(19)
(11)EP 3 448 966 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 17720970.7

(22)Date of filing:  21.04.2017
(51)International Patent Classification (IPC): 
C10G 55/04(2006.01)
C10B 55/00(2006.01)
C10B 57/04(2006.01)
C10G 21/02(2006.01)
(86)International application number:
PCT/US2017/028710
(87)International publication number:
WO 2017/189343 (02.11.2017 Gazette  2017/44)

(54)

INTEGRATED MULTI-STAGE SOLVENT DEASPHALTING AND DELAYED COKING PROCESS TO PRODUCE HIGH QUALITY COKE

INTEGRIERTES MEHRSTUFIGES VERFAHREN ZUR LÖSUNGSMITTELENTASPHALTIERUNG UND VERZÖGERTER VERKOKUNG ZUR HERSTELLUNG VON HOCHQUALITATIVEM KOKS

PROCÉDÉ DE DÉSASPHALTAGE AU SOLVANT ET PROCÉDÉ DE COKÉFACTION DIFFÉRÉE MULTI-ÉTAGES INTÉGRÉS POUR PRODUIRE DU COKE DE QUALITÉ ÉLEVÉE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 26.04.2016 US 201662327658 P

(43)Date of publication of application:
06.03.2019 Bulletin 2019/10

(73)Proprietor: Saudi Arabian Oil Company
Dhahran 31311 (SA)

(72)Inventor:
  • KOSEOGLU, Omer Refa
    Dhahran 31311 (SA)

(74)Representative: D Young & Co LLP 
120 Holborn
London EC1N 2DY
London EC1N 2DY (GB)


(56)References cited: : 
EP-A1- 0 099 141
US-A- 4 686 028
US-A1- 2002 112 986
US-A- 4 125 459
US-A- 5 286 371
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] Embodiments of the present disclosure generally relate to processes for producing high quality coke, and more specifically relate to processes which utilize multi-stage solvent deasphalting and delayed coking used to produce high quality coke.

    BACKGROUND



    [0002] Coke, specifically, high quality coke is utilized in various industrial applications. For example, high quality coke such as anode grade coke may be used in the aluminum industry and needle grade coke may be used in the steel industry. Coking units are conventional oil refinery processing units that convert low value residual oil, from the vacuum distillation column or the atmospheric distillation column into low molecular weight hydrocarbon gases, naphtha, light and heavy gas oils, and petroleum coke. The most commonly used coking unit is a delayed coker. In a basic delayed coking process, fresh feedstock is introduced into the lower part of a fractionator. The fractionator bottoms, which include heavy recycle material and fresh feedstock, are passed to a furnace and heated to a coking temperature. The hot feed then goes to a coke drum maintained at coking conditions where the feed is cracked to form light products while heavy free radical molecules form heavier polynuclear aromatic compounds, which are referred to as "coke." With a short residence time in the furnace, coking of the feed is thereby "delayed" until it is discharged into a coking drum. The volatile components are recovered as coker vapor and returned to the fractionator, and coke is deposited on the interior of the drum. When the coke drum is full of coke, the feed is switched to another drum and the full drum is cooled and emptied by conventional methods, such as by hydraulic means or by mechanical means.

    [0003] US-A-4,686,028 discloses a two-staged solvent deasphalting process. US-A-2002/112986 and US-A-5,286,371 disclose processes comprising solvent deasphalting and delayed coking.

    [0004] That being said, residual oil is known to have a significant amount of asphalt and other impurities which decreases the yield of high quality coke. Thus, conventional approaches use upstream high severity hydrotreating and hydrocracking to purify the residual oil, such that the purified residual oil may be converted into high quality coke precursor, also called green coke, in the delayed coker. The green coke produced in the delayed coker may then be calcined to produce anode coke or needle coke. While the hydrotreating upstream of the delayed coker yields green coke, it is very expensive due to its high pressure requirement.

    SUMMARY



    [0005] Accordingly, ongoing needs exist for improved methods and systems for producing high quality coke.

    [0006] Embodiments of the present disclosure are directed to producing high quality coke using multi-stage solvent deasphalting upstream of a delayed coker. In addition to producing high quality coke, replacing the hydrotreating and hydrocracking processes with the multi-stage solvent deasphalting process significantly reduces the costs for reducing high quality cokc. As an alternative to replacing the hydrotreating and hydrocracking processes, using the multi-stage solvent deasphalting process may allow the use of a lower severity hydrotreating unit, which also lowers costs.

    [0007] In accordance with one or more embodiments, the multi-stage solvent deasphalting may use at least two different solvent deasphalting vessels with at least two different solvents of varying carbon number to separate the residual oils into two deasphalted oil fractions with different quality, a high quality deasphalted oil, which is low in metal and sulfur content, and a lower quality deasphalted oil. The high quality deasphalted oil may be used as a feedstock in a delayed coking process to produce high quality coke, while the lower quality deasphalted oil is generally used to produce fuel grade coke.

    [0008] In an embodiment according to the presently claimed invention, a process tor producing high grade coke and fuel grade coke from residual oil is provided. The process comprises: passing the residual oil and a first paraffinic solvent having a carbon number Cn to a first solvent deasphalting unit to produce a high quality deasphalted oil (HQDAO) fraction and a first asphalt fraction, wherein n is from 3 to 7; passing the HQDAO fraction to a delayed coker to produce green coke; passing at least a portion of the first asphalt fraction and a second paraffinic solvent having a carbon number of 4 to 8 to a second solvent deasphalting unit to produce a low quality deasphalted oil (LQDAO) fraction and a second asphalt fraction, wherein the carbon number of the second paraffinic solvent is in accordance with at least Cn+1; and passing the LQDAO fraction to the delayed coker to produce the fuel grade coke.

    [0009] In accordance with another embodiment according to the claimed invention, a system for producing green coke and fuel grade coke from residual oil is provided. The system comprises first solvent deasphalting unit configured to produce a high quality deasphalted oil (HQDAO) fraction and a first asphalt fraction from the residual oil and a first paraffinic solvent having a carbon number Cn, wherein n is from 3 to 7; a second solvent deasphalting unit downstream of the first solvent deasphalting unit, the second solvent deasphalting unit being configured to produce a low quality deasphalted oil (LQDAO) fraction and a second asphalt fraction from the first asphalt fraction and a second paraffinic solvent having carbon number of 4 to 8, wherein the carbon number of the second paraffinic solvent is in accordance with at least Cn+1; and a delayed coker in fluid communication with the first solvent deasphalting unit and the second solvent deasphalting unit, wherein the delayed coker is configured to produce green coke from the HQDAO fraction and is configured to produce fuel coke from the LQDAO fraction.

    [0010] Additional features and advantages of the described embodiments will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the described embodiments, including the detailed description which follows, the claims, as well as the appended drawings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0011] 

    FIG. 1 is a schematic depiction of the multi-stage solvent deasphalting unit upstream of a delayed coker in accordance with one or more embodiments of the present disclosure.

    FIG. 2 is a schematic depiction of another embodiment where adsorbent bed columns are used to treat the HQDAO fraction upstream of the delayed coker.

    FIG. 3 is a schematic depiction of an embodiment where a hydrotreating reactor is used to treat the HQDAO fraction upstream of the delayed coker.

    FIG. 4 is a schematic depiction of an embodiment where dual hydrotreating reactors are used to treat both the HQDAO fraction and the LQDAO fraction upstream of the delayed coker.



