(19)
(11)EP 3 443 611 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
19.02.2020 Bulletin 2020/08

(21)Application number: 17721855.9

(22)Date of filing:  11.04.2017
(51)Int. Cl.: 
H01M 8/065  (2016.01)
H01M 8/04089  (2016.01)
H01M 8/04082  (2016.01)
H01M 8/2484  (2016.01)
H01M 4/86  (2006.01)
H01M 4/92  (2006.01)
H01M 8/18  (2006.01)
H01M 8/04119  (2016.01)
H01M 8/2457  (2016.01)
H01M 8/248  (2016.01)
H01M 8/1018  (2016.01)
(86)International application number:
PCT/IB2017/052075
(87)International publication number:
WO 2017/178964 (19.10.2017 Gazette  2017/42)

(54)

RECHARGEABLE ELECTROCHEMICAL DEVICE FOR PRODUCING ELECTRIC ENERGY

WIEDERAUFLADBARE ELEKTROCHEMISCHE VORRICHTUNG ZUR ERZEUGUNG VON ELEKTRISCHER ENERGIE

DISPOSITIF ÉLECTROCHIMIQUE RECHARGEABLE POUR LA PRODUCTION D'ÉNERGIE ÉLECTRIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 14.04.2016 IT UA20162598

(43)Date of publication of application:
20.02.2019 Bulletin 2019/08

(73)Proprietor: NE.M.E.SYS. S.r.l.
50019 Sesto Fiorentino (FI) (IT)

(72)Inventors:
  • MATTEINI, Marco
    50019 Sesto Fiorentino (FI) (IT)
  • ULIVIERI, Piero
    50019 Sesto Fiorentino (FI) (IT)
  • SANTICCIOLI, Serena
    50019 Sesto Fiorentino (FI) (IT)
  • MELE, Marco Maria
    50019 Sesto Fiorentino (FI) (IT)

(74)Representative: Leotta, Antonio et al
Italbrevetti S.r.l. Via S. D'Acquisto, 40/N
56025 Pontedera (PI)
56025 Pontedera (PI) (IT)


(56)References cited: : 
WO-A2-01/37359
US-A1- 2001 033 959
US-A1- 2015 299 877
US-A- 5 316 643
US-A1- 2014 234 734
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical field



    [0001] The present invention refers to the field of electrochemical devices for producing and accumulating energy, especially those used to supply power to electric vehicles.

    [0002] In particular, the scope of the present invention is a device capable of accumulating energy as well as of producing it, by using hydrogen combined with oxygen as an energy source.

    [0003] The electrochemical device can be recharged both from electric energy and by way of a direct injection of gaseous hydrogen.

    Present status of the art



    [0004] Electrochemical devices are known, capable of storing electric energy in the form of chemical energy; depending on where energy is stored, these devices are classified into batteries, or electrochemical cells, and fuel cells.

    [0005] In a battery, energy is stored in the battery itself whereas in a fuel cell energy is stored in a fuel external to the cell itself, whereas the comburent is typically the oxygen contained in the surrounding air. Therefore, a fuel cell is a device that converts chemical energy into electric energy, but the latter cannot be stored internally to the fuel cell.

    [0006] In a battery, or electrochemical cell, energy transformation, from chemical to electric, takes place thanks to an oxidation-reduction reaction, wherein a first substance undergoes an oxidation process, whereby it loses electrons, whereas a second substance gains said electrons, thus undergoing a reduction process.

    [0007] Every battery has a positive pole, which is called cathode, and a negative pole, which is called anode, the latter having an electric potential level lower than the cathode's one.

    [0008] Whenever a battery is connected to an external circuit, electrons flow from the negative pole and generate a continuous electric current; the difference of electric potential that generates the electric flow is a function of the oxidation and reduction reactions and the production of electric energy stops as soon as these chemical reactions reach an equilibrium state.

    [0009] Batteries are charged with energy in the form of electric energy, via a power supply unit usually referred to as battery charger; the time necessary to transform electric energy into electrochemical energy depends on the characteristics of the battery, as well as on those of the power supply unit.

    [0010] In order to shorten the charging time, more powerful power supply units can be built however, for any types of known batteries, a limit is identified, typical of the technology used, beyond which a fast physical deterioration of the battery is triggered and the number of possible charge-discharge cycles is drastically reduced.

    [0011] In order not to exceed said limit, the charge times cannot be reduced too much.

    [0012] Other problems common to all known batteries include the substantial weight as compared to the quantity of energy that is transportable and the progressive loss of energy storage capacity in the course of the charge and discharge cycles.

    [0013] In a fuel cell, electric energy is produced starting from some substances, typically hydrogen and oxygen, no thermal combustion process taking place, in that the principle of operation of fuel cells lies in the direct generation, starting from the reacting substances, for instance hydrogen and oxygen, of an electromotive force by way of an electrochemical reaction, as with electric batteries, instead of via energy conversion processes, as it occurs in electric generators operated by thermal combustion machines.

    [0014] The electrochemical reaction is based on the concept of splitting the molecules of the combustible hydrogen or of the comburent oxygen into positive ions and electrons; the latter, by crossing an external circuit, provide an electric current proportional to the speed of the chemical reaction, said electric current being thus usable for any purposes.

    [0015] A very interesting aspect of fuel cells consists in their possibility of being hydrogen-powered, while releasing water vapor only into the atmosphere, however hydrogen does not exist free in the nature, and consequently it must be produced. The hydrogen production process, without resorting to processes that release CO2 into the atmosphere and consequently are harmful for the environment, uses electrolyzers, i.e. apparatuses capable of splitting water into hydrogen and oxygen by way of an electrolysis.

