(19)
(11)EP 3 438 533 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
03.03.2021 Bulletin 2021/09

(21)Application number: 17184077.0

(22)Date of filing:  31.07.2017
(51)International Patent Classification (IPC): 
F23D 1/00(2006.01)
F23C 13/00(2006.01)

(54)

COAL NOZZLE ASSEMBLY FOR A STEAM GENERATION APPARATUS

KOHLEDÜSENANORDNUNG FÜR EINE DAMPFERZEUGUNGSVORRICHTUNG

ENSEMBLE DE BUSE DE CHARBON POUR UN APPAREIL DE GÉNÉRATION DE VAPEUR


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
06.02.2019 Bulletin 2019/06

(73)Proprietor: General Electric Technology GmbH
5400 Baden (CH)

(72)Inventors:
  • MILLER, William Ross
    5401 Baden AG (CH)
  • LADUE, Rachel
    Windsor, CT 06095-0500 (US)

(74)Representative: BRP Renaud & Partner mbB Rechtsanwälte Patentanwälte Steuerberater 
Königstraße 28
70173 Stuttgart
70173 Stuttgart (DE)


(56)References cited: : 
EP-A1- 0 976 977
WO-A2-2009/114331
JP-A- S61 223 411
EP-A1- 2 068 077
JP-A- H01 217 109
US-A- 4 434 727
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF INVENTION



    [0001] This disclosure relates to a burner nozzle tip assembly for a steam generation apparatus for directing the flow of solid particles entrained in primary air into a combustor or into a furnace. It further relates to a steam generating system which comprises a furnace and at least one coal nozzle tip assembly.

    PRIOR ART



    [0002] A solid fueled firing system burns powdered solid fuel, typically coal, blown into a furnace in a stream of air. This furnace is typically a boiler that creates steam for various uses, such as creating electricity.

    [0003] When the pulverized coal particles are conveyed through the duct work from the coal mill to the coal nozzle tip assembly by means of primary air they tend to aggregate at various paths. The resulting partial separation of coal particles and the primary air among other negative effects reduce the burning efficiency in the furnace and raise the pollutants in the fuel gas, which is undesirable.

    [0004] From US 8955776 a nozzle tip for solid fueled furnaces is known comprising several flat guide vanes arranged parallel to each other in the exit area of the nozzle to direct the flow of primary air and coal particles into the furnace.

    [0005] The nozzle and the guide vanes are integrally formed for example by casting or welding. The guide vanes are more or less parallel to each other resulting in a sub-optimal mixture of the partially aggregated coal particles and the primary air before exiting the nozzle tip and entering the furnace.

    [0006] EP 2 068 077 A1 relates to a burner and a combustion equipment and a boiler including the burner, and particularly relates to a burner capable of performing low nitrogen oxide (NOx) combustion at high efficiency.

    [0007] Currently, there is a need for an improved coal nozzle tip assembly resulting in the ability to deal with the non-homogenous mixture of coal particles and primary air just before being burnt in the furnace thus resulting in a higher efficiency of the furnace and less pollutants, like for example NOx, in the flue gas. In addition there is a need to provide a larger range of stability of the burner and to also concurrently maintain or improve the combustion efficiency.

    SUMMARY OF THE INVENTION



    [0008] The claimed invention satisfies these needs by means of a coal nozzle tip assembly for a steam generation apparatus comprising a nozzle body and a group of channels being connected to the nozzle body, the channels being arranged so as to diverge from each other, wherein at an end distal from the connection between the nozzle body and the channels each channel comprises an exit face and wherein an obstruction is disposed in the exit faces of the channels and the obstructions are arranged so that they build a square interrupted by hollow spaces between the channels. The number of channels may be 2, 3, 4 or more than 4. The channels have a rather similar main orientation although they are not parallel, but diverging.

