(19)
(11)EP 3 450 685 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.04.2020 Bulletin 2020/18

(21)Application number: 18173003.7

(22)Date of filing:  17.05.2018
(51)International Patent Classification (IPC): 
F01D 5/18(2006.01)
F01D 11/00(2006.01)
F01D 9/04(2006.01)

(54)

GAS TURBINE ENGINE COMPONENT

GASTURBINENMOTORKOMPONENTE

COMPOSANT DE MOTEUR À TURBINE À GAZ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 02.08.2017 US 201762540285 P

(43)Date of publication of application:
06.03.2019 Bulletin 2019/10

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventors:
  • SPANGLER, Brandon W.
    Vernon, CT 06066 (US)
  • PAULINO, Jose R.
    Saco, ME 04072 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A1- 2 927 430
WO-A1-02/092970
EP-A1- 3 192 971
DE-A1-102006 004 437
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] A gas turbine engine typically includes a fan section, a compressor section, a combustor section, and a turbine section. Air entering the compressor section is compressed and delivered into the combustion section where it is mixed with fuel and ignited to generate a high-speed exhaust gas flow. The high-speed exhaust gas flow expands through the turbine section to drive the compressor and the fan section.

    [0002] Due to the desire to increase the efficiency of gas turbine engines, operating temperatures of the gas turbine engine have increased. With the increase in operating temperature, there is a need to design components, such as blades and vanes that are better suited to withstand the elevated operating temperatures.

    [0003] EP 3 192 971 A1 discloses a prior art component for a gas turbine engine in accordance with the preamble of claim 1, and a method in accordance with the preamble of claim 12.

    [0004] DE 10 2006 004437 A1 discloses a prior art platform of a blade of a gas turbine engine, with a sealing plate.

    SUMMARY



    [0005] In one aspect of the present invention, there is provided a component for a gas turbine engine as set forth in claim 1.

    [0006] In an embodiment of the above, the forward surface includes a first radial position and the aft surface includes a second radial position different from the first radial position.

    [0007] In a further embodiment of any of the above, the forward surface is spaced from the aft surface by a radially extending flange.

    [0008] In a further embodiment of any of the above, the platform includes a leading edge, a trailing edge and a pair of circumferential edges. The pocket is spaced inward from the leading edge, the trailing edge and the pair of circumferential edges.

    [0009] In a further embodiment of any of the above, a second pocket is recessed into the other of the at least one of the forward surface and the aft surface.

    [0010] In a further embodiment of any of the above, a second cover plate covering the second pocket. A second seal is attached to the second cover plate.

    [0011] In a further embodiment of any of the above, the pocket is in fluid communication with a first internal cooling passage in at least one airfoil.

    [0012] In a further embodiment of any of the above, at least one airfoil includes a plurality of airfoils and the platform forms a continuous loop.

    [0013] In a further embodiment of any of the above, the pocket is circumferentially aligned with more than one of the plurality of airfoils.

    [0014] In another disclosed non-limiting embodiment, a gas turbine engine section includes a first rotor section. A stator is adjacent the first rotor section. The stator includes at least one airfoil that has a radially inner end and a radially outer end. A platform includes a radially outer surface attached to the radially inner end of the airfoil. A radially inner side of the platform includes a forward surface and an aft surface. A pocket is recessed into at least one of the forward surface and the aft surface. A cover plate covering the pocket. A seal is attached to the cover plate.

    [0015] In an embodiment of the above, the forward surface includes a first radial position. The aft surface includes a second radial position different from the first radial position.

    [0016] In a further embodiment of any of the above, the forward surface is spaced from the aft surface by a radially extending flange.

    [0017] In a further embodiment of any of the above, the platform includes a leading edge, a trailing edge and a pair of circumferential edges. The pocket is spaced from the leading edge, the trailing edge and the pair of circumferential edges.

    [0018] In a further embodiment of any of the above, a second pocket is recessed into the other of the at least one of the forward surface and the aft surface. A second cover plate covers the second pocket. A second seal is attached to the second cover plate.

    [0019] In a further embodiment of any of the above, a first cover plate is attached to the first rotor section and includes at least one knife edge seal forming a seal with the first seal. A second cover plate is attached to a second rotor section and includes at least one knife edge seal forming a seal with the second seal. The stator separates the first rotor section and the second rotor section.

    [0020] In a further embodiment of any of the above, the pocket is in fluid communication with a first internal cooling passage in the at least one airfoil.

    [0021] In a further embodiment of any of the above, at least one airfoil includes a plurality of airfoils and the platform forms a continuous loop.

    [0022] In another aspect of the present invention, there is provided a method of forming a vane as set forth in claim 12.