    [0016] At present, the main limit of fuel cells is in their difficulty of storing hydrogen, for which pressure containers are necessary, and in the thermal alterations that occur both during the filling step and during the operation of the fuel cell.

    [0017] The operating cycle of the present fuel cell systems is organized into three main steps, each of which uses a specific apparatus: the first step is producing hydrogen starting from water and needs a specific electrolyzer, the second step is transporting and storing the hydrogen which will be used to supply power to the fuel cell, that needs a special pressure tank (the pressure being typically 300 to 700 bars), and finally the third step is producing electric energy in the fuel cell itself.

    [0018] The present motor vehicles powered with hydrogen are consequently equipped with hydrogen tanks from which the fuel cells are filled, whereas the electrolyzers used to produce hydrogen, which shall be connected to the electric mains in order to operate, are never installed on the movable means.

    [0019] The most widespread systems for motor vehicles presently use tanks but, hydrogen being a highly inflammable substance, this entails major safety problems and their use features important risks and criticalities.

    [0020] In order to obviate these problems, processes have been developed than exploit the property of some metal powders, in particular hydride metal powders, whereby they absorb and release hydrogen, said metal powders placed inside tanks being capable of storing in a small space big quantities of hydrogen at very low pressures, ranging from 1 to 10 bars, but being simultaneously capable of supplying power to the fuel cells for a long time (much longer than high pressure tanks).

    [0021] However, such technical solution presents a number of significant limitations, basically bound to two factors: one physical, related to the increase of temperature while hydrogen is taken in and to the decrease of temperature while hydrogen is taken out, whereas the other is an operational one and is related to the infrastructures necessary to fill hydrogen being rare.

    [0022] During a fast recharging step, the blisters, i.e. the containers internally to which there are located the hydride metal powders, heat up to reaching high temperatures, even up to 100-150 °C, with risks of fire and burns, furthermore the increased temperature entails an energy dissipation which might reduce efficiency by as much as 30%.

    [0023] On the contrary, while hydrogen is supplied from the tank to the fuel cell, the decrease in temperature caused by the expansion of the gas results in a condensation of the atmospheric humidity and a consequent formation of ice, both on the tank and on the pipings, and subsequently, when ice melts, the water formed shall be properly collected and discharged.

    [0024] Systems of a combined type are known for a long time, also referred to as "regenerative" fuel cells, wherein a standard fuel cell is supplemented by an electrolytic cell so that, by supplying electric current to the electrolytic cell, it is possible to "regenerate" the hydrogen consumed by the fuel cell during the discharging step.

    [0025] Systems of this type are disclosed for instance in U.S. patent application US3839091A, which discloses an apparatus formed of a fuel cell and an electrolyzer: the electrolyzer produces, by electrolysis, hydrogen and oxygen, which are stored in two separate compartments and are used by the fuel cell to generate electric energy.

    [0026] Likewise, patent application US2002017463A1 discloses an apparatus which couples an electrolytic cell with a fuel cell; the hydrogen electrolytically produced by the electrolyzer device is stored in an appropriate tank connected to the fuel cell which uses it during the discharging step to generate electric current. International patent application WO2005008824A2 discloses a further example of a combined system formed of two separate devices coupled with each other, namely an electrolytic cell, which generates and stores hydrogen, and a fuel cell; in the solution disclosed in WO2005008824A2, both devices are formed of two electrodes and one separator respectively; if necessary, the possibility is also envisaged that the two devices have an electrode in common. In all apparatuses described so far, the fuel cell, the tank used to store hydrogen, and the electrolyzer are independent devices which are coupled together so as to make-up a combined system, which results in increased overall dimensions, weight and number of component parts, considering the need for providing an electrolytic cell, a fuel cell, a hydrogen tank, a water and oxygen tank, and appropriate interconnection channels.

    [0027] For these reasons, the systems of the type described above presently known in the art are not usable to realize small-size rechargeable fuel cells suitable for being used as batteries for portable electronic devices, such as computers, tablets, and cell phones, nor as fuel cells for motor vehicles and motorcycles.

    [0028] Bimodal batteries have recently been developed, wherein consumption of hydrogen, during the discharging step, and hydrogen generation, during the charging step, take place internally to one and the same cell, by using two only electrodes.

    [0029] An example of systems of said type is disclosed in U.S. patent application US20060003203A1, wherein a battery is claimed capable of producing hydrogen electrolytically and of consuming said hydrogen during the discharging step to produce electric energy; however, the apparatus described in US20060003203A1 is not a true fuel cell, but rather a hydride/air battery in that it is not possible to recharge the apparatus by way of a direct injection of hydrogen from the external world, but only in the form of electric energy.

    [0030] A well-known disadvantage of "regenerative" fuel cells, being rechargeable electrically only, is the duration of the charging step, as a matter of fact the electrolysis process necessary to regenerate hydrogen needs long period of times, usually several hours, during which the apparatus shall remain connected to the electric mains. Therefore, such solution is difficult to implement for many applications and is definitely little practical, being it necessary to plan in advance when the battery should be recharged, to be capable of subsequently using it at a later time, as with motor vehicles, whose batteries are usually recharged overnight.

    [0031] On the contrary, fuel cells that are only rechargeable by way of a direct injection of hydrogen provide extremely short charging times, generally in the order of few minutes, but presently hydrogen filling stations are little widespread.

    [0032] A further example of an electrolytic cell of a known type is disclosed in U.S. patent application US 2001/033959 A1, wherein a cathode for fuel cells and an alkaline fuel cell comprising such cathode are claimed, said fuel cell being capable of starting up very rapidly.

