(19)
(11)EP 3 445 983 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
17.06.2020 Bulletin 2020/25

(21)Application number: 17721242.0

(22)Date of filing:  19.04.2017
(51)International Patent Classification (IPC): 
F16C 35/077(2006.01)
F16C 19/52(2006.01)
H02K 7/08(2006.01)
H02K 5/173(2006.01)
(86)International application number:
PCT/US2017/028449
(87)International publication number:
WO 2017/184783 (26.10.2017 Gazette  2017/43)

(54)

BEARING ASSEMBLY FOR ELECTRICAL GENERATOR

LAGERANORDNUNG FÜR GENERATOR

PALIER POUR GÉNÉRATEUR ÉLECTRIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 21.04.2016 US 201662325709 P

(43)Date of publication of application:
27.02.2019 Bulletin 2019/09

(73)Proprietor: Safran Electrical & Power
31702 Blagnac Cedex (FR)

(72)Inventors:
  • SNELICK, John, Gregory
    Canal Fulton OH 44614 (US)
  • McCREA, Kevin, Patrick
    Cuyahoga Falls OH 44221 (US)

(74)Representative: Palmer, Benjamin Jeffrey 
Withers & Rogers LLP 4 More London Riverside
London SE1 2AU
London SE1 2AU (GB)


(56)References cited: : 
FR-A1- 2 585 095
US-A- 5 577 847
JP-A- 2000 192 979
US-A1- 2012 294 559
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] This disclosure relates to electrical generators, and more particularly to electrical generators having bearings for supporting the rotor shaft.

    [0002] In electrical generators, such as those used to power electrical systems of aircraft, the electrical generator is connected to the main engine of the aircraft by a drive shaft. The drive shaft is connected to a rotor assembly of the electrical generator through a rotor shaft. The rotor assembly is mounted on the rotor shaft and rotates within a stator assembly. The rotor shaft is supported for rotation in a generator housing using bearing assemblies.

    [0003] Previous electrical generators have been manufactured with light weight aluminum or magnesium frames mounted to a housing of the electrical generator. Hardened steel bearing liners are shrunk fit or cast into the aluminum or magnesium frame, which has also been referred to as an end bell, to provide a low-wear surface to mate with a steel bearing outer ring of the bearing assembly. When so fitted, the combined thermal expansion rate of the aluminum or magnesium frame and steel bearing liner is greater than the thermal expansion rate of the steel bearing outer ring. Therefore the liner expands away from the bearing outer ring which increases the clearance between the liner and the bearing outer ring. This can lead to fretting corrosion and reduced bearing system reliability.

    [0004] US 2012/0294559A1 provides a bearing support arrangement including a housing, a support, a liner, a bearing assembly and a retainer. A flange extends radially from the race of the bearing assembly. The flange and the support are held against the housing to secure the bearing assembly relative to the housing. FR 2585095A1 provides an expansion compensating bearing assembly in which two resin rings are located in circumferential grooves around the outer race and protrude beyond the outer surface of the outer race to secure the bearing assembly within a housing.

    SUMMARY



    [0005] In view of the foregoing, a novel electrical generator and a novel bearing support assembly for an electrical generator is provided. The electrical generator includes a housing, a stator, a drive shaft, a rotor shaft, a rotor, a bearing support assembly and a bearing. The stator is mounted in the housing. The drive shaft extends from the housing. The rotor shaft is provided in the housing and mounts on the drive shaft. The rotor is mounted on the rotor shaft for rotation with the rotor shaft. The bearing support assembly includes a frame, a bearing liner and a ring. The frame is connected with the housing and includes a frame opening through which the rotor shaft extends. The frame is made from a first material defining a first thermal expansion rate. The bearing liner is connected with the frame. The bearing liner is made from a second material defining a second thermal expansion rate, the second material and the second thermal expansion rate being dissimilar from the first material and the first thermal expansion rate, respectively. At least a portion of the bearing liner passes through the frame opening. The bearing liner includes a first bearing support surface and a second bearing support surface separated by an internal wall. The ring surrounds the bearing liner. The ring also contacts the frame and the bearing liner and maintains a clearance between the portion of the bearing liner passing through the frame opening and the frame. The ring is axially offset from the internal wall. The bearing is received in the bearing support assembly and contacts the rotor shaft and the bearing liner.

