(19)
(11)EP 3 462 809 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
13.05.2020 Bulletin 2020/20

(21)Application number: 18196284.6

(22)Date of filing:  24.09.2018
(51)Int. Cl.: 
H05B 3/03  (2006.01)
C01B 32/158  (2017.01)
H05B 3/14  (2006.01)

(54)

METHOD FOR ATTACHING BUS BAR TO CARBON ALLOTROPE DE-ICING SHEETS

VERFAHREN ZUR BEFESTIGUNG VON SAMMELSCHIENEN AN KOHLENSTOFFALLOTROP-ENTEISUNGSBAHNEN

PROCÉDÉ DE FIXATION DE BARRE OMNIBUS SUR DES FEUILLES DE DÉGIVRAGE DE CARBONE ALLOTROPE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 26.09.2017 US 201715716089

(43)Date of publication of application:
03.04.2019 Bulletin 2019/14

(73)Proprietor: Goodrich Corporation
Charlotte, NC 28217-4578 (US)

(72)Inventors:
  • DARDONA, Sameh
    South Windsor, CT 06074 (US)
  • SHEEDY, Paul
    Bolton, CT 06043 (US)
  • SCHMIDT, Wayde R.
    Pomfret Center, CT 06259 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
US-A1- 2014 151 353
US-A1- 2016 243 636
US-A1- 2015 053 668
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] This application relates generally to aircraft ice protection, and specifically to de-icing sheets.

    [0002] Exterior surfaces of aircraft are often subjected to ice formation, and anti-icing or de-icing devices must be used to remove or prevent ice from accumulating. Various types of ice protection systems have been developed to protect aircraft from the hazardous effects of icing. Electro-thermal de-icing systems typically use metal wires to resistively melt ice by converting electrical energy to thermal energy. The use of metal wires as resistance elements embedded in de-icing systems presents several problems, including element durability, parasitic weight, limited damage tolerance and low power efficiency.

    [0003] Carbon nanotube (CNT) materials have been proposed as an alternative to metal wire or foil heating elements in ice protection systems. CNTs are carbon allotropes having a generally cylindrical nanostructure. They have unusual properties that make them valuable for many different technologies. For instance, some CNTs can have high thermal and electrical conductivity, making them suitable for replacing metal heating elements. Due to their much lighter mass, substituting CNTs for metal heating components can reduce the overall weight of a heating component significantly. This makes the use of CNTs of particular interest for applications where weight is critical, such as in aerospace and aviation technologies. However, sheets or films containing CNTs are difficult to connect to an electrical circuit. For instance, bus bar attachment to CNT sheets is quite difficult, as metallic bus bars do not wet to carbon allotropes. Thus, connecting metal wires, for example via soldering, to a CNT heater can be challenging.

    [0004] US2014/151353A1 discloses a heater element according to the preamble of claim 11.

    [0005] Typical metal heating circuits are commonly created by photochemically etching metallic alloy foils on a substrate and subsequently building electrothermal heater composites. This method suffers from insufficient reliability due to over- or under-etching, photoresist alignment issues, and delamination, in addition to poor substrate adhesion. Additionally, this type of etching is time consuming, wasteful, and environmentally detrimental.

    SUMMARY



    [0006] A method of making a conformal coating on a carbon allotrope heater element comprising: applying a wetting agent to a portion of the carbon allotrope heater element to create a wetting layer, wherein the wetting agent is selected from the group consisting of carbides, oxides, and nitrides; introducing a metallic material onto the portion of the carbon allotrope heater element with the wetting layer; and melting the metallic material such that it wets the portion of the carbon allotrope heater element with the wetting layer.

    [0007] A carbon allotrope heater element comprises: a carbon allotrope material; and a metallic coating on a portion of the carbon allotrope material, the metallic coating being bonded to the carbon allotrope material by a wetting layer selected from the group consisting of carbides, oxides, and nitrides.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0008] 

    FIG. 1 is a schematic view of a carbon allotrope heater sheet with bus bar attachments.

    FIG. 2 is a flow chart depicting a method of making a carbon allotrope heater sheet with bus bar attachments.