    [0009] Since the primary air with the entrained coal particles flows through the nozzle body and the channels more or less unaffected, the mixture of primary air and coal particles remains non-homogenous "as delivered" from the coal mill. The coal nozzle tip assembly may be designed rather simply and has a long service life. Only at the end of the channels near the exit faces in each channel an obstruction is disposed that causes heavy turbulences, once the primary air and the coal particles exit the coal nozzle tip assembly. This aggressively promotes the flame attachment and devolatization near the exit faces of the coal nozzle tip assembly. The channel is sized for the particular fuel properties present.

    [0010] In addition to the simplicity of the claimed nozzle tip assembly it is a further advantage that no outer shroud for conveying secondary air is necessary. In other words, if the space for the nozzle tip assembly in an existing furnace is restricted, fitting or retrofitting the claimed nozzle tip assembly in this furnace allows the installation of a nozzle tip body and channels with greater cross section areas, which enhances the performance of the nozzle tip assembly and/or reduces the pressure drop of the nozzle tip assembly. The secondary air may be blown into the furnace on points distant from the nozzle tip assembly. This flexibility in the design is often very advantageous in case of a retrofit of an existing furnace.

    [0011] The claimed coal nozzle tip assembly in a first step promotes a deviation in the mixture of coal particles and primary air, once the coal stream exits the nozzle body and enters in the diverting channels. Due to that, the claimed coal nozzle tip assembly has the ability to make the beginnings of flame attachment, even in situation of unstable mill and/or furnace performance. The origin of flame attachment is therefore robust and may be promoted in any channel, as conditions vary.

    [0012] The flame attachment zone is starved of "fuel air" partially or completely to promote low temperatures in a first zone near the exit faces of the nozzle tip assembly, where the fuel is devolatized and then the char may be burnt in zones more remote from the exit faces in the fire wall.

    [0013] Due to that it is possible to operate a steam generating system in compliance with emission regulations. Further, the injection of a reagent for secondary NOx production may be eliminated or at least strongly reduced.

    [0014] Further, a steam generating system with coal nozzle assemblies according to claim 1 is able to be operated at a load down to 10% to 20% of the normal load without the need for support energy (e.g. gas or oil).

    [0015] This means that it is possible to operate such a steam generation system according to the load in the electrical grid and being ready for increasing the load from 10% to 100%, if daily peaks of the energy consumption in the electrical grid appear.

    [0016] The claimed nozzle tip assembly may be embodied in several forms. In all embodiments the nozzle body has a polygonal cross section area at the connection between the nozzle body and each of the channels has a polygonal cross section area, too. The addition of the cross section areas of the channels equals the cross section area of the nozzle body. So that the pressure drop at the connection between the nozzle body and the channels is minimized.

    [0017] This means that the coal nozzle tip assembly is easy to manufacture. Further, at the link between the nozzle body and the channels low or only very small pressure drop occurs.

    [0018] It has been proven advantageous, if the nozzle body has a square or rectangular cross section area and the channels have a square or rectangular cross section area, too.

    [0019] To further reduce the pressure drop of the claimed nozzle tip assembly it is claimed that the cross-section area of each channel increases starting from the connection between nozzle body and the channels toward the exit faces of the channels at the distal ends of the channels. In other words: each channel is a diffusor. Due to that the velocity of the primary air and the coal particles in the channels is reduced and therefore the pressure drop inside the channels is reduced.

    [0020] It has been proven advantageous, if the sum of the cross section areas of the channels at their distal ends is greater than the cross section areas of the connection between the nozzle body and the channels by a factor between 1.4 and 1.8, preferably by a factor of 1.6.

    [0021] In a simple but effective embodiment of the obstructions they have the form of a bar extending between two opposite corners of the channels.

    [0022] Due to that the bars are effective in causing turbulences in the primary air and the entrained particles directly after the primary air has left the exit faces. Since the sum of the cross section areas of the exit faces are greater than the cross sectional areas of the channels at their end proximal to the nozzle body, the obstructions do not cause a heavy pressure drop. As a result, the overall pressure drop of the claimed nozzle tip assembly is similar or smaller than the pressure drop of a conventional nozzle tip assembly.

    [0023] It has been proven advantageously if the obstructions are cover approximately 50% of the cross section area of each channel.