    [0023] In an embodiment of the above, the forward surface and the aft surface are spaced from each other in a radial direction.

    [0024] In a further embodiment of any of the above, a second pocket is formed in the other of the forward surface and aft surface. The second pocket is covered with a second cover plate. A second seal is formed on the second cover plate.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0025] 

    Figure 1 is a schematic view of an example gas turbine engine.

    Figure 2 is a schematic view of an example gas turbine engine section.

    Figure 3 is a cross-sectional view of an example vane.

    Figure 4 is a cross-sectional view taken along line 4-4 of Figure 3.

    Figure 5 is a cross-sectional view taken along line 5-5 of Figure 3.

    Figure 6 is a perspective view of the vane of Figure 3.

    Figure 7 illustrates a partially assembled vane from Figure 3.

    Figure 8 illustrates an example vane hoop.


    DETAILED DESCRIPTION



    [0026] Figure 1 schematically illustrates a gas turbine engine 20. The gas turbine engine 20 is disclosed herein as a two-spool turbofan that generally incorporates a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28. Alternative engines might include an augmentor section (not shown) among other systems or features. The fan section 22 drives air along a bypass flow path B in a bypass duct defined within a nacelle 15, and also drives air along a core flow path C for compression and communication into the combustor section 26 then expansion through the turbine section 28. Although depicted as a two-spool turbofan gas turbine engine in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to use with two-spool turbofans as the teachings may be applied to other types of turbine engines including three-spool architectures.

    [0027] The exemplary engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided, and the location of bearing systems 38 may be varied as appropriate to the application.

    [0028] The low speed spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a first (or low) pressure compressor 44 and a first (or low) pressure turbine 46. The inner shaft 40 is connected to the fan 42 through a speed change mechanism, which in exemplary gas turbine engine 20 is illustrated as a geared architecture 48 to drive the fan 42 at a lower speed than the low speed spool 30. The high speed spool 32 includes an outer shaft 50 that interconnects a second (or high) pressure compressor 52 and a second (or high) pressure turbine 54. A combustor 56 is arranged in exemplary gas turbine 20 between the high pressure compressor 52 and the high pressure turbine 54. A mid-turbine frame 57 of the engine static structure 36 is arranged generally between the high pressure turbine 54 and the low pressure turbine 46. The mid-turbine frame 57 further supports bearing systems 38 in the turbine section 28. The inner shaft 40 and the outer shaft 50 are concentric and rotate via bearing systems 38 about the engine central longitudinal axis A which is collinear with their longitudinal axes.

    [0029] The core airflow is compressed by the low pressure compressor 44 then the high pressure compressor 52, mixed and burned with fuel in the combustor 56, then expanded over the high pressure turbine 54 and low pressure turbine 46. The mid-turbine frame 57 includes airfoils 59 which are in the core airflow path C. The turbines 46, 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion. It will be appreciated that each of the positions of the fan section 22, compressor section 24, combustor section 26, turbine section 28, and fan drive gear system 48 may be varied. For example, gear system 48 may be located aft of combustor section 26 or even aft of turbine section 28, and fan section 22 may be positioned forward or aft of the location of gear system 48.

    [0030] The engine 20 in one example is a high-bypass geared aircraft engine. In a further example, the engine 20 bypass ratio is greater than about six, with an example embodiment being greater than about ten, the geared architecture 48 is an epicyclic gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3 and the low pressure turbine 46 has a pressure ratio that is greater than about five. In one disclosed embodiment, the engine 20 bypass ratio is greater than about ten, the fan diameter is significantly larger than that of the low pressure compressor 44, and the low pressure turbine 46 has a pressure ratio that is greater than about five. Low pressure turbine 46 pressure ratio is pressure measured prior to inlet of low pressure turbine 46 as related to the pressure at the outlet of the low pressure turbine 46 prior to an exhaust nozzle. The geared architecture 48 may be an epicycle gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3:1. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present invention is applicable to other gas turbine engines including direct drive turbofans.

    [0031] A significant amount of thrust is provided by the bypass flow B due to the high bypass ratio. The fan section 22 of the engine 20 is designed for a particular flight condition -- typically cruise at about 0.8 Mach and about 35,000 feet (10,668 meters). The flight condition of 0.8 Mach and 35,000 ft (10,668 meters), with the engine at its best fuel consumption - also known as "bucket cruise Thrust Specific Fuel Consumption ('TSFC')" - is the industry standard parameter of lbm of fuel being burned divided by lbf of thrust the engine produces at that minimum point. "Low fan pressure ratio" is the pressure ratio across the fan blade alone, without a Fan Exit Guide Vane ("FEGV") system. The low fan pressure ratio as disclosed herein according to one non-limiting embodiment is less than about 1.45. "Low corrected fan tip speed" is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Tram °R) / (518.7 °R)]0,5 (where °R = K x 9/5). The "Low corrected fan tip speed" as disclosed herein according to one non-limiting embodiment is less than about 1150 ft / second (350.5 meters/second).

