(19)
(11)EP 3 452 437 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 17722969.7

(22)Date of filing:  02.05.2017
(51)International Patent Classification (IPC): 
C07C 17/16(2006.01)
C07C 25/22(2006.01)
C07C 25/13(2006.01)
(86)International application number:
PCT/US2017/030608
(87)International publication number:
WO 2017/192564 (09.11.2017 Gazette  2017/45)

(54)

METHOD FOR AROMATIC FLUORINATION

VERFAHREN ZUR AROMATISCHEN FLUORIERUNG

PROCÉDÉ DE FLUORATION AROMATIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 02.05.2016 US 201662330311 P
15.07.2016 US 201662362721 P
19.08.2016 US 201662376967 P
14.10.2016 US 201662408270 P

(43)Date of publication of application:
13.03.2019 Bulletin 2019/11

(73)Proprietors:
  • Dow Global Technologies LLC
    Midland, MI 48674 (US)
  • The Regents of The University of Michigan
    Ann Arbor, Michigan 48109-2590 (US)

(72)Inventors:
  • SANFORD, Melanie, S.
    Ann Arbor MI 48104 (US)
  • BLAND, Douglas
    Midland MI 48674 (US)
  • HANLEY, Patrick, S.
    Midland MI 48674 (US)
  • CISMESIA, Megan, A.
    Midland MI 48674 (US)
  • SCHIMLER, Sydonie, D.
    Midland, MI 48642 (US)

(74)Representative: f & e patent 
Braunsberger Feld 29
51429 Bergisch Gladbach
51429 Bergisch Gladbach (DE)


(56)References cited: : 
WO-A2-2012/142162
  
  • SYDONIE D. SCHIMLER ET AL: "Nucleophilic Deoxyfluorination of Phenols via Aryl Fluorosulfonate Intermediates", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 139, no. 4, 23 January 2017 (2017-01-23), pages 1452-1455, XP055384101, US ISSN: 0002-7863, DOI: 10.1021/jacs.6b12911
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

CROSS-REFERENCE TO RELATED APPLICATIONS



[0001] This application claims the benefit of priority to U.S. Provisional Application No. 62/408,270, filed, October 14, 2016, and to U.S. Provisional Application No. 62/376,967, filed August 19, 2016, and to U.S. Provisional Application No. 62/362,721, filed July 15, 2016, and to U.S. Provisional Application No. 62/330,311, filed May 2, 2016.

BACKGROUND



[0002] Selectively fluorinated aromatic compounds having a carbon-fluorine (C-F) bond are often biologically active and can be used as active components of many drugs and agrochemicals. A common strategy for the formation of these C-F bonds is through nucleophilic aromatic substitution by replacing an aryl-X bond, where X is, for example, Cl, Br, or NO2. Recent methodologies have demonstrated that phenols and their derivatives - where X is, for example, OH or trifluoromethanesulfonate - can be used, although expensive reagents are required. WO2012/142162 discloses a method for the deoxyfluorination of phenols.

[0003] An improved method for fluorinating aromatic compounds is desired.

SUMMARY



[0004] In a broad aspect, this disclosure provides a method for preparing aryl fluorides, the method comprising forming a reaction mixture comprising an aryl fluorosulfonate and a fluorinating reagent, optionally in a solvent system. The reaction is permitted to proceed for a period of time, after which the desired product may be isolated.

[0005] In another broad aspect, this disclosure provides a method for preparing aryl fluorides, the method comprising forming a reaction mixture comprising an aryloxylate salt and sulfuryl fluoride, optionally in a solvent system. The resulting reaction mixture is permitted to react for a period of time, after which the desired product may be isolated.

[0006] In yet another broad aspect, this disclosure provides a method for preparing aryl fluorides, the method comprising forming a reaction mixture comprising an aryl hydroxy compound of formula Ar-OH, wherein Ar represents an aryl or heteroaryl group, sulfuryl fluoride, and a fluorinating reagent, optionally in a solvent system. The resulting reaction mixture is permitted to react for a period of time, after which the desired product may be isolated.