    [0033] The electrolytic cell disclosed in US 2001/033959 A1 comprises in particular a cathode at least partially formed of metal alloys capable of storing pure oxygen and an anode formed of non-precious metal alloys, capable of storing hydrogen; however, the hydrogen accumulated thickness is limited down to a thin surface layer of the anode, which allows to store just the hydrogen necessary to guarantee a fast start up of the device, whereas it does not allow to accumulate hydrogen in such quantity as to provide a long-lasting discharging step, during which hydrogen is progressively oxidized to produce electric energy.

    [0034] In addition, the anodic electrode according to US 2001/033959 A1 is formed of inexpensive metal alloys, not of precious metals, hence it is not resistant in acid environments nor can it be used in the presence of carbon dioxide, which would otherwise result in harmful carbonation reactions of the electrolyte adjacent to said anodic electrode; for this reason, it is necessary to use pure oxygen to supply power to the cathodic electrode instead of the atmospheric air.

    Objects and summary of the invention



    [0035] An object of the present invention is to provide an energy accumulation device that can be recharged both by using the electric energy supplied by normal battery chargers, and by way of a direct supply of hydrogen.

    [0036] A further object of the present invention is to provide a device of said type that is extremely light and compact, economical, reliable, and easy to install, such as to be possibly advantageously used for a number of types of applications: from fast recharged devices for cell phones, to devices for supplying power to electric vehicles or in any other application where reduced overall dimensions and weight are required.

    [0037] These objects and others are achieved thanks to a surprising integration of elements, to form one and the same device which integrates the functions of an electrolyzer to produce hydrogen, a hydride metal tank to accumulate hydrogen, and a fuel cell receiving power from said hydrogen.

    [0038] Unlike the known solutions, the device according to the present patent application comprises one cell only, where hydrogen, adsorbed in hydride metals, is stored and internally to which both the reactions necessary to produce electric energy starting from hydrogen and the electrolysis reaction necessary to produce hydrogen when the cell is connected to the electric mains take place, while allowing at the same time to recharge hydrogen even by way of a direct supply of gaseous hydrogen from the external world. The subject device features reduced overall dimensions and weight and makes it possible to surprisingly couple the advantages of fuel cells rechargeable by way of a direct injection of hydrogen with the advantages of the "regenerative" fuel cells which allow to regenerate the previously consumed hydrogen, when they are connected to the electric mains.

    [0039] The present invention comprises:
    • a cathodic electrode mainly formed of a conductive substrate and a catalyst capable of electrochemically reducing the oxygen in the air that is conveyed internally thereto;
    • an electrically insulating separator, characterized in that it is impermeable to hydrogen and functionalized with ion exchange groups;
    • an anodic electrode mainly formed of a conductive substrate and a catalyst capable of electrochemically oxidizing hydrogen;
    • a support adjacent to the negative electrode, mainly containing hydride metal powders capable of rapidly absorbing big quantities of gaseous hydrogen (up to 2-3% by weight) and of gradually releasing it as a function of the demand;
    • an external water tank through which air is made pass through, if necessary, in order to be humidified before being conveyed to the cathode of the battery; this tank belongs to a closed hydraulic circuit, which collects the water that is formed from the recombination of hydrogen with oxygen upon supplying electric energy.


    [0040] Very advantageously can in the present device the reintegration of the consumed hydrogen take place in two different charging modes of the device.

    [0041] In a first mode, the device is charged by way of electric energy, via a battery charger which is connected to the poles of the device, whereby the latter behaves as an electrolyzer which exploits the electric current supplied to split the water molecules, introduced together with the air flow into the cathodic compartment, into hydrogen at the anode and oxygen at the cathode; the hydrogen molecules are adsorbed by the hydride metal powders present in the hydrogen storage compartment, thus filling the device with hydrogen, at a maximum pressure of approximately 8 bars. The charging times of the device according this mode are similar to those of the usual batteries.

    [0042] In a second mode, the charge takes place by way of a direct injection of hydrogen: this mode consists of directly introducing into the anodic compartment low pressure (1-8 bars) gaseous hydrogen, which is rapidly adsorbed by the metal hydrides. Advantageously this second mode makes it possible to perform a complete recharge in much shorter times than those necessary for recharging according to the first mode.

    [0043] It is worth emphasizing that the charge according to the second mode, i.e. by way of a hydrogen injection, is an exothermic process, which generates rather high temperatures; in the present invention, it is deemed very convenient to take advantage of an air conveyor which, besides conveying air through the cathodic compartment to bring the oxygen necessary as a reagent during the discharging step, is also kept active during the charging step by injection of hydrogen, to make it possible to remove the heat that generates therein and thus to cool down the adsorbing powders.

    [0044] In this respect, it is also worth noting that, thanks to the arrangement of the device and to its dimensional characteristics (in particular, width and length are much greater than thickness), it is possible to store hydrogen in a more efficient manner than it is possible to do by inserting the same quantity of metal powders internally to a pressure tank because, in this innovative system, cooling - which is necessary during the charge exothermic process by way of a direct injection of hydrogen - can take place in a much faster and more effective manner thanks to the larger heat exchange surface area.

    [0045] Advantageously is the cathodic electrode of the device according to the present patent application, unlike a cathode of a usual fuel cell, substantially carbon-free so as to prevent its degradation down to carbon dioxide during the recharging step by way of electric energy.

    [0046] The discharging step consists of an electrochemical oxidation process (transfer of electrons) on the hydrogen released by the hydride metal absorber and simultaneously of a reduction process (gain of electrons) of the oxygen present in the air; the products of the redox reaction also include - besides electric energy - thermal energy and water, without any production of toxic or polluting substances. Such discharging step is altogether formed of an endothermic process for that which concerns hydrogen desorption and of an exothermic process for that which concerns the electric current production redox reaction, which compensate for each other and prevent too low or too high temperatures from being reached, thus increasing the overall energy efficiency.