    [0024] A further advantage of the claimed coal nozzle tip assembly is that the nozzle body, the channels and the obstructions may be made of plain stainless sheet metal. This makes the manufacture and repair easy.

    [0025] Two embodiments are claimed of the above burner tips, one being fixed non-tilting and the other tilting. In the tilting embodiment, the burner tip may be tilted up to 30 degrees from horizontal in much the same way as existing tips and may use a similar tilt mechanism.

    [0026] In a further embodiment, to further reduce the NOx emissions of the claimed Ultra-Low NOx burner nozzles a catalyst is applied to the internal walls of the nozzle tip assembly. Catalytic combustion of the volatile matter in the injected fuel is achieved at temperatures favorable for the reduction of NOx species originating from the volatile matter or partial combustion of solid fuels. Catalytic combustion inside the nozzle tip assembly also improves the quality of the flame downstream and corresponding reduced NOx- emission within the furnace. This embodiment is equally applicable to the tilting or fixed nozzle tip embodiments.

    [0027] Catalytic combustion near the exit face(s) of the nozzle tip(s) also improves the quality of the flame and corresponding reduced NOX emission within the furnace.

    [0028] In an embodiment of this invention, the catalyst is of the perovskite-type with catalytic activity in the preferred temperature range, but not limited to, of 500° C to 900° C. In an embodiment of this invention, the catalyst is Lanthanum Strontium Titanate doped with metals. Such metals are, but are not limited to, Fe, Mn, and Co.

    [0029] Further advantages are disclosed in the figures, their description and the claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0030] 

    Figure 1: A side view of a first embodiment of a nozzle tip assembly according to the invention,

    Figure 2: a simplified front view of the nozzle tip assembly according to the invention,

    Figure 3: a cross section of the nozzle tip assembly for the second embodiment for tilting nozzle tips,

    Figure 4: a cross sectional view of the first embodiment,

    Figure 5: a cross section and front view of the second embodiment,

    Figure 6: a cross sectional view along the line B-B in figure 1 (generally applies to first and second embodiments) and

    Figure 7: a more detailed front view of the nozzle tip assembly according to the invention (generally applies to first and second embodiments).


    DETAILED DESCRIPTION OF THE DRAWINGS



    [0031] Figure 1 shows a side view of a first embodiment of the claimed nozzle tip assembly 1. The primary air with the entrained coal particles is conveyed from a coal mill through an appropriate duct work (not shown) and enters a nozzle body 3 of a nozzle tip assembly 1 on the left side in Figure 1. Connected to the nozzle body 3 are four channels 5 (only two of them being visible in Figure 1). The connection 7 between the nozzle body 3 and the channels 5 in most cases is a weld.

    [0032] As can be seen from Figure 1, the channels 5 diverge from each other. In other words: The longitudinal axis 9 of the channels includes an angle of approximately 5° to 10° with regard to a longitudinal axis 11 of the nozzle body 3.

    [0033] The nozzle body 3 of this embodiment has a square cross section area as well as each of the four channels 5.

    [0034] Figure 2 shows a simplified front view of the nozzle tip assembly 1, since it only shows the walls of the channels 5 and the obstruction 13 in each exit face of the channels 5. In Figure 2 below a single obstruction 13 is illustrated. This obstruction 13 may be cut out from a sheet metal and welded into the channels 5. As can be seen from Figure 2, the obstructions 13 are arranged so that they build an "interrupted square". Between the channels 5 there are hollow spaces 15 that do not have any function. In most cases they are filled with a refractory (not shown).

    [0035] Figure 3 shows a side view of a second embodiment of the claimed nozzle tip assembly 1. The primary air with the entrained coal particles is conveyed from a coal mill through an appropriate duct work (not shown) and enters the nozzle body 3 (or coal burner pipe) on the right side in Figure 3. The nozzle body 3 of the second embodiment and the first embodiment may increase the velocity of the primary air.