    DETAILED DESCRIPTION



    [0009] Heating circuits are used for a variety of ice protection purposes. The use of carbon nanotubes and other types of carbon allotropes allows for tailored resistivity and increased power efficiency for ice protection applications. However, carbon nanotube heater elements are difficult to connect to bus bars for electrical connection to the de-icing circuit. Thus, this application presents a method of attaching metallic bus bars to carbon heater elements using a surface modification of the carbon allotrope, including a wetting layer.

    [0010] FIG. 1 is a schematic view of a carbon allotrope heater sheet with bus bar attachments. Carbon allotrope heater sheet 10 includes main portion 12 and coated portions 14. Carbon allotrope heater sheet can be, for example, made of carbon nanotubes (CNT), and can be woven or non-woven, knitted, braided, self-assembled, vapor deposited, solution cast, planar or nonplanar, or three dimensional. Alternatively, sheet 10 can be made of a different carbon allotrope, including at least one of graphene, graphene nanoribbons (GNRs), graphite or other suitably conductive form of carbon. Other alternatives, such as boron nitride nanotubes, can be used.

    [0011] Coated portions 14 allow for electrical connection to sheet 10. For instance, wires can be soldered onto coated portions 14. Coated portions 14 are comprised of a metallic material, such as copper or copper alloys, aluminum or aluminum alloys, nickel or its alloys, platinum or platinum alloys, silver or silver alloys, solder alloys, braze alloys, other suitably conductive metals or semimetals, or combinations thereof. Coated portions are applied to sheet 10 through a wetting layer capable of allowing at least partial infiltration or coating of sheet 10 by metallic material. The wetting layer can be comprised of Mo2C, TiC, NiO, Fe2O3, Cr3C2, WC or other suitable carbides, oxides or nitrides. The wetting layer is applied to sheet 10 prior to the metallic material. The process of making sheet 10 with coated portions 14 is explained in reference to FIG. 2 below.

    [0012] FIG. 2 is a flow chart depicting a method of making a carbon allotrope heater sheet, such as a CNT heater sheet, with bus bar attachments. Method 20 (discussed in more detail below) includes coating a heater element (step 22), heat treating the heater element (step 24), placing a metallic material onto the heater element (26), and melting the metallic material (step 28). Method 20 in FIG. 2 results in an article such as heater sheet 10 of FIG. 1.

    [0013] Method 20 starts with creating a wetting layer on a heater element in step 22. The heater element can be a carbon allotrope suitable for ice protection, such as carbon nanotubes, graphene, graphene nanoribbons (GNRs), graphite or other suitably conductive form of carbon. Alternatively, boron nitride nanotubes or similar material can be used. Depending on the specific application, heater elements can range widely in size from a few square centimeters to hundreds of square centimeters, for example, a heater can be less than one square inch (645.16 square millimetres), or a panel of 50 by 100 inches (127 by 254 centimetres). The heater element can be a sheet that is woven or non-woven (as described in more detail with reference to FIG. 1), depending on its ultimate application for ice protection (e.g., what part of the aircraft it may be applied to and the ice protection needs of that part). In another example, the heater element can be a single wire, cable or ribbon structure, or bundles of such structures, comprising the carbon allotrope. Or, the heater element can be a three dimensional heater element, such as a heater element with varying thicknesses as required by the shape of a part needing ice protection (such a heating element with varying thicknesses would have varying resistances as a function of thickness and/or shape).

    [0014] A wetting layer is applied to the heater element in step 22. The wetting layer enables the infiltration or coating of a metallic layer into or onto at least a portion of the heater element. This allows for improved electrical contacts. The wetting layer can be Mo2C, TiC, NiO, Fe2O3, Cr3C2, or other suitable carbides, oxides or nitrides. Typically, the wetting layer ranges in thickness from a few atoms (about one nanometer) up to hundreds of microns. The wetting layer can be applied through slurry or vapor coating methods, including dip coating, painting, chemical vapor deposition (CVD), physical vapor deposition (PVD) and atomic layer deposition (ALD), direct writing methods, including screen printing, micro-extrusion or aerosol jet printing, or other suitable methods. In most instances, only a prescribed portion of the heater element is imparted with the wetting layer in order to create a local electrical connection, nominally ranging from about 5% to about 40% of the available surface area of the heater element. The size, shape and thickness of the imparted wetting layer can be tailored to match the configuration of the de-icing circuit which best serves the ice protection needs, with nominal thicknesses varying from just a monolayer to several microns. In some instances, an integral carbide wetting layer may be formed directly on the heater element material via reaction between a chemical precursor and the free surface of the heater element. Such integral carbides are then amenable to wetting with metallic elements, such as copper.