    [0012] The embodiments set forth in the drawings are illustrative in nature and not intended to be limiting to the claims. Moreover, individual features of the drawings will be more fully apparent and understood in view of the detailed description.

    DETAILED DESCRIPTION



    [0013] Embodiments of the present disclosure are directed to systems and processes for producing high grade coke and fuel grade coke from residual oil.

    [0014] As used in the application, "residual oil" refers to the product of vacuum distillation or atmospheric distillation obtained in oil refineries. Atmospheric residue is defined as hydrocarbons boiling at a temperature of at least 350 °C and vacuum residue is defined as hydrocarbons boiling at a temperature of at least 450 °C.

    [0015] As used in the application, "anode coke", "fuel coke", and "needle coke" are defined by the ranges and properties provided in the following Table 1. As will be described further in the following examples, fuel grade coke, which generally has greater than 3.5 weight (wt) % of sulfur, and anode coke, which generally has less than 3.5 wt% sulfur, are often distinguished based on the sulfur content in the respective cokes.
    Table 1
    PropertyUnitsFuel CokeCalcined High Quality Anode CokeCalcined High Quality Needle Coke
    Bulk Density Kilograms per cubic meter (Kg/m3) 880 720-800 670-720
    Sulfur wt% 3.5-7.5 1.0-3.5 0.2-0.5
    Nitrogen Parts per million by weight (Ppmw) 6,000 - 50
    Nickel ppmw 500 200 7 max
    Vanadium ppmw 150 350 -
    Volatile Combustible Material wt% 12 0.5 0.5
    Ash Content wt% 0.35 0.40 0.1
    Moisture Content   8-12 0.3 0.1
    Hardgrove Grindability Index (HGI) wt% 35-70 60-100 -
    Coefficient of thermal expansion, E+7 °C - - 1-5


    [0016] As shown in FIG. 1 and discussed in subsequent sections, it is possible that the HQDAO fraction 122 is fed to the delayed coker separately from the LQDAO fraction 132. This alternating processing arrangement, which uses a dotted line for HQDAO fraction 122 to delineate the coke processing of the HQDAO fraction 122 and the LQDAO fraction 132, is further illustrated in the Examples. In one embodiment, the HQDAO fraction 122 is fed to the delayed coker followed by the LQDAO fraction 132; however, the reverse order is possible. In another embodiment not according to the claimed invention, it is contemplated that the HQDAO fraction 122 and the LQDAO fraction 132 may be combined into one feed for the delayed coker. While not shown, it is contemplated to have separate delayed cokers for processing the LQDAO fraction 132 and the HQDAO fraction 122.

    [0017] Referring to the embodiment of FIGS. 1-4, residual oil 102 and a first paraffinic solvent 104 having a carbon number Cn are passed to a first solvent deasphalting unit 120 to produce a high quality deasphalted oil (HQDAO) fraction 122 and a first asphalt fraction 124. Here, n is an integer from 3 to 7. The HQDAO fraction 122 may then be passed to a delayed coker 140 to produce green coke 143. As used in the application, "HQDAO fraction" refers to a deasphalted oil stream having lesser amounts sulfur and other metals, thereby making it suitable for the production of green coke, which may be calcined into high grade coke.

    [0018] Referring again to FIGS. 1-4, at least a portion of the first asphalt fraction 124 may be co-fed to a second solvent deasphalting unit 130 with a second paraffinic solvent 106 having a carbon number of Cn+1 to produce a low quality deasphalted oil (LQDAO) fraction 132 and a second asphalt fraction 134. The LQDAO fraction 132 may then be fed to the delayed coker to produce fuel grade coke 141. As used in the application, "LQDAO fraction" refers to a deasphalted oil stream having greater amounts of sulfur and other metals than the HQDAO fraction, thereby limiting its suitability in most embodiments solely to the production of lower quality fuel coke.

    [0019] The first paraffinic solvent and the second paraffinic solvent are used to separate asphalt from residual oil by precipitating the asphalts and recovering the deasphalted oil. The first paraffinic solvent 104 has a lower carbon number than the second paraffinic solvent 106, so it produces a lesser yield of deasphalted oil. However, the HQDAO fraction 122, which is a lesser yield, generally has lesser amounts of sulfur and other metals, such as nickel. Conversely, the second paraffinic solvent 106 has a higher carbon number than the first paraffinic solvent 104, which produces higher yields of deasphalted oil; however, this yield is lower quality and generally has greater amounts of sulfur and other metals. Said another way, the lower carbon number solvent (the first paraffinic solvent 104) rejects more of the residual oil feed as asphalt fraction as compared to the higher carbon number solvent (the second paraffinic solvent 106).

    [0020] Various solvents compositions are contemplated for the first paraffinic solvent 104 and the second paraffinic solvent 106. In accordance with the present invention, any suitable C3-C8 carbon solvent may be used for the first paraffinic solvent 104 and the second paraffinic solvent 106, with the condition that the second paraffinic solvent 106 have at least one more carbon than the first paraffinic solvent 104. While the following examples disclose single solvents for the first paraffinic solvent 104 and the second paraffinic solvent 106, solvent mixtures are contemplated for the first paraffinic solvent 104, the second paraffinic solvent 106, or combinations thereof. According to embodiments according to the invention, the first paraffinic solvent comprises C3-C7 paraffins, and the second paraffinic solvent comprise C4-C8 paraffins. In a specific embodiment, the first paraffinic solvent 104 comprises propane and the second paraffinic solvent 106 comprises pentane. Optionally, a small percentage of aromatics, for example 3-5% or 3-10% by volume, may be added to the first paraffinic solvent 104, the second paraffinic solvent 106, or both to recover more oil in the process. Aromatics dissolve more oil and asphalt and as a result more oil will be recovered in the solvent deasphalting step at a cost of deasphalted oil quality.

    [0021] Referring again to FIGS. 1-4, various processing parameters are considered suitable for the operation of the first solvent deasphalting unit 120. For example, the first solvent deasphalting unit 120 may operate at a temperature and a pressure less than the solvent critical pressure and temperature of the solvent. Additionally, the yield of HQDAO fraction 122 and first asphalt fraction 124 may be adjusted by varying the ratio of the first paraffinic solvent 104 to the residual oil 102. In one or more embodiments, the ratio by weight of the first paraffinic solvent 104 to the residual oil 102 is from 2 to 20, or from 5 to 10, or from 6 to 8.

    [0022] In another embodiment, the first solvent deasphalting unit 120 yields more first asphalt fraction 124 than HQDAO fraction 122. In further embodiments, the ratio by weight of the first asphalt fraction 124 to the HQDAO fraction 122 is at least 1 to 5, or from 1.1 to 2, or from 1.2 to 1.5. Moreover, other ratios are contemplated as suitable for additional embodiments of the present disclosure. Without being bound by theory and as stated previously, the HQDAO fraction 122 is a higher quality stream with less impurities, because the first solvent deasphalting unit 120 is more selective and rejects more of the residual oil 102 into the first asphalt fraction 124.

    [0023] Referring yet again to FIGS. 1-4, a portion 124a of the first asphalt fraction 124 may be fed to asphalt and coke utilization units 150 instead of the second solvent deasphalting unit 130. As used in the application, "asphalt and coke utilization units" encompasses units or components such as gasification reactor, asphalt pools, pyrolysis reactors, and combinations thereof. Additionally, "asphalt and coke utilization units" can also encompass a storage tank or container which stores the produced fuel grade coke 141.