    [0032] Figure 2 illustrates an enlarged schematic view of the high pressure turbine 54, however, other sections of the gas turbine engine 20 could benefit from this disclosure, such as the low pressure turbine 46 or the high pressure compressor 52. In the illustrated non-limiting embodiment, the high pressure turbine 54 includes a two-stage turbine section with a first rotor assembly 60 and a second rotor assembly 62. The first rotor assembly 60 and the second rotor assembly 62 are attached to and rotate with the outer shaft 50.

    [0033] The first rotor assembly 60 includes a first plurality of rotor blades 64 circumferentially spaced around a first disk 68 forming a first array of blades. The second rotor assembly 62 includes a second plurality of rotor blades 66 circumferentially spaced around a second disk 70 forming a second array of blades. Each of the first and second plurality of rotor blades 64, 66 include a respective first root portion 72 and a second root portion 74, a first platform 76 and a second platform 78, and a first airfoil 80 and a second airfoil 82. Each of the first and second root portions 72, 74 is received within a first rim and a second rim 84, 86 of the first and second disk 68, 70, respectively. The first airfoil 80 and the second airfoil 82 extend radially outward toward an unshrouded end adjacent a first and second blade outer air seal (BOAS) 81, 83, respectively.

    [0034] The first and second plurality of rotor blades 64, 66 are disposed in the core flow path that is pressurized in the compressor section 24 then heated to a working temperature in the combustor section 26. The first and second platforms 76, 78 separate a gas path side inclusive of the first and second airfoils 80, 82 and a non-gas path side inclusive of the first and second root portions 72, 74, respectively.

    [0035] A plurality of vanes 88 each include at least one airfoil 90 that extends between a respective inner platform 92 and an outer platform 94. In the illustrated example, the plurality of vanes form a stator. The outer platform 94 may be supported by the engine case structure 36 and the inner platform 92 supports a first and second abradable annular seal 96 and 98, such as honeycomb seals.

    [0036] A first rotor assembly aft plate 100 is attached to the first disk 68 to form a seal with the first abradable annular seal 96 and a second rotor assembly forward plate 102 is attached to the second disk 70 to form a seal with the second abradable annual seal 98. In the illustrated non-limiting embodiment, the first rotor assembly aft plate 100 and the second rotor assembly forward plate 102 each include a pair of knife edge seals 104 that engage a respective one of the first and second abradable annular seals 96, 98. The first rotor assembly aft plate 100 and the second rotor assembly forward plate 102 are configured to rotate with a respective first and second disk 68, 70.

    [0037] A flange 113 extends radially inward from the inner platform 92. The flange 113 also extends in a circumferential direction and supports a full hoop inner air seal 115. The full hoop inner air seal 115 is attached to the flange 113 by a plurality of fasteners 117 extending through the full hoop inner air seal 115 and the flange 113.

    [0038] Although Figure 2 illustrates the first rotor section 60 and the second rotor section 62 separated by the plurality of vanes 88, the plurality of vanes could be located adjacent only a single rotor section.

    [0039] Figure 3 illustrates a cross-sectional view through the inner platform 92 of one of the vanes 88. The inner platform 92 includes a radially outer surface 106 that partially defines the hot gas flow path. The radially outer surface 106 includes a radial dimension that varies in the axial direction such that the radially outer surface 106 is not flat or cylindrical. In the illustrated non-limiting embodiment, an axially forward end of the radially outer surface 106 is spaced inward from an axially downstream end of the radially outer surface 106 and includes at least one undulation 106A forming a peak in the radially outer surface 106. In this disclosure, forward, aft, axial, or axially is in relation to the engine axis A unless stated otherwise.

    [0040] A radially inner side 108 of the inner platform 92 includes an axially forward surface 110 and an axially aft surface 112 separated by the flange 113. In the illustrated non-limiting embodiment, the forward surface 110 is spaced a first radial distance from the engine axis A and the aft surface 112 is spaced a second radial distance from the engine axis A greater than the first distance. In this disclosure, radial or radially is with respect to the engine axis A unless stated otherwise.

