is Campylobacter jejuni, it is identified as having serotype B, and
the marker protein includes at least L7/L12.
 
10. The microorganism identification method according to claim 2, wherein
when the bacterial species of the genus Campylobacter is Campylobacter jejuni, it is identified as having serotype U, and
the marker protein includes at least L7/L12.
 
11. The microorganism identification method according to claim 2, wherein
when the bacterial species of the genus Campylobacter is Campylobacter jejuni, it is identified as having serotype D, and
the marker protein includes at least L32 and L23 or L32 and L24.
 
12. The microorganism identification method according to claim 2, wherein
when the bacterial species of the genus Campylobacter is Campylobacter jejuni, it is identified as having serotype DF complex, and
the marker protein includes at least L32.
 
13. The microorganism identification method according to claim 2, wherein cluster analysis using, as indicator, at least mass-to-charge ratios m/z associated with L24, S14, and S11 is employed to determine which bacterial species of the genus Campylobacter are included in the microorganisms in the sample.
 
14. The microorganism identification method according to claim 13, wherein the indicator further includes at least mass-to-charge ratios m/z associated with L24, S14, and L36.
 
15. The microorganism identification method according to claim 13 or 14, further comprising a step of generating a dendrogram that shows an identification result obtained by the cluster analysis.
 
16. The microorganism identification method according to claim 2, wherein the serotype when the bacterial species of the genus Campylobacter is Campylobacter jejuni is determined by employing cluster analysis using, as indicator, at least mass-to-charge ratios m/z associated with L32, L7/L12, L23, and S11 or L32, L7/L12, L24, and S11.
 
17. The microorganism identification method according to claim 16, wherein the indicator further includes mass-to-charge ratios m/z associated with L23, L24, S14, L32, and L7/L12.
 
18. The microorganism identification method according to claim 16, wherein the indicator further includes m/z associated with L23, L24, S14, L36, L32, and L7/L12.
 
19. A computer program comprising instructions which, when the program is executed by a computer, cause the computer to carry out steps of:

reading, from a mass spectrum obtainable through mass spectrometry of a sample including microorganisms, a mass-to-charge ratio m/z of a peak associated with a marker protein; and

identifying which bacterial species of the genus Campylobacter are included in the microorganisms in the sample based on the mass-to-charge ratio m/z, wherein

the marker protein is at least one of the ribosomal proteins, L23, S14, L36, S11 (Me), and L32.


 


Ansprüche

1. Mikroorganismen-Identifikationsverfahren, das die folgenden Schritte umfasst:

a) das Erhalten eines Massenspektrums mittels Massenspektrometrie einer Probe, die Mikroorganismen umfasst;

b) das Auslesen des Masse-zu-Ladung-Verhältnisses m/z eines einem Markerprotein zugeordneten Peaks aus dem Massenspektrum; und

c) das Identifizieren, welche Bakterienspezies der Gattung Campylobacter in den Mikroorganismen in der Probe enthalten sind, basierend auf dem Masse-zu-Ladung-Verhältnis m/z; wobei

das Markerprotein zumindest eines der ribosomalen Proteine L23, S14, L36, S11(Me) und L32 ist.
 
2. Mikroorganismen-Identifikationsverfahren nach Anspruch 1, wobei die Bakterienspezies der Gattung Campylobacter eine beliebige der fünf Spezies Campylobacter jejuni subsp. jejuni, Campylobacter jejuni subsp. doylei, Campylobacter coli, Campylobacter fetus und Campylobacter lari ist.
 
3. Mikroorganismen-Identifikationsverfahren nach Anspruch 2, wobei
die Bakterienspezies der Gattung Campylobacter Campylobacter jejuni subsp. jejuni ist und
das Markerprotein zumindest L24, ein beliebiges von L32, L23, S14 und L7/L12 sowie L23 umfasst.
 
4. Mikroorganismen-Identifikationsverfahren nach Anspruch 2, wobei
die Bakterienspezies der Gattung Campylobacter Campylobacter coli ist und
das Markerprotein zumindest eines, ausgewählt aus L32, S14 und aus der aus L23 und L24 bestehenden Gruppe umfasst.
 
5. Mikroorganismen-Identifikationsverfahren nach Anspruch 2, wobei
die Bakterienspezies der Gattung Campylobacter Campylobacter fetus ist und
das Markerprotein zumindest eines von L23, S14, L36, L32 und S11 ist.
 
6. Mikroorganismen-Identifikationsverfahren nach Anspruch 2, wobei
die Bakterienspezies der Gattung Campylobacter Campylobacter lari ist und
das Markerprotein zumindest eines von L23, S14 und L32 umfasst.
 
7. Mikroorganismen-Identifikationsverfahren nach Anspruch 2, wobei,
wenn die Bakterienspezies der Gattung Campylobacter Campylobacter jejuni ist, sie als den Serotyp R aufweisend identifiziert wird und
das Markerprotein zumindest L23 umfasst.
 