    [0015] Optionally, the heater element imparted with wetting layer is heat treated in step 24. Depending on the selected wetting layer, the heater element with wetting layer may be sintered or heat treated. For instance, a sample carbon nanotube heater element with a Mo2C wetting layer can be, for example, heated to about 1400°C for about 15 minutes in an argon environment. The specific requirements of step 24 depend on the materials selected for the heater element and the wetting layer. In some instances, step 24 may secure the wetting layer to the heater element prior to addition of a metallic layer that will allow for a bus bar connection. Additional environmental exposure (time, temperature, or atmosphere) in static or cyclic sequences can be used.

    [0016] Subsequently, a metallic element is placed (or deposited) on the heater element in step 26. The metal, alloy, or metallic element or alloy precursor can be in the form of a foil, powder, wire, solution, vapor or other suitable form to result in the desired chemistry, and is placed on, in or sufficiently close to, the portion of the heater element that has the wetting layer. Typically, the metallic element can be between one and ten nanometers thick. The metallic element can be copper, copper alloys, nickel, nickel alloys, or other suitable metallic elements which would allow for an appropriate bus bar connection. Alternatively, a metallic paste, dispersion, or ink can be directly deposited onto the wetting layer or a molten metal may be directly introduced to the portion of the heater element with wetting layer. The amount of metallic element is chosen to result in a sufficiently continuous electrical connection and may vary depending upon the configuration of de-icing circuit.

    [0017] Finally, if step 26 is completed, the metallic element is melted to form the integral electrical connection on the heater element in step 28 (unless a molten metal was used, in which case steps 26-28 are combined). For example, a copper metallic layer may be processed at about 1200°C for about 15 minutes under argon to create an integral electrical connection. Specific process conditions will depend on the metallic layer, wetting layer, and composition of the heater element. Alternatively, co-firing of the wetting layer and metallic layer can occur, where steps 24 and 28 are done together. In another embodiment, addition of the metallic element can be done by additive manufacturing methods such as direct writing.

    [0018] The above described method allows for integration of a highly conductive electrical connection onto a carbon allotrope heater element for ice protection. The resulting electrical connection has both a low resistance and good adhesion to the heater element. This allows for a robust junction between a carbon allotrope based heating element and other heating circuitry. The carbon allotrope heater element itself is lightweight, and can be tailored to surfaces needing ice protection. This method reliability creates a bus bar connection to a heating element that is more environmentally durable, lower cost, and can be location specific on the heating element.

    [0019] While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.


    Claims

    1. A method (20) of making a conformal electrical connection on a carbon allotrope heater element (10) comprising:

    applying a wetting agent to a portion (14) of the carbon allotrope heater element to
    create a wetting layer, wherein the wetting agent is selected from the group consisting of carbides, oxides, and nitrides;

    introducing a metallic material onto the portion of the carbon allotrope heater element with the wetting layer; and

    melting the metallic material such that it wets the portion of the carbon allotrope heater element with the wetting layer.


     
    2. The method of claim 1, wherein the carbon allotrope heater element is comprised of a material selected from the group consisting of carbon nanotubes, graphene, graphene nanoribbons, graphite, boron nitride nanotubes, and combinations thereof.
     
    3. The method of claims 1 or 2, further comprising heat treating the wetting layer on the carbon allotrope heating element, and preferably wherein heat treating the wetting layer, introducing the metallic material, and melting the metallic material are done simultaneously.
     
    4. The method of any preceding claim, wherein introducing a metallic material is done by slurry, vapor, or direct writing methods.
     
    5. The method of any preceding claim, wherein the wetting agent is selected from the group consisting of Mo2C, TiC, NiO, Fe2O3, Cr3C2 and WC.
     