    [0036] In this second embodiment the nozzle tip is pivotally connected to the nozzle body 3 or an outer shroud 20 by a pair of pivot members 16. The pivot members 16 allow the nozzle tip to be rotated or to be tilted about an axis (in most cases a horizontal axis) so that the fuel and combustion air can be directed upwardly or downwardly with respect to a vertical axis of the furnace. The pivotal connection of the nozzle tip allows a redirection of the air within a range of approximately ± 30°.

    [0037] As can be seen from Figure 4, the channels 5 of the nozzle tip diverge from each other. In other words: The longitudinal axis 9 (Fig. 1) of the channels includes an angle of approximately 5° to 10° with regard to a longitudinal axis 11 of the nozzle body 3 if the nozzle tip is in a horizontal position. The nozzle body 3 of the second embodiment has a square cross section area as well as each of the four channels 5.

    [0038] To ensure that the primary air and the entrained coal particles enter the nozzle tip seal plates are located between nozzle body 3 and the nozzle tip.

    [0039] The nozzle bods 3 and most of the nozzle tip are surrounded by an outer shroud 20 for conveying secondary air into the furnace (not shown). Since the gap between the outer shroud 20 and the nozzle tip of this embodiment gets narrower towards the furnace the velocity of the secondary air is increased before it enters the furnace.

    [0040] In Figure 4 a longitudinal section along of the first embodiment is shown. From this cross section the hollow space 15 between the channels 5 can be seen. It further can be seen that the channels 5 are built as a diffusor, which means that the cross section area near the connection 7 is smaller than the cross section area near the exit faces 17 of the channels 5.

    [0041] An angle α1 between the outer wall 23 of the channels 5 and a longitudinal axis 11 of the nozzle body 3 is approximately 8°. An angle α2 between the inner walls 25 of the channels 5 and the longitudinal axis 11 of the nozzle body 3 is approximately 5°. The angle α1 may range from 5° to 15°. The angle α2 may range between 2° and 10°.

    [0042] In any case, the angle α1 is greater than the angle α2. Due to that fact the channels 5 are diffusors and the cross section area of the channels 5 at the exit faces 17 is larger than the cross section area at the connection 7. The same applies with regard to the nozzle tip of the second embodiment.

    [0043] Figure 5 shows a simplified front view of a nozzle tip according to the invention (first and second embodiment). Other than in figure 2 the obstructions 13 in each exit face of the channels 5 are less wide. They are welded on the two adjacent walls of the channels 5 that limit the hollow spaces.

    [0044] Figure 6 illustrates a view along the line B-B. It illustrates that the channels 5 are diverging. This can be seen for example by looking to the inner edges 19 of the channels 5. It further can be seen by the fact that the exit faces 17 of the channels 5 are distant from each other. A small part of the obstructions 13 in each channel can be seen in Figure 5, too.

    [0045] Figure 6 also illustrates that each wall of the channels 5 can be cut out from a plane sheet metal and the claimed nozzle tip assembly can be manufactured by welding these sheet metal plates together. In Figure 6 four welds 21 that connect the outer walls 23 of the channels 5 have the reference numeral 21.

    [0046] Figure 7 shows a front view with all visible lines of the nozzle tip assembly of the first embodiment. This front view is somehow confusing and for this reason a simplified front view has been explained in detail in Figure 3. In Figure 7 no reference numerals have been drawn to avoid overloading of this Figure with information.

    LIST OF REFERENCE NUMERALS



    [0047] 

    1 Coal nozzle tip assembly

    3 nozzle body

    5 channels

    7 connection between nozzle body and channels

    9 longitudinal axis of the channels

    11 longitudinal axis of the nozzle body

    13 obstruction

    15 hollow space

    16 pivot members

    17 exit faces

    19 inner edges of the channels

    20 outer shroud

    α angle

    21 weld

    23 outer wall of the channels 5

    25 inner wall of the channels 5

    27 catalyst




    Claims

    1. Coal nozzle tip assembly for a steam generation apparatus comprising a nozzle body (3) and several channels (5) being connected to the nozzle body (3), the channels (5) being arranged so as to diverge from each other, wherein at an end distal from the connection between the nozzle body (3) and the channels (5) each channel comprises an exit face (17), characterized in that a single obstruction (13) is disposed in each exit face (17) and the obstructions (13) are arranged so that they build a square interrupted by hollow spaces (15) between the channels (5).
     