    Brief description of the drawings



    [0047] 

    Figure 1 shows a vertical cross section of a possible embodiment of the electrochemical cell according to the present patent application; the figure shows a positive current collector (1), a negative current collector (2), a cathodic electrode (3), an anodic electrode (4), a gas-impermeable polymeric separator membrane (5), a porous support (6) operating as a gas diffusion layer, a porous support (7) containing hydride metal powders, humidified air inlet channels (8), and air outlet channels (9) to let air leave said porous support (6), and a gaseous hydrogen inlet channel (10) to let hydrogen enter said porous support (7).

    Figure 2 shows a vertical cross section of a battery formed of three electrochemical cells of the type shown in figure 1, connected in series to each other; in the embodiment here illustrated there are provided air diffusion channels (8, 9) in communication with each other as the gaseous hydrogen inlet channels (10) do.


    Detailed description of an embodiment of the invention



    [0048] In a particularly complete embodiment, the rechargeable electrochemical cell according to the present patent application comprises:
    • a positive electric current collector (1) and a negative electric current collector (2), each of which is formed of a sheet of a high electric and thermal conductivity material, impermeable to reagents (in particular oxygen and hydrogen) and featuring a high mechanical strength. Said collectors (1, 2) can for instance be made from stainless steel, graphite, titanium, or nickel;
    • a cathodic electrode (3) and an anodic electrode (4), each of which is substantially formed of a conductive substrate (onto which the catalyst is anchored and which allows an electronic transfer from the current collector to the catalyst itself), a polymeric binder (preferably consisting of a water dispersion of polytetrafluoroethylene) and a catalyst. The catalyst performs two different functions depending on whether the electrochemical cell is in the discharging step or in the charging step by way of electric current: in the case of the cathodic electrode, during the discharging step, the catalyst electrochemically reduces the oxygen in the air conveyed internally to the cathodic compartment, whereas in the charging step by way of electric energy the catalyst gets oxygen by splitting the water molecules introduced into the cathodic compartment together with the air flow; in the case of the anodic electrode, during the discharging step, the catalyst electrochemically oxidizes the hydrogen present in the anodic compartment, whereas in the charging step by way of electric energy it generates hydrogen by splitting the water molecules that electro-osmotically permeate from the cathode via a polymeric membrane (5). Advantageously are the width and the length of the electrodes much greater than their thickness and the latter is preferably in the order of some tenths of millimeters at most;
    • an ion exchange polymeric membrane (5) which is interposed between the cathodic electrode (3) and the anodic one (4) and is capable of electrically insulating said two electrodes (3, 4); said membrane (5) provides for ionic conductivity and impermeability to gases (in particular to hydrogen and to oxygen) and features a high thermal stability;
    • an electrically conductive porous layer (6), interposed between the positive current collector (1) and the cathodic electrode (3) and operating as a gas diffusion layer;
    • an electrically conductive porous layer (7), interposed between the anodic electrode (4) and the negative current collector (2), said porous layer (7) being impregnated with catalyst powders (substantially formed of lanthanum, nickel, cobalt, manganese, or aluminium metal alloys) capable of quickly absorbing big quantities of gaseous hydrogen (up to 2-3% by weight), preferably up to reaching a maximum pressure of 8 bars, and of gradually releasing it according to the actual needs. Said porous layer (7) preferably has the same width and length as the anodic electrode (4), but its thickness is 20-30 times greater than the latter, so as to be capable of containing a sufficient adsorbing alloy material to store quantities of hydrogen proportioned to the demand of the electrochemical cell;
    • a frame suitable for accommodating the component parts of the electrochemical cell, made from a plastic material (such as, for instance, natural or fiber glass reinforced PPO, PPS, PEEK), gas-impermeable and capable of providing for the electric insulation of the electrochemical cell;
    • electrically insulating fixing screws, suitable for connecting the component parts of the frame to each other, while firmly keeping the individual component parts of the electrochemical cell joined together;
    • flat or ring gaskets, of the "o-ring" type, made from materials impermeable to reagents (such as, for instance, silicone, EPDM, NBR, Viton) which provide for the hermetic seal of the anodic compartment and of the cathodic compartment of the cell; in particular, there are provided two gaskets, one in contact with the negative current collector (2) and the other in contact with the polymeric separator membrane (5) which provide for hydrogen seal in the anodic compartment where pressurized hydrogen is stored; a third gasket is in contact with the positive current collector (1) and provides for air tightness in the cathodic compartment;
    • reagent diffusion channels inside the compartment of the electrochemical cell, in particular the cathodic electrode (3) is connected to a humidified air inlet channel (8) and to an air outlet channel (9); conversely, in the anodic compartment there is present one inlet only (10), through which gaseous hydrogen can be directly injected into the porous support (7), during the hydrogen charging step; such inlet is closed after reaching a maximum pressure value of approximately 8 bars;
    • a water tank (11) through which the air input to the cathodic compartment is made pass, if necessary, before being conveyed to the cathode of the battery (3); very advantageously is this tank (11) part of a closed circuit which collects the water that forms, in the electric energy supply step, from recombination of hydrogen with oxygen.


    [0049] According to a possible embodiment of the electrochemical cell according to the present invention, said ion exchange membrane (5) is of the cationic type and is formed of a polymeric matrix with acid functional groups. In this case, in the cathodic electrode (3), the substrate is formed of a platinum or platinum-plated titanium net and the catalyst is formed of platinum and iridium nanoparticles, whereas in the anodic electrode (4) the substrate is formed of a carbonaceous material (such as carbon cloth or carbon paper) and the catalyst is formed of platinum nanoparticles; the porous layer (6) is formed of a carbonaceous material, for instance a layer of carbon paper.