    [0006] An example of a bearing support assembly for an electrical generator includes a frame, a bearing liner and a ring. The frame is configured to connect with a housing of an electrical generator. The frame includes a frame opening and is made from a first material defining a first thermal expansion rate. The bearing liner connects with the frame. The bearing liner is made from a second material, which defines a second thermal expansion rate, the second material and the second thermal expansion rate being dissimilar from the first material and the first thermal expansion rate, respectively. At least a portion of the bearing liner passes through the frame opening. The ring surrounds the bearing liner. The ring contacts the frame and the bearing liner and maintains a clearance between the portion of the bearing liner passing through the frame opening and the frame.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0007] 

    FIG. 1 is a cross-sectional view of a front end of an electrical generator.

    FIG. 2 is a perspective cross-sectional view of a bearing support assembly for an electrical generator.

    FIG. 3 is a perspective view of a bearing liner of the bearing support assembly shown in FIG. 2.

    FIG. 4 is a perspective view of the bearing support assembly shown in FIG. 2.


    DETAILED DESCRIPTION



    [0008] FIG. 1 depicts the front end of an electrical generator 10. The electrical generator 10 is similar to electrical generators used in many aircraft. The electrical generator 10 includes a housing 12, stator 14, a rotor shaft 16, a rotor 18, and a bearing support assembly 20. The rear end of the electrical generator 10 is similar in configuration to known electrical generators, and is therefore not shown.

    [0009] The housing 12 includes an outer cylindrical housing wall 30 having a forward face 32 in which a plurality of fastener openings 34 (only one visible in FIG. 1) are provided for attaching the bearing support assembly 20 to the housing 12. The stator 14 is mounted inside of and is fixed to the outer cylindrical housing wall 30. The rotor shaft 16 is provided in the housing 12. The rotor shaft 16 mounts to a drive shaft 36 that extends from the housing 12. The drive shaft 36 includes a spline 40 at a front end for attachment to a main drive of an engine gear box (not shown). The rotor 18 mounts on the rotor shaft 16 for rotation with the rotor shaft 16 and the drive shaft 36. The rotor 18 rotates about a rotational axis 42 about which the housing 12 is centered. The rotor 18 includes a rotor core 44 and rotor windings 46. The housing 12, the stator 14, the rotor shaft 16, the rotor 18 and the drive shaft 36 can all be similar to those in a known electrical generator.

    [0010] The bearing support assembly 20 includes a frame 50, which can also be referred to as an end bell, and a bearing liner 52. The frame 50 connects with the housing 12 and includes a centrally located frame opening 54 through which the rotor shaft 16 and the drive shaft 36 extend. The bearing liner 52 connects with the frame 50, and the rotor shaft 16 extends through the frame opening 54. In a known arrangement, the bearing liner 52 is made from a hardened steel, and the frame 50 is made from aluminum or magnesium. The bearing liner 52, which is made from hardened steel to provide a low wear surface for a main bearing 56 and an auxiliary bearing 58, is typically shrunk fit or cast into the aluminum or magnesium frame 50. When so fitted, the combined thermal expansion rate of the frame 50 and bearing liner 52 is greater than the thermal expansion rate of an outer ring for the main bearing 56 or the auxiliary bearing 58. Therefore, the bearing liner 52 expands away from the outer ring of either bearing 56 or 58, which increases the clearance between the two leading to fretting, corrosion, and reduced bearing system reliability.

    [0011] FIGS. 2-4 depict a bearing support assembly 100 that operates in a similar manner to the bearing support assembly 20 in FIG. 1, but is designed to mitigate against the effects of different thermal expansion rates. The bearing support assembly 100 is also designed to mitigate the effects of fretting corrosion and increase bearing system reliability for the electrical generator 10. The bearing support assembly 100 replaces the bearing support assembly 20 shown in FIG. 1, while the remaining components of the electrical generator 10 remain.

    [0012] FIG. 2 depicts the bearing support assembly 100 including a frame 102, which is similar to the frame 50 shown in FIG. 1, a bearing liner 104, which is similar to the bearing liner 52 shown in FIG. 1, and a ring 106. The frame 102 can connect with the housing 12 in a similar manner as the frame 50 shown in FIG. 1. The bearing liner 104 connects with the frame 102. However, in the embodiment illustrated in FIGS. 2-4, the bearing liner 104 does not connect with the frame 102 by being shrunk fit or cast into the frame 102. The connection between the bearing liner 104 and the frame 102 will be described in more detail below. The frame 102 is made from a first material, which can be either aluminum or magnesium, or other materials similar to the frame 50 shown in FIG. 1. The bearing liner 104 is made from a second material, which is dissimilar from the first material. The bearing liner 104 can be made from hardened steel like the bearing liner 52 shown in FIG. 1.