    [0024] Referring yet again to FIGS. 1-4, the second solvent deasphalting unit 130, like the first solvent deasphalting unit 120, may also have various operating parameters. The second solvent deasphalting unit 130 may have similar pressure and temperature ranges as the previously disclosed pressure and temperature ranges of the first solvent deasphalting unit 120. Additionally, it is contemplated that the operating pressure and temperature of the second solvent deasphalting unit 130 may differ from the operating pressure and temperature of the first solvent deasphalting unit 120. Moreover, the ratio by weight of the second paraffinic solvent 106 to the first asphalt fraction is from 2 to 20, or from 5 to 10, or from 6 to 8. As shown in FIGS. 1-4, some residual oil 102 may optionally be fed to the second solvent deasphalting unit 130 in addition to the first asphalt fraction 124.

    [0025] In another embodiment, the second solvent deasphalting unit converts the first asphalt fraction 124 to yield the LQDAO fraction 132 and the second asphalt fraction 134, which is lesser by weight than the LQDAO fraction 132. In one or more embodiments, the ratio by weight of the LQDAO fraction 132 to the second asphalt fraction 134 is from 1.5 to 30, or from 2 to 25, or from 2.5 to 20. Moreover, other ratios are contemplated as suitable for additional embodiments of the present disclosure. Without being bound by theory and as stated previously, the LQDAO fraction 132 is a lesser quality stream with more impurities, because the second solvent deasphalting unit 130 is less selective and rejects less of the first asphalt fraction 124. Referring again to FIGS. 1-4, the second asphalt fraction 134 may undergo further asphalt utilization and conversion steps 150 as described previously.

    [0026] As shown in FIGS. 1-4, the delayed coker 140 may include at least two parallel drums 140A, 140B, which are operated in a swing mode. When one coke drum is full of coke, the feed is switched to a fresh empty drum, and the full drum is cooled. As shown, inlet valves 146 and outlet valves 148 may control flow in and out of the delayed coker 140. The coke remaining in the drums is typically cooled with water and then removed from the coke drum by conventional methods, for example, using hydraulic or mechanical techniques, or both, to dislodge the solid coke from the drum walls for recovery.

    [0027] As shown in FIG. 1, it is possible that the HQDAO fraction 122 is fed to the delayed coker separately from the LQDAO fraction 132. This alternating processing arrangement, which uses a dotted line for HQDAO fraction 122 to delineate the coke processing of the HQDAO fraction and the LQDAO fraction, is further illustrated in the Examples. In one embodiment, the HQDAO fraction 122 is fed to the delayed coker followed by the LQDAO fraction 132; however, the reverse order is possible. In another embodiment, it is contemplated that the HQDAO fraction 122 and the LQDAO fraction 132 may be combined into one feed for the delayed coker. While not shown, it is contemplated to have separate delayed cokers for processing the LQDAO fraction 132 and the HQDAO fraction 122.

    [0028] As shown in the embodiments of FIGS. 1-3, the delayed coker drums 140A, 140B may convert at least a portion of the HQDAO fraction 132 to green coke 143. The green coke 143 may be delivered to a calciner unit 160 to produce high grade coke 161, such as anode coke, needle coke, or combinations thereof. As will be discussed in subsequent sections and as depicted in the embodiment of FIG. 4, the LQDAO fraction 132 may, in some instances, have reduced levels of sulfur and other impurities, which enable it to be converted to high grade coke 161. However, in most embodiments, for example, the embodiments of FIGS. 1-3, the LQDAO fraction 132 will be converted into fuel grade coke 141, which is typically not calcined. Various operating parameters are considered suitable for the delayed coker 140. For example, the temperature may range from 440 to 530 °C, and the pressure may range from 1 to 5 kg/cm2.

    [0029] In addition to coke, the delayed coker drums 140A, 140B also discharge distillates and gases 142, which are produced during the delayed coking process. The distillate may include naphtha, light gas oil, and heavy gas oil. The light gases may include C1-C4 hydrocarbons, hydrogen sulfide, ammonia, and H2. While not shown, the light gases may be separated from the distillates in a flash unit downstream of the delayed coker, and the distillate components, for example, naphtha, light gas oil, and heavy gas oil, may be individually separated in a fractionator downstream of the flash unit.

    [0030] Referring now to the embodiments of FIGS. 2-4, the HQDAO fraction 122 may be further treated or purified upstream of the delayed coker 140. Various purification units are contemplated. Referring to FIG. 2, the HQDAO fraction 122 may be treated in one or more adsorption columns 170. The adsorption columns 170 may be utilized to further desulfurize and demetallize the HQDAO fraction 122 prior to coking in the delayed coker drums 140A, 140B. The adsorption columns 170 may include various adsorbent materials. These materials may be in packaged or slurry form and may include, but are not limited to, attapulgus clay, zeolites, alumina, silica gel, silica-titania, silica-alumina, titania, spent or regenerated catalysts from other refinery operations, as well as activated carbon. In further embodiments, the adsorption columns 170 may include one or more packed bed columns. Various operating parameters are suitable for the adsorption columns 170. For example, the pressure may be from 1 to 10 kg/cm2, or from 1 to 5 kg/cm2. In one or more embodiments, the temperature may be from 70 to 110 °C, or from 70 to 90 °C. Moreover, the liquid hourly space velocity (LHSV) within the adsorption columns 170 may vary from 0.5 to 5 hours-1 (h-1), or from 1 to 3 h-1.

    [0031] Referring again to FIG. 2, the adsorption columns 170 may produce a purified HQDAO fraction 172, which may then be fed to the delayed coker 140. Used adsorbent materials and adsorbed asphalt 174 typically undergo further asphalt utilization and conversion 150. This may include passing the used adsorbent materials and adsorbed asphalt 174 to an asphalt pool. Moreover, while FIG. 2 depicts the treatment of the HQDAO fraction 122, it is contemplated that the LQDAO fraction 132 may also be treated in adsorption columns 170.

    [0032] Referring to the embodiment of FIG. 3, a first hydrotreater 180 may remove sulfur, metals, and nitrogen from the HQDAO fraction 122 upstream of the delayed coker 140. The first hydrotreater 180 produces a hydrotreated HQDAO stream 184, which may then be fed to the delayed coker 140. Various hydrotreating processes and components are considered suitable, with extensive variation in the parameters being possible. That being said, when these hydrotreaters (also called hydrocracking units) are operated under high severity conditions, the cost of operating these units may be costly. Without being limited by theory, the present multi-stage solvent deasphalting process enables the hydrotreaters to run at lesser severity conditions which consequently are less costly. In one or more embodiments, the temperature may be from 300 to 450 °C, or from 340 to 400 °C, whereas the pressure may vary from 20 to 200 kg/cm2, or from 70 to 160 kg/cm2. The LHSV may be from 0.1 to 2 h-1, or from 0.25 to 0.75 h-1, and the ratio of hydrogen/HQDAO may be from 100 to 5000 standard liters per liter, or 100 to 1000 standard liters per liter. Moreover, the parameters may be varied based on the type of high grade coke desired. For example, if needle coke is the desired product, the first hydrotreater 180 may need to run at higher temperatures or pressures, because needle coke has higher purity requirements than anode coke.