    2. Coal nozzle tip assembly according to claim 1 characterized in that at the connection between nozzle body (3) and the channels (5) the nozzle body (3) has a polygonal cross section area, that the channels (5) have a polygonal cross section area and in that the addition of the cross section areas of the channels (5) equals the cross section area of the nozzle body (3).
     
    3. Coal nozzle tip assembly according to claim 2 characterized in that at the connection between nozzle body (3) and channels (5) the nozzle body (3) has a square or rectangular cross section area and the channels (5) have a square or rectangular cross section area.
     
    4. Coal nozzle tip assembly according to one of the foregoing claims characterized in that the cross section area of each channel (5) increases starting from the connection (7) between nozzle body (3) and the channels (5) towards the exit faces (13) at the distal ends of the channels (5).
     
    5. Coal nozzle tip assembly according to one of the foregoing claims characterized in that the cross section area of each channel (5) at the distal ends of the channels (5) is greater than their cross section areas at the connection (7) between nozzle body (3) and the channels (5) by a factor between 1.4 and 1.8, preferably by a factor of 1.6.
     
    6. Coal nozzle tip assembly according to one of the foregoing claims characterized in that the obstructions (13) are in the form of a bar extending between two opposite corners of the channels (5).
     
    7. Coal nozzle tip assembly according to one of the foregoing claims characterized in that the obstructions (13) cover approximately 50% of the cross section area of its exit face (17).
     
    8. Coal nozzle tip assembly according to one of the foregoing claims characterized in that the nozzle body (3), the channels (5) and the obstructions (13) are made of plain sheet metal.
     
    9. Coal nozzle tip assembly according to one of the foregoing claims characterized in that the nozzle tip (1) is surrounded by an outer shroud (20) that conveys secondary air.
     
    10. Coal nozzle tip assembly according to one of the foregoing claims characterized in that the nozzle tip (1) is pivotally mounted to the nozzle body (3) by means of pivot members (16).
     
    11. Coal nozzle tip assembly according to claim 10 characterized in that it comprises sealing plates between the nozzle tip (1) and the nozzle body (3).
     
    12. Coal nozzle tip assembly according to one of the foregoing claims characterized in that a catalyst (27) is applied to the internal walls of the nozzle tip assembly.
     
    13. Coal nozzle tip assembly according to claim 12 characterized in that the catalyst is of the perovskite-type with catalytic activity in the preferred temperature range, but not limited to, of 500° C to 900° C.
     
    14. Coal nozzle tip assembly according to claim 12 or 13 characterized in that the catalyst (27) is Lanthanum Strontium Titanate doped with metals.
     
    15. Steam generating system which comprises a furnace and at least one coal nozzle tip assembly according to one of the foregoing claims.
     
    16. Steam generating system according to claim 15 characterized in that distant from the at least one coal nozzle tip assembly (1) at least one duct for conveying secondary air into the furnace opens into the furnace.
     


    Ansprüche

    1. Kohledüsenkopfanordnung für eine Dampferzeugungsvorrichtung, umfassend einen Düsenkörper (3) und mehrere Kanäle (5), die mit dem Düsenkörper (3) verbunden sind, wobei die Kanäle (5) so angeordnet sind, dass sie voneinander divergieren, wobei jeder Kanal an einem Ende distal von der Verbindung zwischen dem Düsenkörper (3) und den Kanälen (5) eine Austrittsfläche (17) umfasst,
    dadurch gekennzeichnet, dass in jeder Austrittsfläche (17) ein einziges Hindernis (13) angeordnet ist und die Hindernisse (13) so angeordnet sind, dass sie ein durch Hohlräume (15) zwischen den Kanälen (5) unterbrochenes Quadrat bilden.
     