    [0013] The ring 106 surrounds the bearing liner 104. The ring 106 contacts the frame 102 and the bearing liner 104. The ring 106 isolates the effects of the difference between the thermal expansion rate of the frame 102 from the thermal expansion rate of the bearing liner 104. The ring 106 can effectively decouple, in a heat transfer sense, the thermal expansion of the bearing liner 104, which is made from hardened steel, from the thermal expansion of the frame 102, which is made from aluminum or magnesium. The ring 106 acts like a thermal expansion absorber to decouple the frame 102 from the bearing liner 104. Such a thermal expansion absorber can be similar to an o-ring or similar to a flat compression ring, and in both cases the absorber can be non-metallic. In addition to the bolts it maintains concentricity during temperature changes as the frame expands or contracts around the liner. Bearings, which can be the same as the main bearing 56 and the auxiliary bearing 58, have an outer ring which is also made of steel. The steel outer ring of these bearings 56, 58 have the same thermal expansion rate as the thermal expansion rate of the bearing liner 104, which controls the clearance between the bearings 56, 58 and the bearing liner 104.

    [0014] As most clearly seen in FIG. 4, the frame 102 includes a central annular section 110 defining a cylindrical internal surface 112 (FIG. 2), which define a central frame opening 114 that is centered with respect to the rotational axis 42 of the rotor shaft 16, when the bearing support assembly 100 is connected with the housing 12. A lead opening 116 can be provided in the central annular section 110 through which leads 118 (FIG. 1) can extend. The central annular section 110 also includes a rear face 122 and a forward face 124, both of which are planar and normal to the rotational axis 42.

    [0015] The frame 102 also includes a forward cylindrical section 126 that extends forwardly from the forward face 124. The forward cylindrical section 126 is also centered with respect to the rotational axis 42. The frame 102 further includes a plurality of fastener holes 128 provided in the central annular section 110. The fastener holes 128 are radially offset from the rotational axis 42 equal distance with an inner surface 132 of the forward cylindrical section 126. The fastener holes 128 extend forwardly from the rear face 122 of the central annular section 110 to facilitate connection of the bearing liner 104 to the frame 102.

    [0016] The frame 102 further includes a plurality of spokes 140 that extend in a radial direction from the central annular section 110. The spokes 140 are circumferentially spaced around the central annular section 110 and connect with an outer annular section 142 so as to define a plurality of openings 144 between the outer annular section 142, the central annular section 110, and adjacent spokes 140. The outer annular section 142 defines a forward surface 150 and a rear surface 152. The forward surface 150 is parallel to the rear surface 152, and both surfaces 150, 152 are normal to the rotational axis 42. A plurality of bolt holes 154 are provided through the outer annular section 142 extending from the forward surface 150 through the outer annular section 142 to the rear surface 152. The bolt holes 154 can align with the fastener openings 34 (FIG. 1) and the housing 12 (FIG. 1) to allow for the attachment of the frame 102 to the housing 12 through the use of fasteners 156 (FIG. 1). The outer annular section 142 also includes an axially extending mating flange 158 that can key with the housing 12 in a manner similar to the frame 50 shown in FIG. 1.

    [0017] The bearing liner 104 connects with the frame 102 such that at least a portion of the bearing liner 104 passes through the central frame opening 114. In the bearing support assembly 100 illustrated in FIGS. 2-4, the bearing liner 104 includes a rear annular section 170 that transitions into a radially outwardly extending flange 172. The radially outwardly extending flange 172 defines a forward surface 174 that contacts the rear face 122 of the central annular section 110 of the frame 102 when the bearing liner 104 is connected with the frame 102.

    [0018] With respect to FIG. 3, a plurality of ears 176 extend radially outward from the radially outwardly extending flange 172. A respective fastener opening 178 is provided in each ear 176. Each fastener opening 178 aligns with a respective fastener hole 128 and receives a fastener 180, which can be a conventional style bolt, to connect the bearing liner 104 with the frame 102. The rear annular section 170 also defines a first bearing support surface 182, which is an inner cylindrical surface of the rear annular section 170. The first bearing support surface 182 is centered with respect to the rotational axis 42 and is configured to support the main bearing 56 shown in FIG. 1. The first bearing support surface 182 is offset from a centerline of the bearing liner 104, which is co-axial with the rotational axis 42, a distance R1. The rear annular section 170 extends axially away from the radially outwardly extending flange 172 and defines a rear end face 184 normal to the centerline (rotational axis 42) of the bearing liner 104. An anti-rotation feature, e.g., a notch 186, is provided in the rear end face 184.