    [0033] For example and not by way of limitation, the first hydrotreater 180 and the second hydrotreater 190, which is described in the following paragraphs, may include fixed bed reactors, ebullated-bed reactors, moving bed reactors, slurry bed reactors, or combinations thereof. In a fixed bed reactor, catalyst particles are stationary and do not move with respect to a fixed reference frame. Multiple fixed-bed reactors connected in series can be used to achieve a relatively high conversion of heavy feedstocks boiling at a cut point in the range of 300 to 500 °C. An ebullated-bed reactor includes concurrently flowing streams of liquids or slurries of liquids, solids and gas, through a vertically oriented cylindrical vessel containing catalyst. The catalyst is placed in motion in the liquid and has a gross volume dispersed through the liquid medium that is greater than the volume of the mass when stationary. In an ebullated-bed reactor, the catalyst is in an expanded bed, thereby countering plugging potential problems associated with fixed-bed reactors. The fluidized nature of the catalyst in an ebullated-bed reactor also allows for on-line catalyst replacement of a small portion of the bed. This results in a high net bed activity which does not vary with time. Moving-bed reactors combine certain advantages of fixed-bed operations and the relatively easy catalyst replacement of ebullated-bed technology.

    [0034] Catalysts employed in the first hydrotreater 180 and the second hydrotreater 190 may include components capable of facilitating the desired removal and conversion of contaminants in the HQDAO fraction 122. These catalysts may include supported active metal catalysts, where the active metals may include cobalt, nickel, tungsten, molybdenum or combinations thereof. The support material may be selected from the group consisting of alumina, silica-alumina, silica, and zeolites.

    [0035] Referring to the embodiment of FIG. 4, the second hydrotreater 190 may remove sulfur, metals, and nitrogen from the LQDAO fraction 132 upstream of the delayed coker 140. While the operating parameters for the second hydrotreater 190 may have similar ranges to the operating parameters of the first hydrotreater 180 described previously, it is contemplated that second hydrotreater 190 may operate at a different severity than the first hydrotreater 180. For example, as the second hydrotreater 190 is purifying a less pure stream, the LQDAO fraction 132, than the first hydrotreater 180, the pressure or temperature may need to be adjusted to higher levels within the disclosed temperature and pressure ranges to account for the increased impurity level of the LQDAO fraction 132.

    [0036] In the embodiment of FIG. 4, the second hydrotreater 190, which receives at least one hydrogen feed 192, may purify the LQDAO fraction 132 to produce a hydrotreated LQDAO fraction 194, which may undergo delayed coking to produce green coke 141 suitable for calcination into high grade coke 161.

    EXAMPLES



    [0037] One or more of the previously described features will be further illustrated in the following example simulations. Table 2 lists the definitions of the stream abbreviations in Tables 3-18.
    Table 2
    Stream AbbreviationsStream Definition
    C3-HQDAO High quality deasphalted oil derived from propane solvent deasphalting
    C3-Asphalt Asphalt derived from propane solvent deasphalting
    C5-LQDAO Low quality deasphalted oil derived from pentane solvent deasphalting
    C5-Asphalt Asphalt derived from pentane solvent deasphalting
    MCR Micro-Carbon residue
    Desulf. HQDAO High quality deasphalted oil desulfurized in an adsorption column.
    Hted HQDAO Hydrotreated high quality deasphalted oil
    Hted LQDAO Hydrotreated low quality deasphalted oil

    Example 1



    [0038] Referring to FIG. 1, the Example 1 simulation was performed using residual oil derived from heavy crude oil with properties defined in Table 4. The feed of the residual oil 102 in Example 1 and all subsequent examples was 1000 kg, and the feed of the first paraffinic solvent 104 in Example 1 and all subsequent examples was 7000 kg, thereby achieving a solvent to oil ratio of 7. The operating parameters for the first solvent deasphalting unit 120, the second solvent deasphalting unit 130, and the delayed coker 140 are provided in Table 3, and the material balance properties for the streams are provided in Table 4. As shown, the HQDAO fraction 122 and the LQDAO fraction 132 are processed separately in the delayed coker 140. As shown, neither the HQDAO fraction 122 nor the LQDAO fraction 132 can produce high quality coke. All of the coke produced is fuel coke, because residual oil derived from heavy crude oil is more challenging to purify to high quality coke specifications.
    Table 3 - Operating Conditions
    Operating ConditionsFirst Solvent Deasphalting Unit (120)Second Solvent Deasphalting Unit (130)Delayed Coker (140)
    Temperature (°C) 70 170 490
    Pressure (Kg/cm2) 40 30 3
    Solvent Feed (kg) 7000 kg Propane 3850 kg Pentane NA
    Solvent /Oil Ratio 7 7 NA
    Table 4- Material Balance for HQDAO Processing
    Stream#102122124132134142141
    Stream Name Residual Oil C3-HQDAO C3-Asphalt C5-LQDAO C5-Asphalt Distillates + Gas Fuel Grade Coke
    Feed/ Product Rate (Kg) 1000.0 450.0 550.0 407.0 143.0 437.8 (413.9 + 23.8) 12.2
    Density (Kg/L) 1.003 0.933 1.060 1.019 1.181    
    API Gr. (°) 9.6 20.2 2.0 7.4 -11.7    
    Sulfur (wt%) 4.05 2.55 5.28 4.86 6.51   3.83
    Nitrogen (Ppmw) 2900 1200 4291 3298 7200    
    MCR (wt%) 16.4 1.7 28.4 14.7 68.6    
    Nickel (Ppmw) 19 1 34 14 93   37
    Vanadium (Ppmw) 61 1 110 32 337   51

    Example 2



    [0039] Referring again to FIG. 1, the Example 2 simulation was performed using residual oil derived from light crude oil. The operating parameters for the first solvent deasphalting unit 120, the second solvent deasphalting unit 130, and the delayed coker 140 are provided in Table 5. The properties of the residual oil are provided in Table 6, and the material balance properties for the simulation streams are provided in Tables 6 and 7. As shown in the data of Table 6, the HQDAO fraction 122 is processed separately in the delayed coker 140. Table 7 shows the combined yield of the HQDAO fraction 122 and the LQDAO fraction 132 after being processed in the delayed coker 140. In contrast to Example 1, the HQDAO fraction 122 yielded high quality anode coke, while the LQDAO fraction 132 produced fuel grade coke. Without being limited to theory, the residual oil derived from light crude oil in Example 2 is easier to purify in the multi-stage solvent deasphalting depicted in FIG. 1 than the residual oil derived from heavy crude oil of Example 1.
    Table 5 - Operating Conditions
    Operating ConditionsFirst Solvent Deasphalting Unit (120)Second Solvent Deasphalting Unit (130)Delayed Coker (140)
    Temperature (°C) 70 170 490
    Pressure (Kg/cm2) 40 30 3
    Solvent Feed (kg) 7000 kg Propane 3,220 kg Pentane NA
    Solvent /Oil Ratio 7 7 NA
    Table 6 - Material Balance for HQDAO Processing
    Stream#102122124132134142161
    Stream NameResidual OilC3-HQDAOC3-AsphaltC5-LQDAOC5-AsphaltDistillates + GasAnode Grade Coke
    Feed / Product Rate (Kg) 1,000.0 540.0 460.0 391.0 69.0 527.5 (496.2 + 31.3) 12.5
    Density (Kg/L) 1.0 0.9 1.1 1.0 1.1    
    API Gravity (°) 12.6 21.6 3.3 5.3 -7.5    
    Sulfur (wt%) 3.0 1.8 4.5 4.3 5.4   2.7
    Nitrogen (Ppmw) 3,200.0 800.0 6,017.4 2,708.0 24,457.0   0.0
    MCR (wt%) 12.9 2.0 25.7 18.7 64.7    
    Nickel (Ppmw) 17.0 1.0 35.8 18.0 137.0   29.6
    Vanadium (Ppmw) 26.0 1.0 55.3 20.0 252.0   32.9
    Table 7 - Material Balance for HQDAO and LQDAO processing
    Stream#102122124132134142141
    Stream NameResidual OilC3-HQDAOC3- AsphaltC5-LQDAOC5-AsphaltDistillates + GasFuel Grade Coke
    Feed / Product Rate (Kg) 1,000.0 540.0 460.0 391.0 69.0 891.2 (871.6 +19.6) 39.8
    Density (Kg/L) 1.0 0.9 1.1 1.0 1.1    
    API Gr. (°) 12.6 21.6 3.3 5.3 -7.5    
    Sulfur (wt%) 3.0 1.8 4.5 4.3 5.4   4.3
    Nitrogen (Ppmw) 3,200.0 800.0 6,017.4 2,708.0 24,457.0    
    MCR (wt%) 12.9 2.0 25.7 18.7 64.7    
    Nickel (Ppmw) 17.0 1.0 35.8 18.0 137.0   53.5
    Vanadium (Ppmw) 26.0 1.0 55.3 20.0 252.0   59.4