[0007] According to a first embodiment, the present disclosure describes a fluorination method comprising providing a solvent to a reaction mixture or reaction vessel; providing an aryl fluorosulfonate to the reaction mixture or vessel; providing a fluorinating reagent to the reaction mixture or vessel; and reacting the aryl fluorosulfonate and the fluorinating reagent to provide a fluorinated aryl species.

[0008] According to a second embodiment, the present disclosure describes a fluorination method comprising providing a solvent to a reaction mixture or vessel; providing a salt comprising a cation and an aryloxylate to a reaction mixture or vessel; providing SO2F2 to the reaction mixture or vessel; and reacting the SO2F2 and the ammonium salt to provide a fluorinated aryl species.

[0009] According to a third embodiment, the present disclosure describes a fluorination method comprising providing a solvent to a reaction mixture or reaction vessel; providing a compound having the structure Ar-OH to a reaction mixture or vessel; where Ar is an aryl or heteroaryl group; providing SO2F2 to the reaction mixture or vessel; providing a fluorinating reagent to the reaction mixture or vessel; and reacting the SO2F2, the fluorinating reagent and the compound having the structure Ar-OH to provide a fluorinated aryl species having the structure Ar-F.

DETAILED DESCRIPTION



[0010] "Alkyl," as used in this specification, whether alone or as part of another group (e.g., in dialkylamino), encompasses straight, cyclic and branched chain aliphatic groups having the indicated number of carbon atoms. If no number is indicated (e.g., aryl-alkyl-), then 1-12 alkyl carbons are contemplated. Preferred alkyl groups include, without limitation, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl and tert-octyl.

[0011] The term "heteroalkyl" refers to an alkyl group as defined above with one or more heteroatoms (nitrogen, oxygen, sulfur, phosphorus) replacing one or more carbon atoms within the radical, for example, an ether or a thioether.

[0012] An "aryl" group refers to any functional group or substituent derived from an aromatic ring. In one instance, aryl refers to an aromatic moiety comprising one or more aromatic rings. In one instance, the aryl group is a C6-C18 aryl group. In one instance, the aryl group is a C6-C10 aryl group. In one instance, the aryl group is a C10-C18 aryl group. Aryl groups contain 4n+2 pi electrons, where n is an integer. The aryl ring may be fused or otherwise attached to one or more heteroaryl rings, aromatic or non-aromatic hydrocarbon rings or heterocycloalkyl rings. Preferred aryls include, without limitation, phenyl, naphthyl, anthracenyl, and fluorenyl. Unless otherwise indicated, the aryl group is optionally substituted with 1 or more substituents that are compatible with the syntheses described herein. Such substituents include, but are not limited to, sulfonate groups, boron-containing groups, alkyl groups, nitro groups, halogens, cyano groups, carboxylic acids, esters, amides, C2-C8 alkene, and other aromatic groups. Other substituents are known in the art.

[0013] "Heteroaryl" refers to any functional group or substituent derived from an aromatic ring and containing at least one heteroatom selected from nitrogen, oxygen, and sulfur. Preferably, the heteroaryl group is a five or six-membered ring. The heteroaryl ring may be fused or otherwise attached to one or more heteroaryl rings, aromatic or non-aromatic hydrocarbon rings or heterocycloalkyl rings. Examples of heteroaryl groups include, without limitation, pyridinyl, pyrimidinyl, pyridazinyl, pyrrolyl, triazinyl, imidazolyl, triazolyl, furanyl, thienyl, oxazolyl, and thiazolyl. The heteroaryl group may be optionally substituted with one or more substituents that are compatible with the syntheses described herein. Such substituents include, but are not limited to, fluorosulfonate groups, boron-containing groups, C1-C8 alkyl groups, nitro groups, halogens, cyano groups, carboxylic acids, esters, amides, C2-C8 alkene and other aromatic groups. Other substituents are known in the art.

[0014] "Carboxylic esters" refers to any functional group or substituent having a carboxylic acid ester component and may include straight chain, branched, or cyclo alkyl, aromatic, or perfluoroalkyl substituents.

[0015] "Alkoxy" refers to any functional group or substituent have an ether component and may include straight chain, branched, or cyclo alkyl, aromatic, heteroaromatic, or perfluoroalkyl substituents.