    [0019] The bearing liner 104 also includes a forward annular section 190 that extends forwardly from the forward surface 174 of the radially outwardly extending flange 172. The forward annular section 190 defines a second bearing support surface 192 that is configured to support the auxiliary bearing 58 depicted in FIG. 1. The first bearing support surface 182 and the second bearing support surface 192 are separated by an internal wall 194. The internal wall 194 is provided to keep debris from the main bearing 56, if it were to fail, from damaging the auxiliary bearing 58. The internal wall 194 includes a forward side 196 facing toward the second bearing support surface 192 and a rear side 198 facing toward the first bearing support surface 182. The forward side 196 is parallel with the rear side 198, and both sides 196, 198 of the internal wall 194 are planar and normal to the rotational axis 42, which can also be a centerline of the bearing liner 104. The internal wall 194 extends inwardly and defines a central opening 210 that receives the rotor shaft 16 (FIG. 1) when the bearing support assembly 100 is connected with the housing 12. The opening 210 is circular and centered on the rotational axis 42. The second bearing support surface 192 is offset from the centerline of the bearing liner 104, which is co-axial with the rotational axis 42, a distance R2. In the illustrated embodiment, R1 is greater than R2.

    [0020] The bearing liner 104 also includes an outer surface 220 on the forward annular section 190 forward of the forward surface 174 of the radially outwardly extending flange 172. With respect to FIG. 3, a groove 222 is provided in the outer surface 220 and extends inwardly from the outer surface 220 into the forward annular section 190. With respect back to FIG. 2, the ring 106 is received in the groove 222. The groove 222 is positioned on a forward axial side of the internal wall 194, which places the groove 222 on the same axial side of the internal wall 194 as the second bearing support surface 192.

    [0021] The ring 106 is received in the groove 222 such that an exposed surface 226 of the ring 106, with respect to the groove 222, is substantially flush with, although slightly radially outwardly offset from, the outer surface 220 of the forward annular section 190. If desired, multiple grooves, similar to the groove 222, and multiple rings, similar to the ring 106, could be provided if there is sufficient length to maintain alignment. The ring 106 can be an O-ring that offsets the outer surface 220 of the bearing liner 104 from the internal surface 112 of the frame 102. The ring 106 can be made from a bearing grade polyimide, such as Vespel® or a fluoroelastomer. This separates the aluminum or magnesium frame 102 from the steel bearing liner 104 so that the thermal rate of expansion of the bearing liner 104 can be equal to or nearly the same as the thermal rate of the expansion of the respective outer rings of bearings 56, 58 (FIG. 1) received in the bearing liner 104. The ring 106 is used as a primary centering device to assure proper concentricity of the bearings 56, 58 and the rotor shaft 16 with no actual interference between the bearing liner 104 and the frame 102. The ring 106 absorbs the interference for the initial installation of the bearing liner 104 and the frame 102. In addition to centering the bearing support assembly provided by the ring 106, the bearing liner 104 is bolted in place using bolts 180 to ensure proper alignment and safety wire (not shown) can be installed to prevent tampering.

    [0022] The electrical generator 10 can be assembled by surrounding a portion of the bearing liner 104 with a non-metallic ring, such as the ring 106. Next, that portion of the bearing liner 104 can be inserted through the frame opening 114 such that the non-metallic ring contacts the internal surface 112, which defines the frame opening 114, of the frame 102. The bearing liner 104 is then connected with the frame 102 with the portion of the bearing liner 104 extending through the frame opening 114. The frame 102 with the bearing liner 104 connected thereto is then connected to the housing 12 of the electrical generator 10. The connection between the bearing liner 104 and the frame 102 is a bolted mechanical connection, which differs from being shrunk fit or cast into the frame 102.

    [0023] An electrical generator and a bearing support assembly for an electrical generator have been described above with particularity. Modifications and alterations will occur to those upon reading and understanding the preceding detailed description. The invention, however, is not limited to only the embodiments described above. Instead, the invention is defined by the appended claims.


    Claims

    1. An electrical generator (10) comprising:

    a housing (12);

    a stator (14) mounted in the housing;

    a drive shaft (36) extending from the housing;

    a rotor shaft (16) provided in the housing and mounted on the drive shaft;

    a rotor (18) mounted on the rotor shaft for rotation with the rotor shaft; and

    a bearing support assembly (100) including

    a frame (102) connected with the housing, the frame including a frame opening (114) through which the rotor shaft extends, the frame being made from a first material defining a first thermal expansion rate;

    a bearing liner (104) connected with the frame, the bearing liner being made from a second material defining a second thermal expansion rate, the second material and the second thermal expansion rate being dissimilar from the first material and the first thermal expansion rate, respectively, and at least a portion of the bearing liner passing through the frame opening, wherein the bearing liner includes a first bearing support surface (182) and a second bearing support surface (192) separated by an internal wall (194);

    a ring (106) surrounding the bearing liner, the ring contacting the frame and the bearing liner and maintaining a clearance between the portion of the bearing liner passing through the frame opening and the frame, wherein the ring is axially offset from the internal wall, and

    a bearing (56, 58) received in the bearing support assembly and contacting the rotor shaft and the bearing liner.