    [0050] In an alternative embodiment, said membrane (5) is of the anionic type and is formed of a polymeric matrix with basic functional groups. In this case, in the cathodic electrode (3) the substrate is formed of a nickel net or foam and the catalyst is formed of oxides, perovskites or spinels of metals such as cobalt, lanthanum, manganese, nickel, iron, whereas in the anodic electrode (4) the substrate is formed of a nickel or cobalt net or foam or of a carbonaceous material (such as carbon cloth or carbon paper) and the catalyst is formed of palladium or is formed of a nickel and aluminium metal sponge, known under the trade name "nichel raney ®"; the porous support (6) is formed of one or several layers of nickel foam.

    [0051] The operation of the electrochemical cell according to the present invention is organized into two main operating steps, namely the charging step and the discharging step. The charging step makes it possible to re-integrate the hydrogen consumed during the discharging step and can advantageously be performed in two alternative manners, namely by connecting to the electric mains or by way of a direct injection of gaseous hydrogen.

    [0052] In a first charge mode, the collectors (1, 2) are connected to the electric mains and in this case the cell behaves as an electrolyzer, in that it splits the water molecules introduced together with the air flow into the cathodic compartment; said air molecules are split into hydrogen at the anode (4) and oxygen at the cathode (3). The hydrogen thus obtained is adsorbed by the hydride metal powders present in the porous support (7), where it is stored, preferably at a pressure not exceeding a maximum value of 8 bars. In this first mode, the charge times are similar to those of the usual electric batteries.

    [0053] In the second electrochemical cell charge mode, gaseous hydrogen is injected at a low pressure (generally from 1 to 8 bars) directly into the porous support (7), where it is rapidly adsorbed by the metal hydrides.

    [0054] The discharging step comprises an electrochemical oxidation process (transfer of electrons) of the hydrogen released by the porous support (7) and simultaneously a reduction process (gain of electrons) of the oxygen in the air input to the cathode (3).

    [0055] Should a greater electric energy storage capacity be required, two or more electrochemical cells of the type described above can be coupled together to form a series. In a particularly efficient embodiment, at the opposed ends of the battery there are placed the negative main current collector and the positive main collector, whereas every pair of adjacent cells is separate by one current collector, whose thickness is less than that of said main collectors.

    [0056] The overall system is tightened by means of electrically insulating screws and is assembled by using such gaskets as to provide for a hermetic seal of the structure itself, which shall be capable of withstanding hydrogen pressures up to 8-10 bars.

    [0057] Channels are provided for every cell to make the reagents diffuse internally to the frame and in particular there are provided an air inlet and an air outlet to/from the cathodic compartment and a hydrogen inlet to the anodic compartment; a special embodiment might also comprise air diffusion channels communicating with each other, internally to the frame, as well as the hydrogen ones.


    Claims

    1. An integrated rechargeable electrochemical cell, comprising:

    - a positive electrical current collector (1) formed of a high thermal and electric conductivity material;

    - a negative electrical current collector (2) formed of a high thermal and electric conductivity material;

    - a cathodic electrode (3) formed of a conductive substrate, a polymeric binder, and a catalyst which during the charging step by means of an electrical current is capable of splitting the water molecules of the air conveyed internally thereto, thus obtaining oxygen, whereas in the discharging step it is capable of electrochemically reducing the oxygen of the air conveyed internally thereto;

    - an anodic electrode (4) formed of a conductive substrate, a polymeric binder, and a catalyst, which during the charging step by means of an electrical current is capable of splitting the water molecules that electro-osmotically permeate from the cathode (3) through a separator (5), thus obtaining hydrogen, whereas during the discharging step it is capable of electrochemically oxidizing the hydrogen present in the anodic compartment;

    - a gas-impermeable and electrically insulating separator (5), placed between said electrodes (3, 4) and formed of a polymeric membrane rich in ion exchange groups and capable of guaranteeing ionic conductivity;

    - an electrically conductive porous support (6), placed between said positive electrode (3) and said positive current collector (1), performing the function of a gas diffusion layer;

    - an electrically conductive porous support (7), placed between said negative electrode (4) and said negative current collector (2), containing powders of hydride metals capable of rapidly absorbing gaseous hydrogen (up to 2-3% by weight) and gradually releasing it;

    - an inlet channel (8) suitable for conveying air into said porous support (6);

    - an outlet channel (9) for extracting air from said porous support (6);
    said cathodic electrode (3) and said porous support (6) form a gas-impermeable and hermetically sealed cathodic compartment between the positive current collector (1) and the separator (5), whereas said anodic electrode (4) and said porous support (7) form a gas-impermeable and hermetically sealed anodic compartment between the negative current collector (2) and the separator (5), characterized in that the anodic compartment features an inlet channel (10) through which it is possible to inject gaseous hydrogen directly into said porous support (7) in which said hydrogen is adsorbed, said porous support (7) having the same width and length as the anodic electrode (4) but a thickness 20 to 30 times greater.


     
    2. An electrochemical cell according to the previous claim, characterized in that said air inlet channel (8) is connected to an external tank (11) which collects the water formed during the electrical power supply step from the recombination of hydrogen with oxygen; through said tank the air inlet from the channel (8) is made pass through, if necessary, before being conveyed to the cathode of the battery (3) in order to humidify it.
     
    3. An electrochemical cell according to one or more of the previous claims, characterized in that said separator (5) is an ion exchange membrane of the cationic type, substantially formed of a polymeric matrix with acid functional groups.
     