[0016] The present disclosure describes an improved method of fluorinating aromatic compounds described by the reaction Scheme I below:

        ArO- M+ + SO2F2 → ArF     (Scheme I)



[0017] The product of the reaction in Scheme I is a fluorinated aryl compound, ArF.

[0018] In the embodiment depicted by Scheme I, sulfuryl fluoride - SO2F2 - is provided to a reaction vessel which optionally contains solvent. The sulfuryl fluoride, which is a gas commercially available as a fumigant, can be bubbled into the solvent.

[0019] As shown in Scheme I , a salt is provided to the reaction vessel. Although the order of addition is irrelevant, the salt is typically added after the sulfuryl fluoride to form a reaction mixture. The salt comprises a cation - identified as M - and a aryloxylate, preferably phenolate, - identified as ArO. It is understood that the phenolate may be added to the reaction mixture in the hydroxyl form or the ionic form and that the solution will reach an equilibrium between the two forms. The group Ar is an aryl or heteroaryl group, and is alternatively further substituted. Suitable substituents for further substituting the phenolate include alkyl, heteroalkyl, cyano, halides, carboxylic esters, perfluoroalkyl or alkoxy groups.

[0020] The sulfuryl fluoride is typically used in reactions according to Scheme I in a molar excess relative to the amount of aryloxylate. Suitable molar ratios of sulfuryl fluoride to aryloxylate are from about 1:1 to about 10:1, or 1:1 to 2:1, or 1:1 to 5:1, or 2:1 to 5:1, or 2:1 to 3:1.

[0021] The cation is selected such that it is suitable for forming a fluorinating reagent in situ. Examples of suitable cations include tetraalkylammoniums, sodium, potassium, cesium, or combinations thereof. Examples of tetraalkylammoniums include tetramethylammonium, tributylmethylammonium and tetrabutylammonium. In one instance, the tetraalkylammoniums include 4 alkyl substituents, each C1-C4.

[0022] In Scheme I, the reaction may be carried out in the presence of a solvent. Alternatively, when both the starting material and product are liquids at, for example, room temperature, the reaction may be carried out in the absence of a solvent, i.e., neat, to simplify isolation and purification of the product.

[0023] In reactions in which the solvent is employed, the solvent may be a polar aprotic solvent. Examples of suitable polar aprotic solvents include dimethyl formamide (DMF), dimethyl sulfoxide (DMSO), N-methyl-2-pyrrolidone, dimethylacetamide (DMA), 1,3-dimethyl-3,4,5,6-tetrahydro-2-pyrimidinone, dichloromethane (DCM), acetonitrile, ethyl acetate, hexamethylphosphoric triamide (HMPT), and 1,3-dimethyl-2-imidazolidinone. Alternatively the solvent may be an alkoxy ether solvent. Examples of suitable alkoxy ether solvents include tetrahydrofuran (THF), diglyme, and dimethoxyethane (DME). Other suitable solvents for the reaction are nitrile solvents. Benzonitrile is an example of a suitable nitrile solvent. Other solvents useful in the reaction are, aromatic solvents, such as for example, toluene.

[0024] The fluorination reactions depicted in Scheme I optionally carried out in the presence of a fluorinating reagent, MF, wherein M is as defined above. The fluorinating reagent may be used in an amount that is less than a molar equivalent of the amount of the aryloxylate.

[0025] The reaction depicted in Scheme I proceeds conveniently at temperatures of from about 0°C to 200°C, or from room temperature, i.e., about 25°C to about 100°C. Although reaction progress can be monitored via a variety of techniques, it is generally unnecessary to do so as the reactions described by Scheme I typically proceed to completion in about 12-36 hours, often within about 24 hours.

[0026] Without being limited by theory, it is believed that the reaction of the aryloxylate with sulfuryl fluoride as depicted in Scheme I proceeds as shown in the Scheme II below (where Ar and M are as defined above, and it is noted that it is not necessary that each M shown in this scheme be the same compound):



[0027] As can be seen, the sulfuryl fluoride reacts with the aryloxylate to form an aryl fluorosulfonate. The fluorosulfonate then becomes a leaving group allowing the fluorine to be joined to the aryl group at the location of the original oxygen atom.