     
    2. The electrical generator (10) of claim 1, wherein the ring (106) is an O-ring made from a polyimide or a fluoroelastomer.
     
    3. The electrical generator (10) of claim 2, wherein the bearing liner (104) includes an outer groove (222) formed in an outer surface (220) of the bearing liner and the O-ring (106) is received in the outer groove.
     
    4. The electrical generator (10) of claim 1, wherein the ring (106) is a non-metallic ring.
     
    5. The electrical generator (10) of claim 1, wherein the first bearing support surface (182) is offset from a centerline of the bearing liner (104) a distance R1 and the second bearing support surface (192) is offset from the centerline a distance R2, wherein R1 is greater than R2.
     
    6. The electrical generator (10) of claim 5, wherein the ring (106) is positioned on a same axial side of the internal wall (194) as the second bearing support surface (192).
     
    7. The electrical generator (10) of claim 1, wherein the bearing liner (104) includes a radially outwardly extending flange (172) and a plurality of ears (176) each extending radially outwardly from the radially outwardly extending flange, each ear having a fastener opening (178).
     
    8. The electrical generator (10) of claim 7, wherein the bearing liner (104) includes an annular section (170) extending axially away from the radially outwardly extending flange (172), wherein the annular section defines an end face (184) normal to a centerline of the bearing liner, and an anti-rotation feature (186) is provided in the end face.
     
    9. The electrical generator (10) of claim 8, wherein the anti-rotation feature is a notch (186) formed in the end face (184).
     
    10. The electrical generator (10) of claim 1, wherein the frame (102) includes an inner surface (112) that defines the frame opening (114) and an outer surface (220) of the portion of the bearing liner (104) passing through the frame opening is offset radially inward of the inner surface.
     
    11. A bearing support assembly (100) for an electrical generator (10) comprising:

    a frame (102) configured to connect with a housing (12) of an electrical generator (10), the frame including a frame opening (114) and being made from a first material and defining a first thermal expansion rate;

    a bearing liner (104) connected with the frame, the bearing liner being made from a second material and defining a second thermal expansion rate, the second material and the second thermal expansion rate being dissimilar from the first material and the first thermal expansion rate, respectively, and at least a portion of the bearing liner passing through the frame opening; and

    a ring (106) surrounding the bearing liner, the ring contacting the frame and the bearing liner and maintaining a clearance between the portion of the bearing liner passing through the frame opening and the frame, wherein the bearing liner includes an outer groove (222) formed in an outer surface (220) of the bearing liner and the ring is received in the outer groove.


     
    12. The bearing support assembly (100) of claim 11, wherein the bearing liner (104) incudes a first bearing support surface (182) and a second bearing support surface (192) separated by an internal wall (194), wherein the ring (106) is axially offset from the internal wall.
     
    13. The bearing support assembly (100) of claim 12, wherein the first bearing support surface (182) is offset from a centerline of the bearing liner (104) a distance R1 and the second bearing support surface (192) is offset from the centerline a distance R2, wherein R1 is greater than R2, and the ring (106) is positioned on a same axial side of the internal wall (194) as the second bearing support surface.
     
    14. The bearing support assembly (100) of claim 11, wherein the frame (102) includes a plurality of fastener holes (128) and the bearing liner (104) includes a radially outwardly extending flange (172) and a plurality of ears (176) each extending radially outwardly from the radially outwardly extending flange, each ear having a fastener opening (178) that aligns with a respective fastener holes to receive a fastener (180) to connect the frame with the bearing liner.
     
    15. The bearing support assembly (100) of claim 11, wherein the frame (102) includes an inner surface (112) that defines the frame opening (114) and an outer surface (220) of the portion of the bearing liner (104) passing through the frame opening is offset radially inward of the inner surface.
     