    [0041] A forward pocket 114 having a forward pocket wall 114A is recessed into forward surface 110 and an aft pocket 116 having an aft pocket wall 116A is recessed into the aft surface 112. In the illustrated non-limiting embodiment, the forward surface 110 is maintained at a constant first radial distance surrounding the forward pocket 114. Also, the aft surface 112 is maintained at a constant second radial distance surrounding the aft pocket 116.

    [0042] A portion of the forward pocket wall 114A closely follows a profile of the radially outer surface 106 to maintain a generally constant thickness of the inner platform 92. Similarly, a portion of the aft pocket wall 116A closely follows a profile of the radially outer surface 106 to maintain a generally constant thickness of the inner platform 92. In one non-limiting embodiment, a thickness of the inner platform 92 between the radially outer surface 106 and the portion of the forward pocket wall 114A does not exceed 200% of a thickness of a leading edge of the inner platform 92. By maintaining a generally constant thickness of the inner platform 92, variations in thermal expansion due to varying mass are reduced which reduces the thermal mechanical fatigue during heating and cooling cycles. This reduction in thermal mechanical fatigue extends the operating life of the vane 88.

    [0043] The forward pocket 114 is enclosed or covered by a forward cover plate 118 such that the forward pocket 114 is entirely enclosed by the forward pocket wall 114A and the forward cover plate 118. The forward cover plate 118 includes a radially outer surface 118A that is in contact with the forward surface 110 and a radially inner surface 118B that contacts the first abradable seal 96. The forward cover plate 118 is attached to the forward surface 110 through welding, brazing, or bonding as shown in Figure 7. The first abradable seal 96 is attached to the forward cover plate 118 through welding, brazing, or bonding. Alternatively, the first abradable seal 96 could be attached to the forward cover plate 118 prior to attaching the forward cover plate 118 to the forward surface 110.

    [0044] The aft pocket 116 is enclosed or covered by an aft cover plate 120 such that the aft pocket 116 is entirely enclosed by the aft pocket wall 116A and the aft cover plate 120. The aft cover plate 120 includes a radially outer surface 120A that is in contact with the aft surface 112 and a radially inner surface 120B that contacts the second abradable seal 98. The aft cover plate 120 is attached to the aft surface 112 through welding, brazing, or bonding as shown in Figure 7. Similarly, the second abradable seal 98 is attached to the aft cover plate 120 through welding, brazing, or bonding. Alternatively, the second abradable seal 98 could be attached to the aft cover plate 120 prior to attaching the aft cover plate 120 to the aft surface 112.

    [0045] As shown in Figures 4 and 5, the forward and aft cover plates 118, 120 and the first and second abradable seals 96, 98 extend a substantial width of the inner platform 92.

    [0046] Figure 6 illustrates a bottom perspective view of the vane 88. The inner platform 92 includes a leading edge 122, a trailing edge 124, and a pair of circumferential edges 126. The forward pocket 114 and the aft pocket 116 are spaced inward from the leading edge 122, the trailing edge 124, and the pair of circumferential edges 126. In one non-limiting embodiment, the forward pocket 114 is in fluid communication with a first internal cooling passage 128 in the vane 88 and the aft pocket 116 is in fluid communication with a second internal cooling passage 130 in the vane 88.

    [0047] Figure 8 illustrates a non-limiting embodiment of a vane hoop 88'. The vane hoop 88' similar to the vanes 88 described above except where described below or shown in the figures. Instead of the vanes 88 being arranged as individual vanes or segments of multiple vanes, the vane hoop 88' includes multiple vanes formed into a complete and continuous loop that surrounds the engine axis A.

    [0048] The vane hoop 88' includes airfoils 90' that extend from an inner platform 92' on a radially inner end to an outer platform 94' on a radially outer end of each of the airfoils 90'. In the illustrated non-limiting embodiment, a forward cover plate 118' attached to a forward surface 110' forms a complete and continuous loop to enclose a plurality of forward pockets 114' and a first abradable seal 96' is attached to the forward cover plate 118' and forms a complete and continuous loop. In another non-limiting embodiment, the forward cover plate 118' and the first abradable seal 96' could be segmented.

    [0049] The plurality of forward pockets 114' could include a combination of smaller pockets that are only circumferentially aligned with a single airfoil 90' and larger pockets that are circumferentially aligned with multiple airfoils 90. In the illustrated embodiment, one of the forward pockets 114' extends circumferentially approximately 90 degrees.

    [0050] Although only the forward pockets 114' are shown in Figure 8, the vane hoop 88' also includes aft pockets 116', an aft cover plate 120', and aft surface 112', and a second abradable seal 98' (not shown) having the same configuration as described above with respect to the forward pockets 114'.