[0028] Preferably, the reaction is performed in a substantially anhydrous environment. As the amount of water in the reaction increases, the product yield decreases.

[0029] In another embodiment, the reaction is performed using the aryl fluorosufonate as a starting material, as shown in reaction Scheme III (where A and M are as defined above):



[0030] The aryl fluorosulfonate serving as the starting material in Scheme III can be prepared as described above. In one instance, the aryl fluorosulfonate can be prepared from the corresponding compound having a hydroxyl group in place of the -OSO2F group in a reaction mixture comprising SO2F2 and a base, as is known in the art. Reactions of the type depicted in Scheme III can be performed in the presence of solvent as defined above. In Scheme III, MF is a fluorinating reagent, wherein M is as defined above. Suitable fluorinating reagents include tetramethylammonium fluoride, sodium fluoride, potassium fluoride, cesium fluoride, lithium fluoride, tetrabutylammonium fluoride or combinations thereof. In certain embodiments, the reaction mixture further comprises a chloride group in addition to the fluorinating agent, for example, a combination of tetramethylammonium chloride and potassium fluoride. Typically, the fluorinating reagent, e.g., tetramethylammonium fluoride, is anhydrous when added to the reaction vessel.

[0031] The fluorination reactions depicted in Scheme III are carried out in the presence of a molar excess of fluorinating reagent, MF. Suitable molar ratios of fluorinating reagent MF to aryl fluorosulfonate are from about 1.1:1 to about 10:1, or 2:1 to 5:1, or 2:1 to 3:1.

[0032] The reactions depicted in Scheme III proceed conveniently at temperatures of from about 0°C to 200°C, or from room temperature, i.e., about 25°C to about 100°C. Although reaction progress can be monitored via a variety of techniques, it is generally unnecessary to do so as the reactions described by Scheme III typically proceed to completion in about 12-36 hours, often within about 24 hours.

[0033] In another embodiment, the reaction is performed using a starting material having the formula Ar-OH, where A is aryl or heteroaryl, to prepare a compound having the structure Ar-F. In this embodiment, the compound having the formula Ar-OH is provided to the reaction mixture in addition to a solvent, SO2F2, and a fluorinating reagent, as shown below in Scheme IV.

        Ar-OH + SO2F2 + MF → Ar-F     Scheme IV



[0034] Suitable fluorinating reagents MF include tetramethylammonium fluoride, sodium fluoride, potassium fluoride, cesium fluoride, tetrabutylammonium fluoride or combinations thereof. Alternatively, other MF, SO2F2 and Ar-OH can be combined with a different Lewis or Bronsted base to reduce the amount of fluorinating regent needed. In one instance, the reaction mixture further comprises a chloride salt or quaternary ammonium chloride compound in addition to the fluorinating agent, for example, a combination of tetramethylammonium chloride and potassium fluoride. The solvent, if present, is a polar aprotic solvent, as described herein.

[0035] The fluorination reactions depicted in Scheme IV are carried out in the presence of a molar excess of fluorinating reagent, MF. Suitable molar ratios of fluorinating reagent MF to Ar-OH are from about 1.1:1 to about 10:1, or about 2:1 to 5:1, or about 2:1 to 3:1, or about 3:1 to 4:1.

[0036] The sulfuryl fluoride is typically used in reactions according to Scheme IV in a molar excess relative to the amount of Ar-OH. Suitable molar ratios of sulfuryl fluoride to Ar-OH are from about 2:1 to about 10:1, or 2:1 to 5:1, or 2:1 to 3:1.

[0037] The reactions depicted in Scheme IV proceed conveniently at temperatures of from about 0°C to 200°C, or from room temperature, i.e., about 25°C to about 100°C. Although reaction progress can be monitored via a variety of techniques, is generally unnecessary to do so as the reactions described by Scheme IV typically proceed to completion in about 12-36 hours, often within about 24 hours.

[0038] In one instance, the reaction mixture does not contain a catalyst. One of the benefits of the reaction scheme described herein is that the scheme proceeds without the use of a catalyst.

[0039] The Examples that follow are illustrative of specific embodiments of the invention, and various uses thereof.