    Ansprüche

    1. Elektrischer Generator (10), der umfasst:

    ein Gehäuse (12);

    einen in dem Gehäuse montierten Stator (14);

    eine Antriebswelle (36), die sich von dem Gehäuse erstreckt;

    eine Rotorwelle (16), die in dem Gehäuse vorgesehen ist und an der Antriebswelle montiert ist;

    einen Rotor (18), der zum Drehen mit der Rotorwelle an der Rotorwelle montiert ist; und

    eine Lagerbockanordnung (100), die aufweist:

    einen Rahmen (102), der mit dem Gehäuse verbunden ist, wobei der Rahmen eine Rahmenöffnung (114) aufweist, durch die sich die Rotorwelle erstreckt, wobei der Rahmen aus einem ersten Material gefertigt ist, das eine erste Wärmedehnungsrate definiert;

    einen Lager-Liner (104), der mit dem Lager verbunden ist, wobei der Lager-Liner aus einem zweiten Material gefertigt ist, das eine zweite Wärmedehnungsrate definiert, wobei sich das zweite Material und die zweite Wärmedehnungsrate jeweils von dem ersten Material und der ersten Wärmedehnungsrate unterscheiden und mindestens ein Abschnitt des Lager-Liners durch die Rahmenöffnung verläuft, wobei der Lager-Liner eine erste Lagerbockfläche (182) und eine zweite Lagerbockfläche (192) aufweist, die durch eine Innenwand (194) voneinander getrennt sind;

    einen Ring (106), der den Lager-Liner umgibt, wobei der Ring mit dem Rahmen und dem Lager-Liner in Kontakt kommt und einen Zwischenraum zwischen dem durch die Rahmenöffnung verlaufenden Abschnitt des Lager-Liners und dem Rahmen aufrechterhält, wobei der Ring axial von der Innenwand versetzt ist, und

    ein Lager (56, 58), das in der Lagerbockanaordnung aufgenommen ist und mit der Rotorwelle und dem Lager-Liner in Kontakt kommt.


     
    2. Elektrischer Generator (10) nach Anspruch 1, bei dem der Ring (106) ein O-Ring aus einem Polyimid oder einem Fluorelastomer ist.
     
    3. Elektrischer Generator (10) nach Anspruch 2, bei dem der Lager-Liner (104) eine Außennut (222) aufweist, die in einer Außenfläche (220) des Lager-Liners ausgebildet ist, und bei dem der O-Ring (106) in der Außennut aufgenommen ist.
     
    4. Elektrischer Generator (10) nach Anspruch 1, bei dem der Ring (106) ein nichtmetallischer Ring ist.
     
    5. Elektrischer Generator (10) nach Anspruch 1, bei dem die erste Lagerbockfläche (182) um einen Abstand R1 von einer Mittellinie des Lager-Liners (104) versetzt ist und bei dem die zweite Lagerbockfläche (192) um einen Abstand R2 von einer Mittellinie versetzt ist, wobei R1 größer ist als R2 ist.
     
    6. Elektrischer Generator (10) nach Anspruch 5, bei dem der Ring (106) auf einer gleichen axialen Seite der Innenwand (194) positioniert ist wie die zweite Lagerbockfläche (192).
     
    7. Elektrischer Generator (10) nach Anspruch 1, bei dem der Lager-Liner (104) einen sich radial nach außen erstreckenden Flansch (172) und eine Vielzahl von Ohren (176) aufweist, die sich jeweils von dem sich radial nach außen erstreckenden Flansch radial nach außen erstrecken, wobei jedes Ohr eine Befestigungsteilöffnung (178) aufweist.
     
    8. Elektrischer Generator (10) nach Anspruch 7, bei dem der Lager-Liner (104) einen ringförmigen Bereich (170) aufweist, der sich von dem sich radial nach außen erstreckenden Flansch (172) axial weg erstreckt, wobei der ringförmige Bereich eine zu einer Mittellinie des Lager-Liners normale Endfläche (184) definiert und eine Drehverhinderungseinrichtung (186) in der Endfläche vorgesehen ist.
     
    9. Elektrischer Generator (10) nach Anspruch 8, bei dem die Drehverhinderungseinrichtung eine in der Endfläche (184) ausgebildete Kerbe (186) ist.
     
    10. Elektrischer Generator (10) nach Anspruch 1, bei dem der Rahmen (102) eine Innenfläche (112) aufweist, die die Rahmenöffnung (114) definiert, und bei dem eine Außenfläche (220) des Abschnitts des durch die Rahmenöffnung verlaufenden Lager-Liners (104) zu der Innenfläche radial nach innen versetzt ist.
     