    Example 3



    [0040] Referring again to FIG. 1, the Example 3 simulation was performed using residual oil derived from light crude oil (65% by volume) and heavy crude oil (35% by volume) with properties defined in Table 9. The operating parameters for the first solvent deasphalting unit 120, the second solvent deasphalting unit 130, and the delayed coker 140 are provided in Table 9, and the material balance properties for the streams are provided in Table 9. As shown in the date of Table 9, the HQDAO fraction 122 and the LQDAO fraction 132 are combined and processed together in the delayed coker 140 to produce anode coke 161.
    Table 8- Operating Conditions
    Operating ConditionsFirst Solvent Deasphalting Unit (120)Second Solvent Deasphalting Unit (130)Delayed Coker (140)
    Temperature (°C) 70 170 490
    Pressure (Kg/cm2) 40 30 3
    Solvent Feed (kg) 7000 kg Propane 3,220 kg Pentane NA
    Solvent /Oil Ratio 7 7 NA
    Table 9 - Material Balance for HQDAO and LQDAO processing
    Stream#102122124132134142161
    Stream NameResidual OilC3-HQDAOC3-AsphaltC5-LQDAOC5-AsphaltDistillates + GasAnode Grade Coke
    Feed / Product Rate (Kg) 1,000.0 540.0 460.0 391.0 69.0 899.9 31.1
    Density (Kg/L) 1.0 0.9 1.1 1.0 1.1    
    API Gravity (°) 12.6 21.6 3.3 5.3 -7.5    
    Sulfur (wt%) 2.5 1.5 3.4 3.2 4.2   3.3
    Nitrogen (Ppmw) 2,135.0 700.0 3,607.9 2,102.1 11,080.0    
    MCR (wt%) 10.3 1.3 18.9 11.7 46.7    
    Nickel (Ppmw) 12.6 0.7 24.3 11.2 80.5   43.0
    Vanadium (Ppmw) 30.5 0.8 57.8 18.2 206.2   69.9

    Example 4



    [0041] Referring to FIG. 2, the Example 4 simulation was performed using residual oil derived from heavy crude oil with properties defined in Table 11. The operating parameters for the first solvent deasphalting unit 120, the second solvent deasphalting unit 130, the adsorption column 170, and the delayed coker 140 are provided in Table 10, and the material balance properties for the streams are provided in Tables 11 and 12. The adsorption column 170 included attapulgus clay having a surface area of 108 square meters per gram (m2/g) and a pore volume of 0.392 cubic centimeters per gram (cm3/g). As shown in the data of Tables 11 and 12, the HQDAO fraction 122 and the LQDAO fraction 132 are processed separately in the delayed coker 140. The HQDAO fraction 122 yielded high quality anode coke, while the LQDAO fraction 132 produced fuel grade coke. In comparison to Example 1, the inclusion of the adsorption column 170 provided additional purification to the HQDAO fraction 122 to eventually yield anode coke 161, whereas the Example 1 simulation did not yield anode coke with the same residual oil derived from heavy crude oil.
    Table 10- Operating Conditions
    Operating ConditionsFirst Solvent Deasphalting Unit (120)Second Solvent Deasphalting Unit (130)Adsorption Column (170)Delayed Coker (140)
    Temperature (°C) 70 170 80 490
    Pressure (Kg/cm2) 40 30 3 3
    LHSV (h-1) NA NA 1 NA
    Solvent Feed (kg) 7,000 kg Propane 3,850 kg Pentane NA NA
    Solvent /Oil Ratio 7 7 NA NA
    Table 11 - Material Balance for HQDAO processing
    Stream#102122124132134172142161
    Stream Name Residual Oil C3-HQDAO C3-Asphalt C5-LQDAO C5-Asphalt Desulf. HQDAO Distillates + Gas Anode Grade Coke
    Feed / Product Rate (Kg) 1000.0 450.0 550.0 407.0 143.0 360.0 355.1 4.9
    Density (Kg/L) 1.003 0.933 1.060 1.019 1.181 0.905    
    API Gravity (°) 9.6 20.2 2.0 7.4 -11.7      
    Sulfur (wt%) 4.1 2.6 5.3 4.9 6.5 1.8   2.7
    Nitrogen (Ppmw) 2900 1200 4291 3298 7200 240    
    MCR (wt%) 16.4 1.7 28.4 14.7 68.6 0.9    
    Nickel (Ppmw) 19 1 34 14 93 0   7
    Vanadium (Ppmw) 61 1 110 32 337 0   10
    Table 12 - Material Balance for LQDAO processing
    Stream#102122124132134172142141
    Stream Name Residual Oil HQDAO C3-Asphalt LQDAO C5-Asphalt Desulf. HQDAO Distillates Fuel Grade Coke
    Feed / Product Rate (Kg) 1000.0 450.0 550.0 407.0 143.0 360.0 311.3 95.7
    Density (Kg/L) 1.003 0.933 1.060 1.019 1.181 0.905    
    API Gravity (°) 9.6 20.2 2.0 7.4 -11.7      
    Sulfur (wt%) 4.1 2.6 5.3 4.9 6.5 1.8   7.3
    Nitrogen (Ppmw) 2900 1200 4291 3298 7200 240    
    MCR (wt%) 16.4 1.7 28.4 14.7 68.6 0.9    
    Nickel (Ppmw) 19 1 34 14 93 0   81
    Vanadium (Ppmw) 61 1 110 32 337 0   114