    [0051] When the vane 88 or 88' are manufactured, the airfoil 90, 90' can be formed separately from the inner and outer platforms 92, 92', 94, 94' and later attached or formed together as a single-piece component. Similarly, the forward and aft pockets 114, 114', 116, 116' can be formed when the inner platform 92, 92' is formed or formed later by another process, such as machining. Once the forward and aft pockets 114, 114', 116, 116' have been formed, the forward cover plate 118, 118' is placed on the forward surface 110, 110' enclosing the forward pockets 114, 114' and the aft cover plate 120, 120' is placed on the aft surface 112, 112' enclosing the aft pockets 116, 116', respectively. The first abradable seal 96, 96' can then be attached to the forward cover plate 118, 118' and the second abradable seal 98, 98' can be attached to the aft cover plate 120, 120', respectively.

    [0052] The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from the essence of this disclosure. The scope of legal protection given to this disclosure can only be determined by studying the following claims.


    Claims

    1. A component for a gas turbine engine (20) comprising:

    at least one airfoil (90; 90') having a radially inner end and a radially outer end;

    a platform (92; 92') including a radially outer surface (106) attached to the radially inner end of the airfoil (90; 90'), and a radially inner side (108) of the platform (92; 92') that includes a forward surface (110; 110') and an aft surface (112; 112');

    a pocket (114, 116; 114', 116') recessed into at least one of the forward surface (110; 110') and the aft surface (112; 112'); and

    a cover plate (118, 120; 118', 120') covering the pocket (114...116'), characterised in that the component further comprises:
    a first abradable seal (96, 98; 96', 98') attached to a radially inner surface (118B; 120B) of the cover plate (118...120'), wherein the cover plate (118....120') includes a radially outer surface (118A,120A) in contact with the at least one of the forward surface (110;110') and the aft surface (112;112').


     
    2. A gas turbine engine section (54) comprising:

    a first rotor section (60); and

    the component of claim 1, wherein the component is a stator and is adjacent to the first rotor section (60).


     
    3. The component or gas turbine engine section (54) of claim 1 or 2, wherein the forward surface (110; 110') includes a first radial position and the aft surface (112; 112') includes a second radial position different from the first radial position.
     
    4. The component or gas turbine engine section (54) of any of claims 1 to 3, wherein the forward surface (110; 110') is spaced from the aft surface (112; 112') by a radially extending flange (113).
     
    5. The component or gas turbine engine section (54) of any preceding claim, wherein the platform (92; 92') includes a leading edge (122), a trailing edge (124), and a pair of circumferential edges (126) and the pocket (114...116') is spaced inward from the leading edge (122), the trailing edge (124), and the pair of circumferential edges (126).
     
    6. The airfoil or gas turbine engine section (54) of any preceding claim, wherein the pocket (114...116') is in fluid communication with a first internal cooling passage (128, 130) in the at least one airfoil (90; 90').
     
    7. The component or gas turbine engine section (54) of any preceding claim, wherein the at least one airfoil (90') includes a plurality of airfoils (90') and the platform (92') forms a continuous loop.
     
    8. The component or gas turbine engine section (54) of claim 7, wherein the pocket (114', 116') is circumferentially aligned with more than one of the plurality of airfoils (90').
     
    9. The component or gas turbine engine section (54) of any preceding claim, further comprising a second pocket (114...116') recessed into the other of the at least one of the forward surface (110; 110') and the aft surface (112; 112').
     
    10. The component or gas turbine engine section (54) of claim 9, further comprising a second cover plate (118, 120; 118', 120') covering the second pocket (114; 116') and a second seal (96...98') attached to the second cover plate (118...120').
     
    11. The gas turbine engine section of claim 10, further comprising a first cover plate (100) attached to the first rotor section (60) including at least one knife edge seal (104) forming a seal (104) with the first seal (96, 98; 96', 98') and a second cover plate (102) attached to a second rotor section (62) including at least one knife edge seal (104) forming a seal with the second seal (96, 98; 96', 98'), wherein the stator separates the first rotor section (60) and the second rotor section (62).
     
    12. A method of forming a vane (88; 88'), the method comprising the steps of:

    forming an airfoil (90; 90');

    forming a platform (92; 92') having a radially inner surface (108) and a radially outer surface (106), wherein the radially outer surface (106) is connected to the airfoil (90; 90') and the radially inner surface (108) includes a forward surface (110; 110') and an aft surface (112; 112');

    forming a pocket (114, 116; 114', 116') in at least one of the forward surface (110; 110') and the aft surface (112; 112'); and

    covering the pocket (114...116') with a cover plate (118, 120; 118', 120'), characterised in that the method further comprises:
    attaching an abradable seal (96, 98; 96', 98') on a radially inner surface (118B; 120B) of the cover plate (118...120'), wherein the cover plate (118....120') includes a radially outer surface (118A,120A) in contact with the at least one of the forward surface (110;110') and the aft surface (112;112').