    2. Kohledüsenkopfanordnung nach Anspruch 1, dadurch gekennzeichnet, dass der Düsenkörper (3) an der Verbindung zwischen Düsenkörper (3) und Kanälen (5) eine polygonale Querschnittsfläche aufweist, dass die Kanäle (5) eine polygonale Querschnittsfläche aufweisen und dass die Summe der Querschnittsflächen der Kanäle (5) gleich der Querschnittsfläche des Düsenkörpers (3) ist.
     
    3. Kohledüsenkopfanordnung nach Anspruch 2, dadurch gekennzeichnet, dass der Düsenkörper (3) an der Verbindung zwischen Düsenkörper (3) und Kanälen (5) eine quadratische oder rechteckige Querschnittsfläche aufweist und die Kanäle (5) eine quadratische oder rechteckige Querschnittsfläche aufweisen.
     
    4. Kohledüsenkopfanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Querschnittsfläche jedes Kanals (5) ausgehend von der Verbindung (7) zwischen Düsenkörper (3) und den Kanälen (5) zu den Austrittsflächen (13) an den distalen Enden der Kanäle (5) hin zunimmt.
     
    5. Kohledüsenkopfanordnung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Querschnittsfläche jedes Kanals (5) an den distalen Enden der Kanäle (5) um einen Faktor zwischen 1,4 und 1,8, vorzugsweise um einen Faktor von 1,6, größer ist als deren Querschnittsflächen an der Verbindung (7) zwischen Düsenkörper (3) und den Kanälen (5).
     
    6. Kohledüsenkopfanordnung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Hindernisse (13) die Form eines Stabes haben, der sich zwischen zwei gegenüberliegenden Ecken der Kanäle (5) erstreckt.
     
    7. Kohledüsenkopfanordnung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Hindernisse (13) etwa 50 % der Querschnittsfläche ihrer Austrittsfläche (17) bedecken.
     
    8. Kohledüsenkopfanordnung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Düsenkörper (3), die Kanäle (5) und die Hindernisse (13) aus Glattblech hergestellt sind.
     
    9. Kohledüsenkopfanordnung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Düsenkopf (1) von einer Sekundärluft führenden äußeren Ummantelung (20) umgeben ist.
     
    10. Kohledüsenkopfanordnung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Düsenkopf (1) mittels Schwenkelementen (16) an dem Düsenkörper (3) schwenkbar angebracht ist.
     
    11. Kohledüsenkopfanordnung nach Anspruch 10, dadurch gekennzeichnet, dass sie Dichtplatten zwischen dem Düsenkopf (1) und dem Düsenkörper (3) umfasst.
     
    12. Kohledüsenkopfanordnung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass auf die Innenwände der Düsenkopfanordnung ein Katalysator (27) aufgebracht ist.
     
    13. Kohledüsenkopfanordnung nach Anspruch 12, dadurch gekennzeichnet, dass der Katalysator vom Perowskit-Typ mit katalytischer Aktivität im bevorzugten Temperaturbereich von, aber nicht begrenzt auf, 500 °C bis 900 °C ist.
     
    14. Kohledüsenkopfanordnung nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass der Katalysator (27) mit Metallen dotiertes Lanthan-Strontium-Titanat ist.
     
    15. Dampferzeugungssystem, das einen Ofen und mindestens eine Kohledüsenkopfanordnung nach einem der vorstehenden Ansprüche umfasst.
     
    16. Dampferzeugungssystem nach Anspruch 15, dadurch gekennzeichnet, dass entfernt von der mindestens einen Kohledüsenkopfanordnung (1) mindestens eine Leitung zum Befördern von Sekundärluft in den Ofen in den Ofen mündet.
     


    Revendications

    1. Ensemble de pointe de buse de charbon pour un appareil de production de vapeur comprenant un corps de buse (3) et plusieurs canaux (5) reliés au corps de buse (3), les canaux (5) étant agencés de façon à diverger l'un de l'autre, dans lequel, à une extrémité distale de la liaison entre le corps de buse (3) et les canaux (5), chaque canal comprend une face de sortie (17),
    caractérisé en ce qu'une seule obstruction (13) est disposée dans chaque face de sortie (17) et les obstructions (13) sont agencées de manière à former un carré interrompu par des espaces creux (15) entre les canaux (5).
     