    Example 5



    [0042] Referring to FIG. 3, the Example 5 simulation was performed using residual oil derived from heavy crude oil with properties defined in Table 14. The operating parameters for the first solvent deasphalting unit 120, the second solvent deasphalting unit 130, the first hydrotreater 180, and the delayed coker 140 are provided in Table 13, and the material balance properties for the streams are provided in Tables 14 and 15. As shown in the data of Tables 14 and 15, the HQDAO fraction 122 and the LQDAO fraction 132 are processed separately in the delayed coker 140. The HQDAO fraction 122 yielded high quality anode coke, while the LQDAO fraction 132 produced fuel grade coke. In comparison to Example 1, the inclusion of the first hydrotreater 180 provided additional purification to the HQDAO fraction 122 to eventually yield anode coke 161, whereas the Example 1 simulation did not yield anode coke with the same residual oil derived from heavy crude oil.
    Table 13- Operating Conditions
    Operating ConditionsFirst Solvent Deasphalting Unit (120)Second Solvent Deasphalting Unit (130)First Hydrotreater (180)Delayed Coker (140)
    Temperature (°C) 70 170 380 490
    Pressure (Kg/cm2) 40 30 115 3
    LHSV (h-1) NA NA 0.435 NA
    H2/Oil Ratio NA NA 300 NA
    Solvent Feed (kg) 7,000 kg Propane 3,850 kg Pentane NA NA
    Solvent /Oil Ratio 7 7 NA NA
    Table 14 - Material Balance for HQDAO processing
    Stream#102122124132134182184142161
    Stream Name Residual Oil C3-HQDAO C3-Asphalt C5-LQDAO C5-Asphalt H2 Hted HQDAO Distillates + Gas Anode Grade Coke
    Feed / Product Rate (Kg) 1000.0 450.0 550.0 407.0 143.0 7.2 456.8 446.9 (404.2 + 42.7) 9.9
    Density (Kg/L) 1.003 0.933 1.060 1.019 1.181        
    API Gravity (°) 9.6 20.2 2.0 7.4 -11.7        
    Sulfur (wt%) 4.1 2.6 5.3 4.9 6.5   1.4   3.4
    Nitrogen (Ppmw) 2900 1200 4291 3298 7200   360    
    MCR (wt%) 16.4 1.7 28.4 14.7 68.6   1.4    
    Nickel (Ppmw) 19 1 34 14 93       38
    Vanadium (Ppmw) 61 1 110 32 337       54
    Table 15 - Material Balance for LQDAO processing
    Stream#102122124132134142141
    Stream Name Residual Oil C3-HQDAO C3-Asphalt C5-LQDAO C5-Asphalt Distillates + Gas Fuel Grade Coke
    Feed / 1000.0 450.0 550.0 407.0 143.0 311.3 95.7
    Stream Name Residual Oil C3-HQDAO C3-Asphalt C5-LQDAO C5-Asphalt Distillates + Gas Fuel Grade Coke
    Product Rate (Kg)              
    Density (Kg/L) 1.003 0.933 1.060 1.019 1.181    
    API Gravity (°) 9.6 20.2 2.0 7.4 -11.7    
    Sulfur (wt%) 4.1 2.6 5.3 4.9 6.5   7.3
    Nitrogen (Ppmw) 2900 1200 4291 3298 7200    
    MCR (wt%) 16.4 1.7 28.4 14.7 68.6    
    Nickel (Ppmw) 19 1 34 14 93   81
    Vanadium (Ppmw) 61 1 110 32 337   114

    Example 6



    [0043] Referring to FIG. 4, the Example 6 simulation was performed using residual oil derived from heavy crude oil with properties defined in Table 17. The operating parameters for the first solvent deasphalting unit 120, the second solvent deasphalting unit 130, the first hydrotreater 180, the second hydrotreater 190, and the delayed coker 140 are provided in Table 16, and the material balance properties for the streams are provided in Table 17. As shown in Table 17, the HQDAO fraction 122 and the LQDAO fraction 132 are combined and processed together in the delayed coker 140. Both the HQDAO fraction 122 and the LQDAO fraction 132 yielded high quality anode coke.
    Table 16- Operating Conditions
    Operating ConditionsFirst Solvent Deasphalting Unit (120)Second Solvent Deasphalting Unit (130)First Hydrotreater (180)Second Hydrotreater (190)Delayed Coker (140)
    Temperature (°C) 70 170 380 380 490
    Pressure (Kg/cm2) 40 30 115 150 3
    LHSV (lr') NA NA 0.435 0.435 NA
    H2/Oil Ratio NA NA 300 300 NA
    Solvent Feed (kg) 7,000 kg Propane 3,850 kg Pentane NA NA NA
    Solvent /Oil Ratio 7 7 NA NA NA
    Table 17 - Material Balance for HQDAO processing
    Stream#102122124132134182184142161192194 
    Stream Name Residual Oil C3-HQDAO C3-Asphalt C5-LQDAO C5-Asphalt H2 Hted HQDAO Distillates + Gas Anode Grade Coke H2 Hted LQDAO Comb. Hted DAO
    Feed / Product Rate (Kg) 1000 450.0 550.0 407.0 143.0 7.2 456.8 784.6 (708.5 + 76.1) 88.9 7.4 416.7 873.5
    Density (Kg/L) 1.003 0.933 1.060 1.019 1.181              
    API Gravity (°) 9.6 20.2 2.0 7.4 -11.7              
    Sulfur (wt%) 4.1 2.6 5.3 4.9 6.5   1.3   2.7   2.4 1.8
    Nitrogen (Ppmw) 2900 1200 4291 3298 7200   360       989 660
    MCR (wt%) 16.4 1.7 28.4 14.7 68.6   1.4       11.8 6.3
    Nickel (Ppmw) 19 1 34 14 93   1   72   11 6
    Vanadium (Ppmw) 61 1 110 32 337   1   101   24 12


    [0044] The following table further elaborates on the value for the HtedHQDAO and HtedLQDAO streams of Table 17.
    Table 18
    YieldHtedHQDAOHtedLQDAOTotal
    Anode Grade Coke (161) 10.2 78.7 88.9
    Gas in Stream (142) 36.6 39.6 76.1
    Distillate in Stream (142) 410.0 298.4 708.5
    Total 456.8 416.7 873.5


    [0045] It should now be understood that the various aspects of the process for producing green coke and fuel grade coke from residual oil and the system for producing the same are described and such aspects may be utilized in conjunction with various other aspects. The scope of the invention is defined by the appended claims.

    [0046] Throughout this disclosure ranges are provided. It is envisioned that each discrete value encompassed by the ranges are also included. Additionally, the ranges which may be formed by each discrete value encompassed by the explicitly disclosed ranges are equally envisioned.


    Claims

    1. A process for producing green coke and fuel grade coke from residual oil comprising:

    introducing the residual oil and a first paraffinic solvent having a carbon number Cn to a first solvent deasphalting unit to produce a high quality deasphalted oil (HQDAO) fraction and a first asphalt fraction, wherein n is from 3 to 7;

    passing the HQDAO fraction to a delayed coker to produce green coke;

    passing at least a portion of the first asphalt fraction and a second paraffinic solvent having a carbon number of 4 to 8 to a second solvent deasphalting unit to produce a low quality deasphalted oil (LQDAO) fraction and a second asphalt fraction, wherein the carbon number of the second paraffinic solvent is in accordance with at least Cn+1; and

    passing the LQDAO fraction to the delayed coker to produce the fuel grade coke.


     
    2. The process of claim 1, wherein the HQDAO fraction is passed to the delayed coker and produces green coke during a first period, and the LQDAO fraction is passed to the delayed coker and produce fuel grade coke during a second period, wherein the first period occurs before the second period, or the first period occurs after the second period.
     