    6. The method of any preceding claim, wherein the metallic material is selected from the group consisting of copper, copper alloys, aluminum, aluminum alloys, nickel, nickel alloys, platinum, platinum alloys, silver, silver alloys, solder alloys, braze alloys, and combinations thereof.
     
    7. The method of any preceding claim, wherein the metallic material is a foil, powder, wire, slurry, solution, or vapor.
     
    8. The method of claim 3, wherein heat treating the wetted carbon allotrope heater element occurs between 50 and 2000 degrees Celsius.
     
    9. The method of any preceding claim, wherein melting the metallic material occurs between 80 and 2000 degrees Celsius.
     
    10. The method of any preceding claim, wherein introducing a metallic material to a portion of the carbon allotrope heater element occurs by conversion of a portion of a surface of the carbon allotrope heater element to a carbide.
     
    11. A carbon allotrope heater element (10) comprising:

    a carbon allotrope material; and

    a metallic coating on a portion (14) of the carbon allotrope material, the metallic coating being bonded to the carbon allotrope material by a wetting layer;

    characterized in that the wetting layer is selected from the group consisting of carbides, oxides, and nitrides.


     
    12. The carbon allotrope heater element of claim 11, wherein the carbon allotrope heater element is comprised of a material selected from the group consisting of carbon nanotubes, graphene, graphene nanoribbons, graphite, boron nitride nanotubes, and combinations thereof.
     
    13. The carbon allotrope heater element of claims 11 or 12, wherein the wetting layer is selected from the group consisting of Mo2C, TiC, NiO, Fe2O3, Cr3C2 and WC.
     
    14. The carbon allotrope heater element of any of claims 11-13, wherein the metallic coating is selected from the group consisting of copper, copper alloys, aluminum, aluminum alloys, nickel, nickel alloys, platinum, platinum alloys, silver, silver alloys, solder alloys, braze alloys, and combinations thereof.
     
    15. The carbon allotrope heater element of any of claims 11-14, wherein the wetting layer is formed by conversion of a portion of the surface of the carbon allotrope material to a carbide.
     


    Ansprüche

    1. Verfahren (20) zum Herstellen einer sich anpassenden elektrischen Verbindung an einem Kohlenstoffallotrop-Heizelement (10), Folgendes umfassend:

    Anbringen eines Netzmittels an einen Teil (14) des Kohlenstoffallotrop-Heizelements, um eine Netzschicht zu erzeugen, wobei das Netzmittel aus der Gruppe ausgewählt ist, die aus Carbiden, Oxiden und Nitriden besteht;

    Aufbringen eines metallischen Materials auf den Teil des Kohlenstoffallotrop-Heizelements mit der Netzschicht; und

    Schmelzen des metallischen Materials, sodass es den Teil des Kohlenstoffallotrop-Heizelements mit der Netzschicht benetzt.


     
    2. Verfahren nach Anspruch 1, wobei das Kohlenstoffallotrop-Heizelement aus einem Material besteht, das aus der Gruppe ausgewählt ist, die aus Kohlenstoffnanoröhren, Graphen, Graphennanostreifen, Graphit, Bornitridnanoröhren und Kombinationen davon besteht.
     
    3. Verfahren nach Anspruch 1 oder 2, ferner ein Wärmebehandeln der Netzschicht auf dem Kohlenstoffallotrop-Heizelement umfassend, und wobei vorzugsweise das Wärmebehandeln der Netzschicht, das Aufbringen des metallischen Materials und das Schmelzen des metallischen Materials simultan durchgeführt werden.
     
    4. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Aufbringen eines metallischen Materials durch Aufschlämm-, Aufdampf- oder Direktschreibverfahren durchgeführt wird.
     
    5. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Netzmittel aus der Gruppe ausgewählt ist, die aus Mo2C, TiC, NiO, Fe2O3, Cr3C2 und WC besteht.
     
    6. Verfahren nach einem der vorhergehenden Ansprüche, wobei das metallische Material aus der Gruppe ausgewählt ist, die aus Kupfer, Kupferlegierungen, Aluminium, Aluminiumlegierungen, Nickel, Nickellegierungen, Platin, Platinlegierungen, Silber, Silberlegierungen, Lotlegierungen, Hartlotlegierungen und Kombinationen davon besteht.
     