8. Mikroorganismen-Identifikationsverfahren nach Anspruch 2, wobei
wenn die Bakterienspezies der Gattung Campylobacter Campylobacter jejuni ist, sie als den Serotyp A aufweisend identifiziert wird und
das Markerprotein zumindest L23 oder L32 und L7/L12 umfasst.
 
9. Mikroorganismen-Identifikationsverfahren nach Anspruch 2, wobei,
wenn die Bakterienspezies der Gattung Campylobacter Campylobacter jejuni ist, sie als den Serotyp B aufweisend identifiziert wird und
das Markerprotein zumindest L7/L12 umfasst.
 
10. Mikroorganismen-Identifikationsverfahren nach Anspruch 2, wobei,
wenn die Bakterienspezies der Gattung Campylobacter Campylobacter jejuni ist, sie als den Serotyp U aufweisend identifiziert wird und
das Markerprotein zumindest L7/L12 umfasst.
 
11. Mikroorganismen-Identifikationsverfahren nach Anspruch 2, wobei,
wenn die Bakterienspezies der Gattung Campylobacter Campylobacter jejuni ist, sie als den Serotyp D aufweisend identifiziert wird und
das Markerprotein zumindest L32 und L23 oder L32 und L24 umfasst.
 
12. Mikroorganismen-Identifikationsverfahren nach Anspruch 2, wobei,
wenn die Bakterienspezies der Gattung Campylobacter Campylobacter jejuni ist, sie als den Serotyp DF-Komplex aufweisend identifiziert wird und
das Markerprotein zumindest L32 umfasst.
 
13. Mikroorganismen-Identifikationsverfahren nach Anspruch 2, wobei eine Cluster-Analyse unter Verwendung von zumindest Masse-zu-Ladung-Verhältnissen m/z, die L24, S14 und S11 zugeordnet sind, als Indikator durchgeführt wird, um zu bestimmen, welche Bakterienspezies der Gattung Campylobacter in den Mikroorganismen in der Probe enthalten sind.
 
14. Mikroorganismen-Identifikationsverfahren nach Anspruch 13, wobei der Indikator weiters zumindest Masse-zu-Ladung-Verhältnisse m/z umfasst, die L24, S14 und L36 zugeordnet sind.
 
15. Mikroorganismen-Identifikationsverfahren nach Anspruch 13 oder 14, das weiters einen Schritt des Erstellens eines Dendrogramms umfasst, welches das durch die Cluster-Analyse erhaltene Ergebnis zeigt.
 
16. Mikroorganismen-Identifikationsverfahren nach Anspruch 2, wobei der Serotyp, wenn die Bakterienspezies der Gattung Campylobacter Campylobacter jejuni ist, mittels Durchführung einer Cluster-Analyse unter Verwendung von zumindest Masse-zu-Ladung-Verhältnissen m/z, die L32, L7/L12, L23 und S11 oder L32, L7/L12, L24 und S11 zugeordnet sind, bestimmt wird.
 
17. Mikroorganismen-Identifikationsverfahren nach Anspruch 16, wobei der Indikator weiters Masse-zu-Ladung-Verhältnisse m/z umfasst, die L23, L24, S14, L32 und L7/L12 zugeordnet sind.
 
18. Mikroorganismen-Identifikationsverfahren nach Anspruch 16, wobei der Indikator weiters Masse-zu-Ladung-Verhältnisse m/z umfasst, die L23, L24, S14, L36, L32 und L7/L12 zugeordnet sind.
 
19. Computerprogramm, das Befehle umfasst, die, wenn das Programm von einem Computer ausgeführt wird, den Computer veranlassen, die folgenden Schritte auszuführen:

das Auslesen des Masse-zu-Ladung-Verhältnisses m/z eines einem Markerprotein zugeordneten Peaks aus einem Massenspektrum, das mittels Massenspektrometrie einer Probe, die Mikroorganismen umfasst, erhältlich ist; und

das Identifizieren, welche Bakterienspezies der Gattung Campylobacter in den Mikroorganismen in der Probe enthalten sind, basierend auf dem Masse-zu-Ladung-Verhältnis m/z; wobei

das Markerprotein zumindest eines der ribosomalen Proteine L23, S14, L36, S11 (Me) und L32 ist.


 


Revendications

1. Procédé d'identification d'un micro-organisme comprenant les étapes consistant à :

a) obtenir un spectre de masse par spectrométrie de masse d'un échantillon comprenant des micro-organismes ;

b) lire, à partir du spectre de masse, un rapport masse/charge m/z d'un pic associé à une protéine marqueur ; et

c) identifier les espèces bactériennes du genre Campylobacter qui sont comprises dans les micro-organismes contenus dans l'échantillon en se basant sur le rapport masse/charge m/z, dans lequel

la protéine marqueur est au moins une des protéines ribosomiques L23, S14, L36, S11 (Me), et L32.
 
2. Procédé d'identification d'un micro-organisme selon la revendication 1, dans lequel l'espèce bactérienne du genre Campylobacter est l'une quelconque de cinq espèces, Campylobacter jejuni sous-espèce jejuni, Campylobacter jejuni sous-espèce doylei, Campylobacter coli, Campylobacter fétus, et Campylobacter lari.
 