    4. An electrochemical cell according to claim 3, characterized in that in the cathodic electrode (3) the substrate is formed of a platinum or platinum-coated titanium net and the catalyst is formed of platinum and iridium nanoparticles.
     
    5. An electrochemical cell according to one or more of the previous claims 3 or 4, characterized in that in the anodic electrode (4) the substrate is formed of a carbonaceous material and the catalyst is formed of platinum nanoparticles.
     
    6. An electrochemical cell according to one or more of the previous claims 3 thru 5, characterized in that said porous support (6) is formed of a carbonaceous material.
     
    7. An electrochemical cell according to one or more of the previous claims 1 or 2, characterized in that said separator (5) is an ion exchange membrane, substantially formed of a polymeric matrix with basic functional groups.
     
    8. An electrochemical cell according to claim 7, characterized in that in the cathodic electrode (3) the substrate is formed of a nickel net or foam and the catalyst is formed of oxides, perovskites or spinels of metals like cobalt, lanthanum, manganese, nickel, iron, or a combination of said metals.
     
    9. An electrochemical cell according to one or more of the previous claims 7 or 8, characterized in that in the anodic electrode (4) the substrate if formed of a nickel or cobalt foam or net or of a carbonaceous material and the catalyst is formed of palladium or a nickel and aluminium metallic sponge.
     
    10. An electrochemical cell according to one or more previous claims 7 thru 9, characterized in that said porous support (6) is formed of a nickel foam.
     
    11. A rechargeable electrochemical device, characterized in that it comprises a battery composed of a plurality of electrochemical cells according to one or more of the previous claims.
     
    12. A rechargeable device according to the previous claim 11, characterized in that said electrochemical cells are connected in series.
     
    13. An electrochemical device according to the previous claim 12, characterized in that the positive current collector of a cell makes-up the negative current collector of the immediately adjacent cell.
     
    14. An electrochemical device according to one or more of the previous claims 11 thru 13, characterized in that it comprises one or more collectors from which the various air inlet channels (8) and outlet channels (9) branch off in favor of the individual cells.
     
    15. An electrochemical device according to one or more of the previous claims 11 thru 14, characterized in that it comprises one or more collectors from which the various inlet channels (10) of the gaseous hydrogen into the anodic compartments of the individual cells, branch off.
     


    Ansprüche

    1. Eine integrierte wiederaufladbare elektrochemische Zelle, bestehend aus:

    - einen positiven elektrischen Stromkollektor (1), der aus einem Material mit hoher thermischer und elektrischer Leitfähigkeit gebildet ist;

    - einen negativen elektrischen Stromkollektor (2), der aus einem Material mit hoher thermischer und elektrischer Leitfähigkeit gebildet ist;

    - eine kathodische Elektrode (3), die aus einem leitfähigen Substrat, einem polymeren Bindemittel und einem Katalysator gebildet ist, wobei der Katalysator in der Lage ist, die Wassermoleküle der ihm im Inneren zugeführten Luft während des Aufladeschritts durch einen elektrischen Strom zu spalten, so dass Sauerstoff erzeugt wird, wohingegen der Katalysator in der Entladungsstufe in der Lage ist, den Sauerstoff der zugeführten Luft elektrochemisch zu reduzieren;

    - eine anodische Elektrode (4), die aus einem leitfähigen Substrat, einem polymeren Bindemittel und einem Katalysator gebildet ist, der in der Lage ist, die Wassermoleküle während des Ladeschritts durch einen elektrischen Strom zu spalten, so dass die Moleküle von der Kathode (3) durch einen Separator (5) elektro-osmotisch durchdringen, und so Wasserstoff erzeugt wird, wohingegen der Katalysator in der Lage ist, den im Anodenraum vorhandenen Wasserstoff während des Entladeschritts elektrochemisch zu oxidieren;

    - ein gasundurchlässiger und elektrisch isolierender Separator (5), der zwischen den Elektroden (3, 4) angeordnet ist und aus einer polymeren Membran gebildet ist, die reich an lonenaustauschgruppen ist und in der Lage ist, die lonenleitfähigkeit zu gewährleisten;

    - einen elektrisch leitenden porösen Träger (6), der zwischen der positiven Elektrode (3) und dem positiven Stromkollektor (1) angeordnet ist und die Funktion einer Gasdiffusionsschicht erfüllt;

    - einen elektrisch leitfähigen porösen Träger (7), der zwischen der negativen Elektrode (4) und dem negativen Stromkollektor (2) angeordnet ist und Pulver von Hydrid-Metallen enthalt, das in der Lage ist, das gasförmigen Wasserstoff (bis zu 2-3 Gew.-%) schnell aufzunehmen und allmählich wieder abzugeben;

    - einen Einlasskanal (8), der geeignet ist, Luft in den porösen Träger (6) zu leiten;

    - einen Auslasskanal (9) zum Abziehen von Luft aus dem porösen Träger (6); die kathodische Elektrode (3) und der poröse Träger (6) eine gasundurchlässige und hermetisch abgedichtete kathodische Kammer zwischen dem positiven Stromkollektor (1) und dem Separator (5) bilden, wobei die anodische Elektrode (4) und der poröse Träger (7) eine gasundurchlässige und hermetisch abgedichtete anodische Kammer zwischen dem negativen Stromkollektor (2) und dem Separator (5) bilden, dadurch gekennzeichnet, dass die Anodenkammer einen Einlasskanal (10) aufweist, durch den gasförmiger Wasserstoff direkt in den porösen Träger (7), in dem der Wasserstoff adsorbiert wird, eingespeist werden kann, wobei der poröse Träger (7) die gleiche Breite und Länge wie die anodische Elektrode (4), aber eine 20 bis 30 Mal größere Dicke hat.