    3. The process of claim 1, wherein the HQDAO fraction and the LQDAO fraction is passed to the delayed coker simultaneously.
     
    4. The process of any preceding claim further comprising calcining the green coke to produce anode coke, needle coke, or combinations thereof.
     
    5. The process of any preceding claim further comprising subjecting the second asphalt fraction to further asphalt utilization and conversion steps.
     
    6. The process of any preceding claim further comprising subjecting the first asphalt fraction to further asphalt utilization and conversion steps.
     
    7. The process of any preceding claim where the delayed coker comprises dual delayed coking drums.
     
    8. The process of any preceding claim, further comprising passing the HQDAO fraction to an adsorption column prior to passing the HQDAO fraction to the delayed coker, preferably where the adsorption column is a packed column.
     
    9. The process of claim 8, where the adsorption column includes two columns.
     
    10. The process of any preceding claim, further comprising passing the HQDAO fraction to a first hydrotreater prior to passing the HQDAO fraction to the delayed coker, and/or passing the LQDAO fraction to a second hydrotreater prior to passing the LQDAO fraction to the delayed coker.
     
    11. The process of any preceding claim, where the first paraffinic solvent comprises propane and the second paraffinic solvent comprising pentane.
     
    12. The process of any preceding claim, where the ratio of the first paraffinic solvent to the residual oil is from 2 to 20, and preferably where the ratio of the first paraffinic solvent to the residual oil is from 5 to 10.
     
    13. A system for producing green coke and fuel grade coke from residual oil comprising:

    a first solvent deasphalting unit configured to produce a high quality deasphalted oil (HQDAO) fraction and a first asphalt fraction from the residual oil and a first paraffinic solvent having a carbon number Cn, wherein n is from 3 to 7;

    a second solvent deasphalting unit downstream of the first solvent deasphalting unit, the second solvent deasphalting unit being configured to produce a low quality deasphalted oil (LQDAO) fraction and a second asphalt fraction from the first asphalt fraction and a second paraffinic solvent having carbon number of 4 to 8, wherein the carbon number of the second paraffinic solvent is in accordance with at least Cn+1; and

    a delayed coker in fluid communication with the first solvent deasphalting unit and the second solvent deasphalting unit, wherein the delayed coker is configured to produce green coke from the HQDAO fraction and is configured to produce fuel coke from the LQDAO fraction.


     
    14. The system of claim 13 further comprising an adsorption column disposed downstream of the first solvent deasphalting unit and upstream of the delayed coker, preferably where the adsorption column comprises at least one packed column.
     
    15. The system of claims 13 or 14 further comprising:

    a first hydrotreater disposed downstream of the first solvent deasphalting unit and upstream of the delayed coker, and/or

    a second hydrotreater disposed downstream of the second solvent deasphalting unit and upstream of the delayed coker.


     


    Ansprüche

    1. Verfahren zur Herstellung von Grünkoks und Koks in Brennstoffqualität aus Restöl, umfassend:

    Einbringen des Restöls und eines ersten paraffinischen Lösungsmittels mit einer Kohlenstoffzahl Cn in eine erste Einheit zur Deasphaltierung auf Lösungsmittelbasis zur Herstellung einer Fraktion hochqualitativen deasphaltierten Öls (HQDAO) und einer ersten Asphaltfraktion, wobei n 3 bis 7 beträgt;

    Leiten der HQDAO-Fraktion zu einem Delayed Coker zur Herstellung von Grünkoks;

    Leiten von mindestens einem Teil der ersten Asphaltfraktion und einem zweiten paraffinischen Lösungsmittel mit einer Kohlenstoffzahl von 4 bis 8 zu einer zweiten Einheit zur Deasphaltierung auf Lösungsmittelbasis zur Herstellung einer Fraktion niederqualitativen deasphaltierten Öls (LQDAO) und einer zweiten Asphaltfraktion, wobei die Kohlenstoffzahl des zweiten paraffinischen Lösungsmittels mindestens Cn+1 entspricht und

    Leiten der LQDAO-Fraktion zu dem Delayed Coker zur Herstellung von Koks in Brennstoffqualität.


     
    2. Verfahren nach Anspruch 1, wobei die HQDAO-Fraktion während eines ersten Zeitraums zu dem Delayed Coker geleitet wird und Grünkoks produziert und die LQDAO-Fraktion während eines zweiten Zeitraums zu dem Delayed Coker geleitet wird und Koks in Brennstoffqualität produziert, wobei der erste Zeitraum vor dem zweiten Zeitraum erfolgt oder der erste Zeitraum nach dem zweiten Zeitraum erfolgt.
     
    3. Verfahren nach Anspruch 1, wobei man die HQDAO-Fraktion und die LQDAO-Fraktion gleichzeitig zu dem Delayed Coker leitet.
     
    4. Verfahren nach einem der vorhergehenden Ansprüche, bei dem man das Grünkoks ferner zur Herstellung von Anodenkoks, Nadelkoks oder Kombinationen davon calciniert.
     
    5. Verfahren nach einem der vorhergehenden Ansprüche, bei dem man die zweite Asphaltfraktion ferner weiteren Asphaltverwertungs- und -umwandlungsschritten unterwirft.
     
    6. Verfahren nach einem der vorhergehenden Ansprüche, bei dem man die erste Asphaltfraktion ferner weiteren Asphaltverwertungs- und -umwandlungsschritten unterwirft.
     
    7. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Delayed Coker zweifach Delayed-Verkokungstrommeln umfasst.
     
    8. Verfahren nach einem der vorhergehenden Ansprüche, bei dem man ferner die HQDAO-Fraktion vor dem Leiten der HQDAO-Fraktion zu dem Delayed Coker zu einer Adsorptionskolonne leitet, wobei es sich bei der Adsorptionskolonne vorzugsweise um eine gepackte Kolonne handelt.
     
    9. Verfahren nach Anspruch 8, wobei die Adsorptionskolonne zwei Kolonnen einschließt.
     
    10. Verfahren nach einem der vorhergehenden Ansprüche, bei dem man ferner die HQDAO-Fraktion vor dem Leiten der HQDAO-Fraktion zu dem Delayed Coker zu einem ersten Hydrotreater leitet und/oder die LQDAO-Fraktion vor dem Leiten der LQDAO-Fraktion zu dem Delayed Coker zu einem zweiten Hydrotreater leitet.
     
    11. Verfahren nach einem der vorhergehenden Ansprüche, wobei das erste paraffinische Lösungsmittel Propan umfasst und das zweite paraffinische Lösungsmittel Pentan umfasst.
     
    12. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Verhältnis von dem ersten paraffinischen Lösungsmittel zu dem Restöl 2 bis 20 beträgt und wobei das Verhältnis von dem ersten paraffinischen Lösungsmittel zu dem Restöl vorzugsweise 5 bis 10 beträgt.
     