    11. Lagerbockanordnung (100) für einen elektrischen Generator (10), die umfasst:

    einen Rahmen (102), der derart ausgebildet ist, dass er mit einem Gehäuse (12) eines elektrischen Generators (10) verbunden ist, wobei der Rahmen eine Rahmenöffnung (114) aufweist und aus einem ersten Material gefertigt ist und eine erste Wärmedehnungsrate definiert;

    einen Lager-Liner (104), der mit dem Rahmen verbunden ist, wobei der Lager-Liner aus einem zweiten Material gefertigt ist und eine zweite Wärmedehnungsrate definiert, wobei sich das zweite Material und die zweite Wärmedehnungsrate jeweils von dem ersten Material und der ersten Wärmedehnungsrate unterscheiden und zumindest ein Abschnitt des Lager-Liners durch die Rahmenöffnung verläuft; und

    einen Ring (106), der den Lager-Liner umgibt, wobei der Ring mit dem Rahmen und dem Lager-Liner in Kontakt kommt und einen Zwischenraum zwischen dem durch die Rahmenöffnung verlaufenden Abschnitt des Lager-Liners und dem Rahmen aufrechterhält, wobei der Lager-Liner eine Außennut (222) aufweist, die in einer Außenfläche (220) des Lager-Liners ausgebildet ist, und der Ring in der Außennut aufgenommen ist.


     
    12. Lagerbockanordnung (100) nach Anspruch 11, bei der der Lager-Liner (104) eine erste Lagerbockfläche (182) und eine zweite Lagerbockfläche (192) aufweist, die durch eine Innenwand (194) voneinander getrennt sind, wobei der Ring (106) axial von der Innenwand versetzt ist.
     
    13. Lagerbockanordnung (100) nach Anspruch 12, bei der die erste Lagerbockfläche (182) um einen Abstand R1 von einer Mittellinie des Lager-Liners (104) versetzt ist und die zweite Lagerbockfläche (192) um einen Abstand R2 von der Mittellinie versetzt ist, wobei R1 größer als R2 ist und der Ring (106) auf einer gleichen axialen Seite der Innenwand (194) positioniert ist wie die zweite Lagerbockfläche.
     
    14. Lagerbockanordnung (100) nach Anspruch 11, bei der der Rahmen (102) eine Vielzahl von Befestigungsteillöchern (128) aufweist und bei dem der Lager-Liner (104) einen sich radial nach außen erstreckenden Flansch (172) und eine Vielzahl von Ohren (176) aufweist, die sich jeweils von dem sich radial nach außen erstreckenden Flansch radial nach außen erstrecken, wobei jedes Ohr eine Befestigungsteilöffnung (178) aufweist, die zum Aufnehmen eines Befestigungsteils (180) zum Verbinden des Rahmens mit dem Lager-Liner jeweils zu einem Befestigungsteilloch ausgerichtet ist.
     
    15. Lagerbockanordnung (100) nach Anspruch 11, bei der der Rahmen (102) eine Innenfläche (112) aufweist, die die Rahmenöffnung (114) definiert, und eine Außenfläche (220) des Abschnitts des durch die Rahmenöffnung verlaufenden Lager-Liners (104) zu der Innenfläche radial nach innen versetzt ist.
     


    Revendications

    1. Générateur électrique (10) comprenant :

    un boîtier (12) ;

    un stator (14) monté dans le boîtier ;

    un arbre d'entraînement (36) s'étendant à partir du boîtier ;

    un arbre de rotor (16) prévu dans le boîtier et monté sur l'arbre d'entraînement ;

    un rotor (18) monté sur l'arbre de rotor pour pivoter avec l'arbre de rotor ; et

    un ensemble de support de palier (100) comprenant :

    un bâti (102) raccordé avec le boîtier, le bâti comprenant une ouverture de bâti (114) à travers laquelle l'arbre de rotor s'étend, le bâti étant réalisé à partir d'un premier matériau définissant un premier coefficient de dilatation thermique ;

    un coussinet de palier (104) raccordé avec le bâti, le coussinet de palier étant réalisé à partir d'un second matériau définissant un second coefficient de dilatation thermique, le second matériau et le second coefficient de dilatation thermique étant respectivement différents du premier matériau et du premier coefficient de dilatation thermique, et au moins une partie du coussinet de palier passant par l'ouverture de bâti, dans lequel le coussinet de palier comprend une première surface de support de palier (182) et une seconde surface de support de palier (192) séparées par une paroi interne (194) ;

    une bague (106) entourant le coussinet de palier, la bague étant en contact avec le bâti et le coussinet de palier et maintenant un jeu entre la partie du coussinet de palier passant par l'ouverture de bâti et le bâti, dans lequel la bague est axialement décalée de la paroi interne, et

    un palier (56, 58) reçu dans l'ensemble de support de palier et étant en contact avec l'arbre de rotor et le coussinet de palier.


     
    2. Générateur électrique (10) selon la revendication 1, dans lequel la bague (106) est un joint torique réalisé à partir d'un polyimide ou d'un élastomère fluoré.
     
    3. Générateur électrique (10) selon la revendication 2, dans lequel le coussinet de palier (104) comprend une rainure externe (222) formée dans une surface externe (220) du coussinet de palier et le joint torique (106) est reçu dans la rainure externe.
     