[0040] Protection of certain reactive functionalities by introducing appropriate protecting groups may be necessary to achieve transformations within the scope of this disclosure. In general, the nature of and need for such protecting groups as well as the conditions necessary to attach and remove such groups will be apparent to those skilled in the art of organic synthesis. An authoritative account describing the many alternatives available to the trained practitioner can be found in "Protective Groups in Organic Synthesis", T. W. Greene and P. G. M. Wuts, Third edition, Wiley, New York 1999. The protecting groups may be removed at a convenient subsequent stage using methods known from the art. Methods for removal of protecting groups are also described in the Greene and Wuts text.

EXAMPLES


Example 1



[0041] 



[0042] In a glovebox, tetramethylammonium 4-cyanophenolate (0.05 mmol, 1 equiv), tetramethylammonium fluoride (0.03 mmol, 0.5 equiv), and sulfuryl fluoride (0.14 M solution in DMF, 0.10 mmol, 2 equiv, prepared by bubbling sulfuryl fluoride gas through DMF) were added to a vial. The vial was sealed with a Teflon-lined cap and was allowed to stir for 24 hours at room temperature. After 24 h, the reaction mixture was diluted with dichloromethane and an internal standard (4-fluoroanisole) was added. The crude reaction mixture was analyzed by 19F NMR spectroscopy.

Example 2



[0043] 



[0044] In a glovebox, 4-cyanophenol (0.05 mmol, 1 equiv), tetramethylammonium fluoride (0.15 mmol, 3 equiv), and sulfuryl fluoride (0.14 M solution in DMF, 0.10 mmol, 2 equiv, prepared by bubbling sulfuryl fluoride gas through DMF) were added to a vial. The vial was sealed with a Teflon-lined cap and was allowed to stir for 24 hours at room temperature. After 24 h, the reaction mixture was diluted with dichloromethane and an internal standard (4-fluoroanisole) was added. The crude reaction mixture was analyzed by 19F NMR spectroscopy.

Example 3



[0045] 



[0046] In a glovebox, 4-cyanophenol (0.05 mmol, 1 equiv), tetramethylammonium chloride (0.25 mmol, 5 equiv), potassium fluoride (0.25 mmol, 5 equiv), and sulfuryl fluoride (0.14 M solution in DMF, 0.10 mmol, 2 equiv, prepared by bubbling sulfuryl fluoride gas through DMF) were added to a vial. The vial was sealed with a Teflon-lined cap and was allowed to stir for 24 hours at 140 °C. After 24 h, the reaction mixture was diluted with dichloromethane and an internal standard (4-fluoroanisole) was added. The crude reaction mixture was analyzed by 19F NMR spectroscopy.

Example 4



[0047] 



[0048] In a glovebox, a series of 4 mL vials (containing a stirbar) were each charged with one of the arylfluorosulfonate substrates identified in Table 1 (0.1 mmol, 1 equiv.,) and anhydrous tetramethylammonium fluoride (18.6 mg, 0.2 mmol, number of equivalents listed in Table 1, referred to herein as "TMAF"). DMF (0.5 mL) was added, and each vial was sealed with a Teflon-lined cap. Each vial was removed from the glovebox and stirred at the temperature listed in Table 1 (where "RT" refers to room temperature). After 24 hours, each vial was diluted with dichloromethane (2 mL) and an internal standard (1,3,5-trifluorobenzene) was added. The crude reaction mixture was analyzed by 19F NMR spectroscopy and GCMS to confirm the Products and Yields listed in Table 1.