     
    2. Eine elektrochemische Zelle nach dem vorstehenden Anspruch, dadurch gekennzeichnet, dass der Lufteinlasskanal (8) mit einem externen Tank (11) verbunden ist, der das während der Stromzufuhrstufe aus der Rekombination von Wasserstoff mit Sauerstoff gebildete Wasser sammelt; wobei, falls erforderlich, wird der Lufteinlass aus dem Kanal (8) durch den genannten Behälter geführt, bevor er zur Befeuchtung der Kathode der Batterie (3) befördert wird.
     
    3. Eine Elektrochemische Zelle nach einem oder mehreren der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Separator (5) eine lonenaustauschmembran vom kationischen Typ ist, die im Wesentlichen aus einer Polymermatrix mit sauren funktionellen Gruppen gebildet ist.
     
    4. Eine elektrochemische Zelle nach Anspruch 3, dadurch gekennzeichnet, dass das Substrat aus einem Platinnetzwerk oder einem platinbeschichteten Titannetzwerk und der Katalysator aus Platin- und Iridium-Nanopartikeln gebildet wird.
     
    5. Eine Elektrochemische Zelle nach einem oder mehreren der vorstehenden Ansprüche 3 oder 4, dadurch gekennzeichnet, dass in der Anodenelektrode (4), werden das Substrat aus einem kohlenstoffhaltigen Material und der Katalysator aus Platin-Nanopartikeln gebildet.
     
    6. Eine Elektrochemische Zelle nach einem oder mehreren der vorstehenden Ansprüche 3 bis 5, dadurch gekennzeichnet, dass der poröse Träger (6) aus einem kohlenstoffhaltigen Material gebildet ist.
     
    7. Eine Elektrochemische Zelle nach einem oder mehreren der vorstehenden Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der Separator (5) eine lonenaustauschmembran ist, die im Wesentlichen aus einer Polymermatrix mit basischen funktionellen Gruppen gebildet ist.
     
    8. Eine Elektrochemische Zelle nach Anspruch 7, dadurch gekennzeichnet, dass in der kathodischen Elektrode (3) ist das Substrat aus einem Nickelnetz oder Schaumstoff gebildet, und wird der Katalysator aus Oxiden, Perowskiten oder Spinellen von Metallen wie Kobalt, Lanthan, Mangan, Nickel, Eisen oder einer Kombination dieser Metalle gebildet.
     
    9. Eine Elektrochemische Zelle nach einem oder mehreren der vorstehenden Ansprüche 7 oder 8, dadurch gekennzeichnet, dass in der anodischen Elektrode (4) besteht das Substrat aus einem Nickel- oder Kobaltschaum oder -netzwerk oder aus einem kohlenstoffhaltigen Material, und besteht der Katalysator aus Palladium oder einem Nickel-Aluminium-Metallschwamm.
     
    10. Eine Elektrochemische Zelle nach einem oder mehreren der vorstehenden Ansprüche 7 bis 9, dadurch gekennzeichnet, dass ist der poröse Träger (6) aus einem Nickelschaum gebildet.
     
    11. Eine wiederaufladbare elektrochemische Vorrichtung, dadurch gekennzeichnet, dass die eine Batterie umfasst, die aus einer Vielzahl von elektrochemischen Zellen gemäß einem oder mehreren der vorstehenden Ansprüche zusammengesetzt ist.
     
    12. Eine wiederaufladbare Vorrichtung nach dem vorhergehenden Anspruch 11, dadurch gekennzeichnet, dass die elektrochemischen Zellen in Reihe geschaltet sind.
     
    13. Eine elektrochemische Zelle nach dem vorstehenden Anspruch 12, dadurch gekennzeichnet, dass der positive Stromabnehmer einer Zelle bildet den negativen Stromabnehmer der unmittelbar benachbarten Zelle.
     
    14. Eine Elektrochemische Zelle nach einem oder mehreren der vorstehenden Ansprüche 11 bis 13, dadurch gekennzeichnet, dass die aus einem oder mehreren Sammlern besteht, von denen die verschiedenen Lufteinlasskanäle (8) und Auslasskanäle (9) zu den einzelnen Zellen abzweigen.
     
    15. Eine Elektrochemische Zelle nach einem oder mehreren der vorstehenden Ansprüche 11 bis 14, dadurch gekennzeichnet, dass die aus einem oder mehreren Kollektoren besteht, von denen die verschiedenen Einlasskanäle (10) des gasförmigen Wasserstoffs in die Anodenräume der einzelnen Zellen abzweigen.
     


    Revendications

    1. Une cellule électrochimique intégrée rechargeable, comprenant:

    - un collecteur de courant électrique positif (1) formé d'un matériau à haute conductivité thermique et électrique;

    - un collecteur de courant électrique négatif (2) formé d'un matériau à haute conductivité thermique et électrique;

    - une électrode cathodique (3) formée d'un substrat conducteur, d'un liant polymère et d'un catalyseur, qui est capable, au moyen d'un courant électrique pendant l'étape de charge, de diviser les molécules d'eau de l'air qui y est transporté, de façon à obtenir de l'oxygène, tandis que dans l'étape de décharge, le catalyseur est capable de réduire électrochimiquement l'oxygène de l'air qui lui est acheminé à l'intérieur;