    2. Ensemble de pointe de buse de charbon selon la revendication 1, caractérisé en ce qu' au niveau de la liaison entre le corps de buse (3) et les canaux (5), le corps de buse (3) présente une section transversale polygonale, que les canaux (5) présentent une section transversale polygonale et en ce que l'addition des sections transversales des canaux (5) équivaut à la section transversale du corps de buse (3).
     
    3. Ensemble de pointe de buse de charbon selon la revendication 2, caractérisé en ce qu'au niveau de la liaison entre le corps de buse (3) et les canaux (5), le corps de buse (3) présente une section transversale carrée ou rectangulaire et les canaux (5) présentent une section transversale carrée ou rectangulaire.
     
    4. Ensemble de pointe de buse de charbon selon l'une des revendications précédentes caractérisé en ce que la section transversale de chaque canal (5) augmente à partir de la liaison (7) entre le corps de buse (3) et les canaux (5) vers les faces de sortie (13) aux extrémités distales des canaux (5).
     
    5. Ensemble de pointe de buse de charbon selon l'une des revendications précédentes caractérisé en ce que la section transversale de chaque canal (5) aux extrémités distales des canaux (5) est supérieure à leurs sections transversales au niveau de la liaison (7) entre le corps de buse (3) et les canaux (5) d'un facteur compris entre 1,4 et 1,8, de préférence d'un facteur de 1,6.
     
    6. Ensemble de pointe de buse de charbon selon l'une quelconque des revendications précédentes, caractérisé en ce que les obstructions (13) se présentent sous la forme d'une barre s'étendant entre deux coins opposés des canaux (5).
     
    7. Ensemble de pointe de buse de charbon selon l'une quelconque des revendications précédentes, caractérisé en ce que les obstructions (13) couvrent approximativement 50 % de la section transversale de sa face de sortie (17).
     
    8. Ensemble de pointe de buse de charbon selon l'une quelconque des revendications précédentes, caractérisé en ce que le corps de buse (3), les canaux (5) et les obstructions (13) sont réalisés en tôle métallique plane.
     
    9. Ensemble de pointe de buse de charbon selon l'une quelconque des revendications précédentes, caractérisé en ce que la pointe de buse (1) est entouré d'une enveloppe extérieure (20) qui transporte de l'air secondaire.
     
    10. Ensemble de pointe de buse de charbon selon l'une quelconque des revendications précédentes, caractérisé en ce que la pointe de buse (1) est montée de manière pivotante sur le corps de buse (3) au moyen d'éléments de pivot (16).
     
    11. Ensemble de pointe de buse de charbon selon la revendication 10, caractérisé en ce qu'il comprend des plaques d'étanchéité entre la pointe de buse (1) et le corps de buse (3).
     
    12. Ensemble de pointe de buse de charbon selon l'une des revendications précédentes, caractérisé en ce qu'un catalyseur (27) est appliqué aux parois internes de l'ensemble de pointe de buse.
     
    13. Ensemble de pointe de buse de charbon selon la revendication 12, caractérisé en ce que le catalyseur est de type pérovskite à activité catalytique dans la plage de température préférée de, mais non limitée à, 500 °C à 900 °C.
     
    14. Ensemble de pointe de buse de charbon selon l'une des revendications 12 ou 13, caractérisé en ce que le catalyseur (27) est du titanate de lanthane et de strontium dopé avec des métaux.
     
    15. Système de génération de vapeur, qui comprend un four et au moins un ensemble de pointe de buse de charbon selon l'une des revendications précédentes.
     
    16. Système de génération de vapeur selon la revendication 15, caractérisé en ce que, à distance de l'au moins un ensemble de pointe de buse de charbon (1), au moins un conduit pour acheminer de l'air secondaire dans le four s'ouvre dans le four.
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description