[0049] "Ph" in structures in Table 1 represents phenyl.
Table 1
Arylfluorosulfonate substrateProductTemperatureTMAF equiv.Yield




RT 2 81%




RT 2 80%




80 °C 2 51%




RT 2 88%




RT 2 67%




100 °C 2 62%




100 °C 5 69%




100 °C 5 33%




100 °C 2 53%




100 °C 5 6%




100 °C 2 39%




80 °C 2 57%




80 °C 2 65%




80 °C 2 80%




80 °C 2 65%




80 °C 2 75%




100 °C 5 27%




100 °C 2 69%




60 °C 2 55%




25 °C 2 65%




100 °C 2 81%




80 °C 2 55%




25 °C 2 75%




100 °C 2 95%




25 °C 2 -

Example 5



[0050] 



[0051] In a glovebox, a series of 4 mL vials (containing a stirbar) are each charged with one of the arylfluorosulfonate substrates identified in Table 2 (0.1 mmol, 1 equiv.) and anhydrous tetramethylammonium fluoride (18.6 mg, 0.2 mmol, 2 equiv). DMF (0.5 mL) is added, and each vial is sealed with a Teflon-lined cap. Each vial is removed from the glovebox and stirred at 80 °C for 24 hours. After 24 hours, each vial is diluted with dichloromethane (2 mL) and an internal standard (1,3,5-trifluorobenzene) is added.
Table 2
Arylfluorosulfonate substrateProduct

















Example 6



[0052] 



[0053] In a glovebox, a reactant as identified in Table 3 (1 equiv, 0.2 mmol) and TMAF (3 equiv, 0.6 mmol) were added to six 1 dram vial with stir bar. A 0.14 M solution of sulfuryl fluoride in DMF (2 equiv, 2.9 mL, 0.4 mmol) were added and each vial and were quickly sealed. Each vial was heated to the temperature indicated in Table 3 for 24 hours, and then cooled to room temperature before being diluted with ether. The organic layer of each reaction mixture was washed four times with water, dried over MgSO4, filtered and concentrated. The crude material was purified by flash chromatography (20:1 pentane:ether). The yield of product for each reaction mixture is reported in Table 3.
Table 3
VialReactantTemperatureYieldProduct
1

Room temperature 56%

2

Room temperature 81%

3

Room temperature 90%

4

100 °C 85%

5

100 °C 53%

6

100 °C 68%


Example 7



[0054] 



[0055] In a glovebox, a reactant as identified in Table 4 (1 equiv, 0.2 mmol) and TMAF (3 equiv, 0.6 mmol) are added to six 1 dram vial with stir bar (where "Me" is methyl and "Ac" is acetyl. A 0.14 M solution of sulfuryl fluoride in DMF (2 equiv, 2.9 mL, 0.4 mmol) are added and each vial and are quickly sealed. Each vial is heated to 80 °C for 24 hours, and then cooled to room temperature before being diluted with ether. The organic layer of each reaction mixture is washed four times with water, dried over MgSO4, filtered and concentrated. The crude material is purified by flash chromatography (20:1 pentane:ether)
Table 4
ReactantProduct































Claims

1. A fluorination method comprising:

providing an aryl fluorosulfonate having the following structure to a reaction mixture:

where Ar is aryl or heteroaryl;

providing a fluorinating reagent to the reaction mixture; and

reacting the aryl fluorosulfonate and the fluorinating reagent to provide a fluorinated aryl species having the following structure:

        Ar-F.


 
2. The fluorination method of claim 1, wherein the solvent is selected from the group consisting of polar aprotic solvents, alkoxy ether solvents, nitrile solvents, and aromatic solvents.
 
3. The fluorination method of any one of claims 1-2, wherein the fluorinating reagent is selected from the group consisting of sodium fluoride, potassium fluoride, cesium fluoride, lithium fluoride, tetrabutylammonium fluoride, and tetramethylammonium fluoride.
 
4. A fluorination method comprising:

providing a salt having the following structure to a reaction mixture:

where Ar is an aryl or heteroaryl;

where M is a cation;

providing SO2F2 to the reaction mixture;

reacting the SO2F2 and the salt to provide a fluorinated aryl species having the following structure:

        Ar-F.


 
5. The fluorination method of claim 4, wherein the solvent is selected from the group consisting of polar aprotic solvents, alkoxy ether solvents, nitrile solvents, and aromatic solvents.
 
6. The fluorination method of any one of claims 4-5, wherein the cation is selected from the group consisting of, sodium, potassium, cesium, tetramethylammonium, and tetrabutylammonium.
 