     
    13. The method of claim 12, wherein the forward surface (110; 110') and the aft surface (112; 112') are spaced from each other in a radial direction.
     
    14. The method of claim 12 or 13, further comprising forming a second pocket (114, 116; 114', 116') in the other of the forward surface (110; 110') and aft surface (112; 112'), covering the second pocket (114...116') with a second cover plate (118, 120; 118', 120'), and forming a second seal (96, 98; 96', 98') on the second cover plate (118...120').
     


    Ansprüche

    1. Komponente für einen Gasturbinenmotor (20), umfassend:

    mindestens ein Schaufelprofil (90; 90'), das ein radial inneres Ende und ein radial äußeres Ende aufweist;

    eine Plattform (92; 92'), die eine radial äußere Fläche (106) beinhaltet, die an dem radial inneren Ende des Schaufelprofils (90; 90') angebracht ist, und eine radial innere Seite (108) der Plattform (92; 92'), die eine vordere Fläche (110; 110') und eine hintere Fläche (112; 112') beinhaltet;

    eine Aussparung (114, 116; 114', 116'), die in mindestens einer von der vorderen Fläche (110; 110') und der hinteren Fläche (112; 112') ausgespart ist; und

    eine Abdeckplatte (118, 120; 118', 120'), die die Platte (114...116') abdeckt,

    dadurch gekennzeichnet, dass die Komponente ferner Folgendes umfasst:
    eine erste zerreibbare Dichtung (96, 98; 96', 98'), die an einer radial inneren Fläche (118B; 120B) der Abdeckplatte (118...120') angebracht ist, wobei die Abdeckplatte (118...120') eine radial äußere Fläche (118A, 120A) in Kontakt mit der mindestens einen von der vorderen Fläche (110; 110') und der hinteren Fläche (112; 112') beinhaltet.


     
    2. Gasturbinenmotorabschnitt (54), umfassend:

    einen ersten Rotorabschnitt (60); und

    die Komponente nach Anspruch 1, wobei die Komponente ein Stator ist und sich benachbart zu dem ersten Rotorabschnitt (60) befindet.


     
    3. Komponente oder Gasturbinenmotorabschnitt (54) nach Anspruch 1 oder 2, wobei die vordere Fläche (110; 110') eine erste radiale Position beinhaltet und die hintere Fläche (112; 112') eine zweite radiale Position beinhaltet, die sich von der ersten radialen Position unterscheidet.
     
    4. Komponente oder Gasturbinenmotorabschnitt (54) nach einem der Ansprüche 1 bis 3, wobei die vordere Fläche (110; 110') von der hinteren Fläche (112; 112') um einen sich radial erstreckenden Flansch (113) beabstandet ist.
     
    5. Komponente oder Gasturbinenmotorabschnitt (54) nach einem vorhergehenden Anspruch, wobei die Plattform (92; 92') eine Vorderkante (122), eine Hinterkante (124) und ein Paar Umfangskanten (126) beinhaltet und die Aussparung (114...116') einwärts von der Vorderkante (122), der Hinterkante (124) und dem Paar Umfangskanten (126) beabstandet ist.
     
    6. Schaufelprofil oder Gasturbinenmotorabschnitt (54) nach einem vorhergehenden Anspruch, wobei die Aussparung (114...116') in Fluidkommunikation mit einem ersten inneren Kühldurchlass (128, 130) in dem mindestens einen Schaufelprofil (90; 90') steht.
     
    7. Komponente oder Gasturbinenmotorabschnitt (54) nach einem vorhergehenden Anspruch, wobei das mindestens eine Schaufelprofil (90') eine Vielzahl von Schaufelprofilen (90') beinhaltet und die Plattform (92') eine durchgehende Schleife bildet.
     
    8. Komponente oder Gasturbinenmotorabschnitt (54) nach Anspruch 7, wobei die Aussparung (114', 116') in Umfangsrichtung auf mehr als eines aus der Vielzahl von Schaufelprofilen (90') ausgerichtet ist.
     
    9. Komponente oder Gasturbinenmotorabschnitt (54) nach einem vorhergehenden Anspruch, ferner umfassend eine zweite Aussparung (114...116`), die in der anderen von der mindestens einen von der vorderen Fläche (110; 110') und der hinteren Fläche (112; 112') ausgespart ist.
     