    13. System zur Herstellung von Grünkoks und Koks in Brennstoffqualität aus Restöl, umfassend:

    eine erste Einheit zur Deasphaltierung auf Lösungsmittelbasis, ausgelegt zur Herstellung einer Fraktion hochqualitativen deasphaltierten Öls (HQDAO) und einer ersten Asphaltfraktion aus dem Restöl, und ein erstes paraffinisches Lösungsmittel mit einer Kohlenstoffzahl Cn, wobei n 3 bis 7 beträgt;

    eine der ersten Einheit zur Deasphaltierung auf Lösungsmittelbasis nachgeschaltete zweite Einheit zur Deasphaltierung auf Lösungsmittelbasis, wobei die zweite Einheit zur Deasphaltierung auf Lösungsmittelbasis zur Herstellung einer Fraktion niederqualitativen deasphaltierten Öls (LQDAO) und einer zweiten Asphaltfraktion aus der ersten Asphaltfraktion ausgelegt ist, und ein zweites paraffinisches Lösungsmittel mit einer Kohlenstoffzahl von 4 bis 8, wobei die Kohlenstoffzahl des zweiten paraffinischen Lösungsmittels mindestens Cn+1 entspricht, und

    einen Delayed Coker, der mit der ersten Einheit zur Deasphaltierung auf Lösungsmittelbasis und der zweiten Einheit zur Deasphaltierung auf Lösungsmittelbasis in Fluidverbindung steht, wobei der Delayed Coker zur Herstellung von Grünkoks aus der HQDAO-Fraktion ausgelegt ist und zur Herstellung von Koks in Brennstoffqualität aus der LQDAO-Fraktion ausgelegt ist.


     
    14. System nach Anspruch 13, ferner umfassend eine der ersten Einheit zur Deasphaltierung auf Lösungsmittelbasis nachgeschaltete und dem Delayed Coker vorgeschaltete Adsorptionskolonne, wobei die Adsorptionskolonne vorzugsweise mindestens eine gepackte Kolonne umfasst.
     
    15. System nach Anspruch 13 oder 14, ferner umfassend: einen der ersten Einheit zur Deasphaltierung auf Lösungsmittelbasis nachgeschalteten und dem Delayed Coker vorgeschalteten ersten Hydrotreater und/oder einen der zweiten Einheit zur Deasphaltierung auf Lösungsmittelbasis nachgeschalteten und dem Delayed Coker vorgeschalteten zweiten Hydrotreater.
     


    Revendications

    1. Procédé de production de coke vert et de coke de qualité combustible à partir d'huile résiduelle comprenant :

    l'introduction de l'huile résiduelle et d'un premier solvant paraffinique ayant un nombre de carbones Cn dans une première unité de désasphaltage au solvant pour produire une fraction d'huile désasphaltée de haute qualité (HQDAO) et une première fraction d'asphalte, n valant 3 à 7 ;

    le passage de la fraction de HQDAO à une unité de cokéfaction retardée pour produire du coke vert ;

    le passage d'au moins une partie de la première fraction d'asphalte et d'un deuxième solvant paraffinique ayant un nombre de carbones de 4 à 8 à une deuxième unité de désasphaltage au solvant pour produire une fraction d'huile désasphaltée de basse qualité (LQDAO) et une deuxième fraction d'asphalte, le nombre de carbones du deuxième solvant paraffinique répondant à au moins Cn+1 ; et

    le passage de la fraction de LQDAO à l'unité de cokéfaction retardée pour produire le coke de qualité combustible.


     
    2. Procédé de la revendication 1, dans lequel la fraction de HQDAO est passée à l'unité de cokéfaction retardée et produit du coke vert pendant une première période, et la fraction de LQDAO est passée à l'unité de cokéfaction retardée et produit du coke de qualité combustible pendant une deuxième période, la première période se déroulant avant la deuxième période, ou la première période se déroulant après la deuxième période.
     
    3. Procédé de la revendication 1, dans lequel la fraction de HQDAO et la fraction de LQDAO sont passées simultanément à l'unité de cokéfaction retardée.
     
    4. Procédé d'une quelconque revendication précédente comprenant en outre la calcination du coke vert pour produire du coke d'anode, du coke en aiguilles, ou des combinaisons de ceux-ci.
     
    5. Procédé d'une quelconque revendication précédente comprenant en outre la soumission de la deuxième fraction d'asphalte à des étapes supplémentaires d'utilisation et de conversion d'asphalte.
     
    6. Procédé d'une quelconque revendication précédente comprenant en outre la soumission de la première fraction d'asphalte à des étapes supplémentaires d'utilisation et de conversion d'asphalte.
     
    7. Procédé d'une quelconque revendication précédente dans lequel l'unité de cokéfaction retardée comprend des doubles tambours de cokéfaction retardée.
     
    8. Procédé d'une quelconque revendication précédente, comprenant en outre le passage de la fraction de HQDAO à une colonne d'adsorption avant le passage de la fraction de HQDAO à l'unité de cokéfaction retardée, la colonne d'adsorption étant de préférence une colonne garnie.
     
    9. Procédé de la revendication 8, dans lequel la colonne d'adsorption comporte deux colonnes.
     
    10. Procédé d'une quelconque revendication précédente, comprenant en outre le passage de la fraction de HQDAO à une première unité d'hydrotraitement avant le passage de la fraction de HQDAO à l'unité de cokéfaction retardée, et/ou le passage de la fraction de LQDAO à une deuxième unité d'hydrotraitement avant le passage de la fraction de LQDAO à l'unité de cokéfaction retardée.
     
    11. Procédé d'une quelconque revendication précédente, dans lequel le premier solvant paraffinique comprend du propane et le deuxième solvant paraffinique comprend du pentane.
     
    12. Procédé d'une quelconque revendication précédente, dans lequel le rapport entre le premier solvant paraffinique et l'huile résiduelle est de 2 à 20, et de préférence dans lequel le rapport entre le premier solvant paraffinique et l'huile résiduelle est de 5 à 10.
     
    13. Système destiné à produire du coke vert et du coke de qualité combustible à partir d'huile résiduelle comprenant :

    une première unité de désasphaltage au solvant configurée pour produire une fraction d'huile désasphaltée de haute qualité (HQDAO) et une première fraction d'asphalte à partir de l'huile résiduelle et d'un premier solvant paraffinique ayant un nombre de carbones Cn, n valant 3 à 7 ;

    une deuxième unité de désasphaltage au solvant en aval de la première unité de désasphaltage au solvant, la deuxième unité de désasphaltage au solvant étant configurée pour produire une fraction d'huile désasphaltée de basse qualité (LQDAO) et une deuxième fraction d'asphalte à partir de la première fraction d'asphalte et d'un deuxième solvant paraffinique ayant un nombre de carbones de 4 à 8, le nombre de carbones du deuxième solvant paraffinique répondant à au moins Cn+1 ; et

    une unité de cokéfaction retardée en communication fluidique avec la première unité de désasphaltage au solvant et la deuxième unité de désasphaltage au solvant, l'unité de cokéfaction retardée étant configurée pour produire du coke vert à partir de la fraction de HQDAO et étant configurée pour produire du coke combustible à partir de la fraction de LQDAO.


     
    14. Système de la revendication 13 comprenant en outre une colonne d'adsorption disposée en aval de la première unité de désasphaltage au solvant et en amont de l'unité de cokéfaction retardée, la colonne d'adsorption comprenant de préférence au moins une colonne garnie.
     
    15. Système de la revendication 13 ou 14 comprenant en outre :

    une première unité d'hydrotraitement disposée en aval de la première unité de désasphaltage au solvant et en amont de l'unité de cokéfaction retardée, et/ou

    une deuxième unité d'hydrotraitement disposée en aval de la deuxième unité de désasphaltage au solvant et en amont de l'unité de cokéfaction retardée.


     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description