7. A fluorination method comprising:

providing a compound having the structure Ar-OH to a reaction mixture; where Ar is an aryl or heteroaryl;

providing SO2F2 to the reaction mixture;

providing a fluorinating reagent to the reaction mixture;

reacting the SO2F2, the fluorinating reagent and the compound having the structure Ar-OH to provide a fluorinated aryl species having the structure Ar-F.


 
8. The fluorination method of claim 7, wherein the fluorinating reagent is selected from the group consisting of sodium fluoride, potassium fluoride, cesium fluoride, tetrabutylammonium fluoride, and tetramethylammonium fluoride.
 
9. The fluorination method of any one of claims 7 or 8, wherein the solvent is selected from the group consisting of polar aprotic solvents, alkoxy ether solvents, nitrile solvents, and aromatic solvents.
 
10. A method according to claim 1, further comprising providing a solvent to the reaction mixture.
 
11. A method according to claim 4, further comprising providing a solvent to the reaction mixture.
 
12. A method according to claim 7, further comprising providing a solvent to the reaction mixture.
 


Ansprüche

1. Fluorierungsverfahren umfassend:

Bereitstellen eines Arylfluorsulfonats mit der folgenden Struktur:

worin Ar gleich Aryl oder Heteroaryl ist,

in einer Reaktionsmischung,

Bereitstellen eines Fluorierungsmittels in der Reaktionsmischung und

Umsetzen des Arylfluorsulfonats und des Fluorierungsmittels, um eine fluorierte Arylspezies mit der folgenden Struktur

        Ar-F.

bereitzustellen.


 
2. Fluorierungsverfahren nach Anspruch 1, wobei das Lösungsmittel ausgewählt ist aus der Gruppe bestehend aus polaren aprotischen Lösungsmitteln, Alkoxyetherlösungsmitteln, Nitrillösungsmitteln und aromatischen Lösungsmitteln.
 
3. Fluorierungsverfahren nach einem der Ansprüche 1 bis 2, wobei das Fluorierungsmittel ausgewählt ist aus der Gruppe bestehend aus Natriumfluorid, Kaliumfluorid, Caesiumfluorid, Lithiumfluorid, Tetrabutylammoniumfluorid und Tetramethylammoniumfluorid.
 
4. Fluorierungsverfahren umfassend:

Bereitstellen eines Salzes mit der folgenden Struktur:

worin Ar ein Aryl oder Heteroaryl ist,

wobei M ein Kation ist,

in einer Reaktionsmischung,

Bereitstellen von SO2F2 in der Reaktionsmischung,

Umsetzen des SO2F2 und dem Salz, um eine fluorierte Arylspezies mit der folgenden Struktur:

        Ar-F

bereitzustellen.


 
5. Fluorierungsverfahren nach Anspruch 4, wobei das Lösungsmittel ausgewählt ist aus der Gruppe bestehend aus polaren aprotischen Lösungsmitteln, Alkoxyetherlösungsmitteln, Nitrillösungsmitteln und aromatischen Lösungsmitteln.
 
6. Fluorierungsverfahren nach einem der Ansprüche 4 bis 5, wobei das Kation ausgewählt ist aus der Gruppe bestehend aus Natrium, Kalium, Caesium, Tetramethylammonium und Tetrabutylammonium.
 
7. Fluorierungsverfahren umfassend:

Bereitstellen einer Verbindung mit der Struktur Ar-OH,
worin Ar ein Aryl oder Heteroaryl ist,

in einer Reaktionsmischung,

Bereitstellen von SO2F2 in der Reaktionsmischung,

Bereitstellen eines Fluorierungsmittels in der Reaktionsmischung,

Umsetzen von SO2F2, dem Fluorierungsmittel und der Verbindung mit der Struktur Ar-OH, um eine fluorierte Arylspezies mit der Struktur Ar-F bereitzustellen.


 
8. Fluorierungsverfahren nach Anspruch 7, wobei das Fluorierungsmittel ausgewählt ist aus der Gruppe bestehend aus Natriumfluorid, Kaliumfluorid, Caesiumfluorid, Tetrabutylammoniumfluorid und Tetramethylammoniumfluorid.
 