    10. Komponente oder Gasturbinenmotorabschnitt (54) nach Anspruch 9, ferner umfassend eine zweite Abdeckplatte (118, 120; 118', 120'), die die zweite Aussparung (114; 116') abdeckt, und eine zweite Dichtung (96...98'), die an der zweiten Abdeckplatte (118...120') angebracht ist.
     
    11. Gasturbinenmotorabschnitt nach Anspruch 10, ferner umfassend eine erste Abdeckplatte (100), die an dem ersten Rotorabschnitt (60) angebracht ist, beinhaltend mindestens eine Messerkantendichtung (104), die eine Dichtung (104) mit der ersten Dichtung (96, 98; 96', 98') bildet, und eine zweite Abdeckplatte (102), die an einem zweiten Rotorabschnitt (62) angebracht ist, beinhaltend mindestens eine Messerkantendichtung (104), die eine Dichtung mit der zweiten Dichtung (96, 98; 96', 98') bildet, wobei der Stator den ersten Rotorabschnitt (60) und den zweiten Rotorabschnitt (62) trennt.
     
    12. Verfahren zum Bilden einer Leitschaufel (88; 88'), wobei das Verfahren die folgenden Schritte umfasst:

    Bilden eines Schaufelprofils (90; 90');

    Bilden einer Plattform (92; 92'), die eine radial innere Fläche (108) und eine radial äußere Fläche (106) aufweist, wobei die radial äußere Fläche (106) mit dem Schaufelprofil (90; 90') verbunden ist und die radial innere Fläche (108) eine vordere Fläche (110; 110') und eine hintere Fläche (112; 112') beinhaltet;

    Bilden einer Aussparung (114, 116; 114', 116') in mindestens einer von der vorderen Fläche (110; 110') und der hinteren Fläche (112; 112'); und

    Abdecken der Aussparung (114...116') mit einer Abdeckplatte (118, 120; 118', 120'),

    dadurch gekennzeichnet, dass das Verfahren ferner Folgendes umfasst:
    Anbringen einer zerreibbaren Dichtung (96, 98; 96', 98') an einer radial inneren Fläche (118B; 120B) der Abdeckplatte (118...120'), wobei die Abdeckplatte (118...120') eine radial äußere Fläche (118A, 120A) in Kontakt mit der mindestens einen von der vorderen Fläche (110; 110') und der hinteren Fläche (112; 112') beinhaltet.


     
    13. Verfahren nach Anspruch 12, wobei die vordere Fläche (110; 110') und die hintere Fläche (112; 112') in einer radialen Richtung voneinander beabstandet sind.
     
    14. Verfahren nach Anspruch 12 oder 13, ferner umfassend das Bilden einer zweiten Aussparung (114, 116; 114', 116') in der anderen von der vorderen Fläche (110; 110') und der hinteren Fläche (112; 112'), das Abdecken der zweiten Aussparung (114...116') mit einer zweiten Abdeckplatte (118, 120; 118', 120') und das Bilden einer zweiten Dichtung (96, 98; 96', 98') an der zweiten Abdeckplatte (118...120').
     


    Revendications

    1. Composant pour un moteur à turbine à gaz (20) comprenant :

    au moins un profil aérodynamique (90 ; 90') ayant une extrémité radialement intérieure et une extrémité radialement extérieure ;

    une plateforme (92 ; 92') comportant une surface radialement extérieure (106) fixée à l'extrémité radialement intérieure du profil aérodynamique (90 ; 90'), et un côté radialement intérieur (108) de la plateforme (92 ; 92') qui comporte une surface avant (110 ; 110') et une surface arrière (112 ; 112') ;

    une poche (114, 116 ; 114', 116') encastrée dans au moins l'une de la surface avant (110 ; 110') et de la surface arrière (112 ; 112') ; et

    une plaque de recouvrement (118, 120 ; 118', 120') recouvrant la poche (114...116'), caractérisé en ce que le composant comprend en outre :
    un premier joint abradable (96, 98 ; 96', 98') fixé à une surface radialement intérieure (118B ; 120B) de la plaque de recouvrement (118...120'), dans lequel la plaque de recouvrement (118...120') comporte une surface radialement extérieure (118A, 120A) en contact avec l'au moins une de la surface avant (110 ; 110') et de la surface arrière (112 ; 112').


     
    2. Section de moteur à turbine à gaz (54) comprenant :

    une première section de rotor (60) ; et

    le composant selon la revendication 1, dans laquelle le composant est un stator et est adjacent à la première section de rotor (60).


     
    3. Composant ou section de moteur à turbine à gaz (54) selon la revendication 1 ou 2, dans lequel ou dans laquelle la surface avant (110 ; 110') comporte une première position radiale et la surface arrière (112 ; 112') comporte une seconde position radiale différente de la première position radiale.
     