    - une électrode anodique (4) formée d'un substrat conducteur, d'un liant polymère et d'un catalyseur, qui est capable de diviser les molécules d'eau au moyen d'un courant électrique pendant l'étape de charge, de sorte que les molécules s'échappent de la cathode (3) par voie électro-osmotique à travers un séparateur (5), de façon à obtenir de l'hydrogène, tandis que le catalyseur est capable d'oxyder électrochimiquement l'hydrogène présent dans le compartiment anodique pendant l'étape de décharge;

    - un séparateur (5) imperméable aux gaz et électriquement isolant, placé entre lesdites électrodes (3, 4) et formé d'une membrane polymère riche en groupes d'échange d'ions et capable de garantir la conductivité ionique ;

    - un support poreux électriquement conducteur (6), placé entre ladite électrode positive (3) et ledit collecteur de courant positif (1), remplissant la fonction d'une couche de diffusion gazeuse;

    - un support poreux électriquement conducteur (7), placé entre ladite électrode négative (4) et ledit collecteur de courant négatif (2), contenant des poudres d'hydrure

    - des métaux capables d'absorber rapidement l'hydrogène gazeux (jusqu'à 2-3% en poids) et de le libérer progressivement;

    - un canal d'entrée (8) approprié pour transporter de l'air dans ledit support poreux (6);

    - un canal de sortie (9) pour extraire l'air dudit support poreux (6);
    ladite électrode cathodique (3) et ledit support poreux (6) forment un compartiment cathodique imperméable aux gaz et fermé hermétiquement entre le collecteur de courant positif (1) et le séparateur (5), tandis que ladite électrode anodique (4) et ledit support poreux (7) forment un compartiment anodique imperméable aux gaz et hermétiquement fermé entre le collecteur de courant négatif (2) et le séparateur (5), caractérisée en ce que le compartiment anodique comporte un canal d'entrée (10) par lequel de l'hydrogène gazeux peut être injecté directement dans ledit support poreux (7) dans lequel ledit hydrogène est adsorbé, ledit support poreux (7) ayant la même largeur et longueur que l'électrode anodique (4) mais une épaisseur 20 à 30 fois supérieure.


     
    2. Cellule électrochimique selon la revendication précédente, caractérisée en ce que ledit canal d'entrée d'air (8) est relié à un réservoir externe (11) qui recueille l'eau formée pendant l'étape d'alimentation électrique à partir de la recombinaison de l'hydrogène avec l'oxygène; si nécessaire, on fait passer l'air du canal (8) à travers ledit réservoir avant de l'acheminer vers la cathode de la batterie (3) afin de l'humidifier.
     
    3. Cellule électrochimique selon la revendication précédente, caractérisée en ce que ledit séparateur (5) est une membrane échangeuse d'ions du type cationique, essentiellement formée d'une matrice polymère avec des groupes fonctionnels acides.
     
    4. Cellule électrochimique selon la revendication 3, caractérisée en ce que dans l'électrode cathodique (3), le substrat est formé d'un réseau de platine ou d'un réseau de titane revêtu de platine et le catalyseur est formé de nanoparticules de platine et d'iridium.
     
    5. Cellule électrochimique selon une ou plusieurs des revendications précédentes 3 ou 4, caractérisée en ce que dans l'électrode anodique (4), le substrat est formé d'un matériau carboné et le catalyseur est formé de nanoparticules de platine.
     
    6. Cellule électrochimique selon une ou plusieurs des revendications précédentes 3 à 5, caractérisée en ce que ledit support poreux (6) est formé d'un matériau carboné.
     
    7. Cellule électrochimique selon une ou plusieurs des revendications précédentes 1 ou 2, caractérisée en ce que ledit séparateur (5) est une membrane échangeuse d'ions, essentiellement formée d'une matrice polymère avec des groupes fonctionnels de base.
     
    8. Cellule électrochimique selon la revendication 7, caractérisée en ce que dans l'électrode cathodique (3), le substrat est formé d'un réseau ou d'une mousse de nickel, et le catalyseur est formé d'oxydes, de perovskites ou de spinelles de métaux comme le cobalt, le lanthane, le manganèse, le nickel, le fer ou une combinaison desdits métaux.
     
    9. Cellule électrochimique selon une ou plusieurs des revendications précédentes 7 ou 8, caractérisée en ce que dans l'électrode anodique (4), le substrat est formé d'une mousse ou d'un réseau de nickel ou de cobalt ou d'un matériau carboné et le catalyseur est formé de palladium ou d'une éponge métallique de nickel et d'aluminium.
     
    10. Cellule électrochimique selon une ou plusieurs des revendications précédentes 7 à 9, caractérisée en ce que ledit support poreux (6) est formé d'une mousse de nickel.
     
    11. Dispositif électrochimique rechargeable, caractérisé en ce que il comprend une batterie composée d'une pluralité de cellules électrochimiques selon une ou plusieurs des revendications précédentes.
     
    12. Dispositif rechargeable selon la revendication précédente 11, caractérisé en ce que lesdites cellules électrochimiques sont connectées en série.
     
    13. Dispositif rechargeable selon la revendication précédente 12, caractérisé en ce que le collecteur de courant positif d'une cellule constitue le collecteur de courant négatif de la cellule immédiatement adjacente.
     
    14. Dispositif électrochimique selon une ou plusieurs des revendications précédentes 11 à 13, caractérisé en ce que il comprend un ou plusieurs collecteurs à partir desquels les différents canaux d'entrée (8) et de sortie (9) d'air se ramifient en faveur des cellules individuelles.
     
    15. Dispositif électrochimique selon une ou plusieurs des revendications précédentes 11 à 14, caractérisé en ce que il comprend un ou plusieurs collecteurs à partir desquels les différents canaux d'entrée (10) de l'hydrogène gazeux dans les compartiments anodiques des cellules individuelles, se ramifient.
     




    Drawing









    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description