9. Fluorierungsverfahren nach einem der Ansprüche 7 oder 8, wobei das Lösungsmittel ausgewählt ist aus der Gruppe bestehend aus polaren aprotischen Lösungsmitteln, Alkoxyetherlösungsmitteln, Nitrillösungmitteln und aromatischen Lösungsmitteln.
 
10. Verfahren gemäß Anspruch 1, das weiterhin das Bereitstellen eines Lösungsmittels in der Reaktionsmischung umfasst.
 
11. Verfahren gemäß Anspruch 4, das weiterhin das Bereitstellen eines Lösungsmittels in der Reaktionsmischung umfasst.
 
12. Verfahren gemäß Anspruch 7, das weiterhin das Bereitstellen eines Lösungsmittels in der Reaktionsmischung umfasst.
 


Revendications

1. Procédé de fluoration comportant les opérations suivantes :

- apporter un fluorosulfonate d'aryle présentant la structure suivante à un mélange réactionnel :

Ar représentant un groupe aryle ou hétéroaryle,

- apporter un réactif de fluoration au mélange réactionnel,

- et faire réagir le fluorosulfonate d'aryle et le réactif de fluoration, de manière à produire une espèce arylique fluorée présentant la structure suivante :

        Ar-F.


 
2. Procédé de fluoration selon la revendication 1, dans lequel le solvant est choisi dans l'ensemble constitué par des solvants polaires aprotiques, solvants du type alcoxy-éther, solvants du type nitrile et solvants aromatiques.
 
3. Procédé de fluoration selon n'importe laquelle des revendications 1 et 2, dans lequel le réactif de fluoration est choisi dans l'ensemble constitué par du fluorure de sodium, du fluorure de potassium, du fluorure de césium, du fluorure de lithium, du fluorure de tétrabutyl-ammonium et du fluorure de tétraméthyl-ammonium.
 
4. Procédé de fluoration comportant les opérations suivantes :

- apporter un sel présentant la structure suivante à un mélange réactionnel :

Ar représentant un groupe aryle ou hétéroaryle,

M représentant un cation,

- apporter du fluorure de sulfuryle (SO2F2) au mélange réactionnel,

- faire réagir le fluorure de sulfuryle et le sel, de manière à produire une espèce arylique fluorée présentant la structure suivante :

        Ar-F.


 
5. Procédé de fluoration selon la revendication 4, dans lequel le solvant est choisi dans l'ensemble constitué par des solvants polaires aprotiques, solvants du type alcoxy-éther, solvants du type nitrile et solvants aromatiques.
 
6. Procédé de fluoration selon n'importe laquelle des revendications 4 et 5, dans lequel le cation est choisi dans l'ensemble constitué par les cations sodium, potassium, césium, tétraméthyl-ammonium et tétrabutyl-ammonium.
 
7. Procédé de fluoration comportant les opérations suivantes :

- apporter un composé présentant la structure Ar-OH à un mélange réactionnel, Ar représentant un groupe aryle ou hétéroaryle,

- apporter du fluorure de sulfuryle (SO2F2) au mélange réactionnel,

- apporter un réactif de fluoration au mélange réactionnel,

- faire réagir le fluorure de sulfuryle, le réactif de fluoration et le composé présentant la structure Ar-OH, de manière à produire une espèce arylique fluorée présentant la structure Ar-F.


 
8. Procédé de fluoration selon la revendication 7, dans lequel le réactif de fluoration est choisi dans l'ensemble constitué par du fluorure de sodium, du fluorure de potassium, du fluorure de césium, du fluorure de tétrabutyl-ammonium et du fluorure de tétraméthyl-ammonium.
 
9. Procédé de fluoration selon n'importe laquelle des revendications 7 et 8, dans lequel le solvant est choisi dans l'ensemble constitué par des solvants polaires aprotiques, solvants du type alcoxy-éther, solvants du type nitrile et solvants aromatiques.
 
10. Procédé conforme à la revendication 1, comportant par ailleurs le fait d'apporter un solvant au mélange réactionnel.
 
11. Procédé conforme à la revendication 4, comportant par ailleurs le fait d'apporter un solvant au mélange réactionnel.
 
12. Procédé conforme à la revendication 7, comportant par ailleurs le fait d'apporter un solvant au mélange réactionnel.
 






Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description