3. Procédé d'identification d'un micro-organisme selon la revendication 2, dans lequel
l'espèce bactérienne du genre Campylobacter est Campylobacter jejuni sous-espèce jejuni, et
la protéine marqueur comprend au moins L24, l'une quelconque de L32, L23, S14, et L7/L12, et L23.
 
4. Procédé d'identification d'un micro-organisme selon la revendication 2, dans lequel
l'espèce bactérienne du genre Campylobacter est Campylobacter coli, et
la protéine marqueur comprend au moins l'une quelconque sélectionnée parmi L32, S14, et un groupe consistant en L23 et L24.
 
5. Procédé d'identification d'un micro-organisme selon la revendication 2, dans lequel
l'espèce bactérienne du genre Campylobacter est Campylobacter fetus, et
la protéine marqueur est au moins l'une de L23, S14, L36, L32, et S11.
 
6. Procédé d'identification d'un micro-organisme selon la revendication 2, dans lequel
l'espèce bactérienne du genre Campylobacter est Campylobacter lari, et
la protéine marqueur comprend au moins l'une de L23, S14, et L32.
 
7. Procédé d'identification d'un micro-organisme selon la revendication 2, dans lequel
lorsque l'espèce bactérienne du genre Campylobacter est Campylobacter jejuni, elle est identifiée comme possédant le sérotype R, et
la protéine marqueur comprend au moins L23.
 
8. Procédé d'identification d'un micro-organisme selon la revendication 2, dans lequel
lorsque l'espèce bactérienne du genre Campylobacter est Campylobacter jejuni, elle est identifiée comme possédant le sérotype A, et
la protéine marqueur comprend au moins L23 ou L32 et L7/L12.
 
9. Procédé d'identification d'un micro-organisme selon la revendication 2, dans lequel
lorsque l'espèce bactérienne du genre Campylobacter est Campylobacter jejuni, elle est identifiée comme possédant le sérotype B, et
la protéine marqueur comprend au moins L7/L12.
 
10. Procédé d'identification d'un micro-organisme selon la revendication 2, dans lequel
lorsque l'espèce bactérienne du genre Campylobacter est Campylobacter jejuni, elle est identifiée comme possédant le sérotype U, et
la protéine marqueur comprend au moins L7/L12.
 
11. Procédé d'identification d'un micro-organisme selon la revendication 2, dans lequel
lorsque l'espèce bactérienne du genre Campylobacter est Campylobacter jejuni, elle est identifiée comme possédant le sérotype D, et
la protéine marqueur comprend au moins L32 et L23 ou L32 et L24.
 
12. Procédé d'identification d'un micro-organisme selon la revendication 2, dans lequel
lorsque l'espèce bactérienne du genre Campylobacter est Campylobacter jejuni, elle est identifiée comme possédant le sérotype de complexe DF, et
la protéine marqueur comprend au moins L32.
 
13. Procédé d'identification d'un micro-organisme selon la revendication 2, dans lequel une analyse typologique utilisant, en tant qu'indicateur, au moins des rapports masse/charge m/z associés à L24, S14 et S11 est employée pour déterminer les espèces bactériennes du genre Campylobacter qui sont comprises dans les micro-organismes contenus dans l'échantillon.
 
14. Procédé d'identification d'un micro-organisme selon la revendication 13, dans lequel l'indicateur comprend en outre au moins des rapports masse/charge m/z associés à L24, S14, et L36.
 
15. Procédé d'identification d'un micro-organisme selon la revendication 13 ou 14, comprenant en outre une étape consistant à générer un dendrogramme qui montre un résultat d'identification obtenu par l'analyse typologique.
 
16. Procédé d'identification d'un micro-organisme selon la revendication 2, dans lequel le sérotype, lorsque l'espèce bactérienne du genre Campylobacter est Campylobacter jejuni, est déterminé en employant une analyse typologique utilisant, en tant qu'indicateur, au moins des rapports masse/charge m/z associés à L32, L7/L12, L23, et S11 ou L32, L7/L12, L24, et S11.
 
17. Procédé d'identification d'un micro-organisme selon la revendication 16, dans lequel l'indicateur comprend en outre des rapports masse/charge m/z associés à L23, L24, S14, L32, et L7/L12.
 
18. Procédé d'identification d'un micro-organisme selon la revendication 16, dans lequel l'indicateur comprend en outre des m/z associés à L23, L24, S14, L36, L32, et L7/L12.
 
19. Programme informatique comprenant des instructions qui, lorsque le programme est exécuté par un ordinateur, entraîne la réalisation des étapes suivantes par l'ordinateur consistant à :

lire, à partir d'un spectre de masse obtenu par spectrométrie de masse d'un échantillon comprenant des micro-organismes, un rapport masse/charge m/z d'un pic associé à une protéine marqueur ; et

identifier les espèces bactériennes du genre Campylobacter qui sont comprises dans les micro-organismes contenus dans l'échantillon en se basant sur le rapport masse/charge m/z, dans lequel

la protéine marqueur est au moins une des protéines ribosomiques L23, S14, L36, S11 (Me), et L32.


 




Drawing












































Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description