    4. Générateur électrique (10) selon la revendication 1, dans lequel la bague (106) est une bague non métallique.
     
    5. Générateur électrique (10) selon la revendication 1, dans lequel la première surface de support de palier (182) est décalée d'un axe central du coussinet de palier (104) selon une distance R1 et la seconde surface de support de palier (192) est décalée de l'axe central selon une distance R2, dans lequel R1 est supérieure à R2.
     
    6. Générateur électrique (10) selon la revendication 5, dans lequel la bague (106) est positionnée du même côté axial de la paroi interne (194) que la seconde surface de support de palier (192).
     
    7. Générateur électrique (10) selon la revendication 1, dans lequel le coussinet de palier (104) comprend une bride s'étendant radialement vers l'extérieur (172) et une pluralité d'oreilles (176) s'étendant chacune radialement vers l'extérieur à partir de la bride s'étendant radialement vers l'extérieur, chaque oreille ayant une ouverture de fixation (178).
     
    8. Générateur électrique (10) selon la revendication 7, dans lequel le coussinet de palier (104) comprend une section annulaire (170) s'étendant axialement à distance de la bride s'étendant radialement vers l'extérieur (172), dans lequel la section annulaire définit une face d'extrémité (184) normale par rapport à un axe central du coussinet de palier, et une caractéristique anti-rotation (186) est prévue dans la face d'extrémité.
     
    9. Générateur électrique (10) selon la revendication 8, dans lequel la caractéristique anti-rotation est une encoche (186) formée dans la face d'extrémité (184).
     
    10. Générateur électrique (10) selon la revendication 1, dans lequel le bâti (102) comprend une surface interne (112) qui définit l'ouverture de bâti (114) et une surface externe (220) de la partie du coussinet de palier (104) passant par l'ouverture de bâti est décalée radialement vers l'intérieur de la surface interne.
     
    11. Ensemble de support de palier (100) pour un générateur électrique (10) comprenant :

    un bâti (102) configuré pour se raccorder avec un boîtier (12) d'un générateur électrique (10), le bâti comprenant une ouverture de bâti (114) et étant réalisé à partir d'un premier matériau et définissant un premier coefficient de dilatation thermique ;

    un coussinet de palier (104) raccordé avec le bâti, le coussinet de palier étant réalisé à partir d'un second matériau et définissant un second coefficient de dilatation thermique, le second matériau et le second coefficient de dilatation thermique étant respectivement différents du premier matériau et du premier coefficient de dilatation thermique, et au moins une partie du coussinet de palier passant à travers l'ouverture de bâti ; et

    une bague (106) entourant le coussinet de palier, la bague étant en contact avec le bâti et le coussinet de palier et maintenant un jeu entre la partie du coussinet de palier passant par l'ouverture de bâti et le bâti, dans lequel le coussinet de palier comprend une rainure externe (222) formée dans une surface externe (220) du coussinet de palier et la bague est reçue dans la rainure externe.


     
    12. Ensemble de support de palier (100) selon la revendication 11, dans lequel le coussinet de palier (104) comprend une première surface de support de palier (182) et une seconde surface de support de palier (192) séparées par une paroi interne (194), dans lequel la bague (106) est axialement décalée de la paroi interne.
     
    13. Ensemble de support de palier (100) selon la revendication 12, dans lequel la première surface de support de palier (182) est décalée par rapport à un axe central du coussinet de palier (104) selon une distance R1 et la seconde surface de support de palier (192) est décalée par rapport à un axe central selon une distance R2, dans lequel R1 est supérieure à R2, et la bague (106) est positionnée sur un même côté axial de la paroi interne (194) que la seconde surface de support de palier.
     
    14. Ensemble de support de palier (100) selon la revendication 11, dans lequel le bâti (102) comprend une pluralité de trous de fixation (128) et le coussinet de palier (104) comprend une bride s'étendant radialement vers l'extérieur (172) et une pluralité d'oreilles (176) s'étendant chacune radialement vers l'extérieur à partir de la bride s'étendant radialement vers l'extérieur, chaque oreille ayant une ouverture de fixation (178) qui s'aligne avec un trou de fixation respectif pour recevoir une fixation (180) afin de raccorder le bâti avec le coussinet de palier.
     
    15. Ensemble de support de palier (100) selon la revendication 11, dans lequel le bâti (102) comprend une surface interne (112) qui définit l'ouverture de bâti (114), et dans lequel une surface externe (220) de la partie du coussinet de palier (104) passant par l'ouverture de bâti est décalée radialement vers l'intérieur de la surface interne.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description