    4. Composant ou section de moteur à turbine à gaz (54) selon l'une quelconque des revendications 1 à 3, dans lequel ou dans laquelle la surface avant (110 ; 110') est espacée de la surface arrière (112 ; 112') par une bride s'étendant radialement (113).
     
    5. Composant ou section de moteur à turbine à gaz (54) selon une quelconque revendication précédente, dans lequel ou dans laquelle la plateforme (92 ; 92') comporte un bord d'attaque (122), un bord de fuite (124) et une paire de bords circonférentiels (126) et la poche (114...116') est espacée vers l'intérieur du bord d'attaque (122), du bord de fuite (124) et de la paire de bords circonférentiels (126).
     
    6. Profil aérodynamique ou section de moteur à turbine à gaz (54) selon une quelconque revendication précédente, dans lequel ou dans laquelle la poche (114...116') est en communication fluidique avec un premier passage de refroidissement interne (128, 130) dans l'au moins un profil aérodynamique (90 ; 90').
     
    7. Composant ou section de moteur à turbine à gaz (54) selon une quelconque revendication précédente, dans lequel ou dans laquelle l'au moins un profil aérodynamique (90') comporte une pluralité de profils aérodynamiques (90') et la plateforme (92') forme une boucle continue.
     
    8. Composant ou section de moteur à turbine à gaz (54) selon la revendication 7, dans lequel ou dans laquelle la poche (114', 116') est alignée circonférentiellement avec plus d'un de la pluralité de profils aérodynamiques (90').
     
    9. Composant ou section de moteur à turbine à gaz (54) selon une quelconque revendication précédente, comprenant en outre une seconde poche (114...116') encastrée dans l'autre de l'au moins une de la surface avant (110 ; 110') et de la surface arrière (112 ; 112').
     
    10. Composant ou section de moteur à turbine à gaz (54) selon la revendication 9, comprenant en outre une seconde plaque de recouvrement (118, 120 ; 118', 120') recouvrant la seconde poche (114 ; 116') et un second joint (96...98') fixé à la seconde plaque de recouvrement (118...120').
     
    11. Section de moteur à turbine à gaz selon la revendication 10, comprenant en outre une première plaque de recouvrement (100) fixée à la première section de rotor (60) comportant au moins un joint de bord tranchant (104) formant un joint (104) avec le premier joint (96, 98 ; 96', 98') et une seconde plaque de recouvrement (102) fixée à une seconde section de rotor (62) comportant au moins un joint de bord tranchant (104) formant un joint avec le second joint (96, 98 ; 96', 98'), dans laquelle le stator sépare la première section de rotor (60) et la seconde section de rotor (62).
     
    12. Procédé de formation d'une aube (88 ; 88'), le procédé comprenant les étapes :

    de formation d'un profil aérodynamique (90 ; 90') ;

    de formation d'une plateforme (92 ; 92') ayant une surface radialement intérieure (108) et une surface radialement extérieure (106), dans lequel la surface radialement extérieure (106) est reliée au profil aérodynamique (90 ; 90') et la surface radialement intérieure (108) comporte une surface avant (110 ; 110') et une surface arrière (112 ; 112') ;

    de formation d'une poche (114, 116 ; 114', 116') dans au moins l'une de la surface avant (110 ; 110') et de la surface arrière (112 ; 112') ; et

    de recouvrement de la poche (114... 116') avec une plaque de recouvrement (118, 120 ; 118', 120'), caractérisé en ce que le procédé comprend en outre :
    la fixation d'un joint abradable (96, 98 ; 96', 98') sur une surface radialement intérieure (118B ; 120B) de la plaque de recouvrement (118...120'), dans lequel la plaque de recouvrement (118...120') comporte une surface radialement extérieure (118A, 120A) en contact avec l'au moins une de la surface avant (110 ; 110') et de la surface arrière (112 ; 112').


     
    13. Procédé selon la revendication 12, dans lequel la surface avant (110 ; 110') et la surface arrière (112 ; 112') sont espacées l'une de l'autre dans une direction radiale.
     
    14. Procédé selon la revendication 12 ou 13, comprenant en outre la formation d'une seconde poche (114, 116 ; 114', 116') dans l'autre de la surface avant (110 ; 110') et de la surface arrière (112 ; 112'), le recouvrement de la seconde poche (114...116') avec une seconde plaque de recouvrement (118, 120 ; 118', 120'), et la formation d'un second joint (96, 98 ; 96', 98') sur la seconde plaque de recouvrement (118...120').
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description