    7. Verfahren nach einem der vorhergehenden Ansprüche, wobei das metallische Material eine Folie, Pulver, Draht, eine Aufschlämmung, eine Lösung oder Dampf ist.
     
    8. Verfahren nach Anspruch 3, wobei das Wärmebehandeln des benetzten Kohlenstoffallotrop-Heizelements bei zwischen 50 und 2000 Grad Celsius geschieht.
     
    9. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Schmelzen des metallischen Materials bei zwischen 80 und 2000 Grad Celsius geschieht.
     
    10. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Aufbringen eines metallischen Materials auf einen Teil des Kohlenstoffallotrop-Heizelements durch Umwandeln eines Teils einer Oberfläche des Kohlenstoffallotrop-Heizelements in ein Carbid geschieht.
     
    11. Kohlenstoffallotrop-Heizelement (10), Folgendes umfassend:

    ein Kohlenstoffallotropmaterial; und

    eine metallische Beschichtung an einem Teil (14) des Kohlenstoffallotropmaterials, wobei die metallische Beschichtung durch eine Netzschicht an das Kohlenstoffallotropmaterial gebunden ist;

    dadurch gekennzeichnet, dass die Netzschicht aus der Gruppe ausgewählt ist, die aus Carbiden, Oxiden und Nitriden besteht.


     
    12. Kohlenstoffallotrop-Heizelement nach Anspruch 11, wobei das Kohlenstoffallotrop-Heizelement aus einem Material besteht, das aus der Gruppe ausgewählt ist, die aus Kohlenstoffnanoröhren, Graphen, Graphennanostreifen, Graphit, Bornitridnanoröhren und Kombinationen davon besteht.
     
    13. Kohlenstoffallotrop-Heizelement nach Anspruch 11 oder 12, wobei die Netzschicht aus der Gruppe ausgewählt ist, die aus Mo2C, TiC, NiO, Fe2O3, Cr3C2 und WC besteht.
     
    14. Kohlenstoffallotrop-Heizelement nach einem der Ansprüche 11-13, wobei die metallische Beschichtung aus der Gruppe ausgewählt ist, die aus Kupfer, Kupferlegierungen, Aluminium, Aluminiumlegierungen, Nickel, Nickellegierungen, Platin, Platinlegierungen, Silber, Silberlegierungen, Lotlegierungen, Hartlotlegierungen und Kombinationen davon besteht.
     
    15. Kohlenstoffallotrop-Heizelement nach einem der Ansprüche 11-14, wobei die Netzschicht durch Umwandeln eines Teils der Oberfläche des Kohlenstoffallotropmaterials in ein Carbid gebildet ist.
     


    Revendications

    1. Procédé (20) d'établissement d'un raccordement électrique conforme sur un élément chauffant de carbone allotrope (10) comprenant :

    l'application d'un agent mouillant sur une partie (14) de l'élément chauffant de carbone allotrope pour créer une couche mouillante, dans lequel l'agent mouillant est choisi dans le groupe constitué de carbures, d'oxydes et de nitrures ;

    l'introduction d'un matériau métallique sur la partie de l'élément chauffant de carbone allotrope avec la couche mouillante ; et

    la fusion du matériau métallique de sorte qu'il mouille la partie de l'élément chauffant de carbone allotrope avec la couche mouillante.


     
    2. Procédé selon la revendication 1, dans lequel l'élément chauffant de carbone allotrope est constitué d'un matériau choisi dans le groupe constitué de nanotubes de carbone, de graphène, de nanorubans de graphène, de graphite, de nanotubes de nitrure de bore et de combinaisons de ceux-ci.
     
    3. Procédé selon les revendications 1 ou 2, comprenant en outre le traitement thermique de la couche mouillante sur l'élément chauffant de carbone allotrope, et de préférence dans lequel le traitement thermique de la couche mouillante, l'introduction du matériau métallique et la fusion du matériau métallique sont effectués simultanément.
     
    4. Procédé selon une quelconque revendication précédente, dans lequel l'introduction d'un matériau métallique est effectuée par la boue, la vapeur ou des procédés d'écriture.
     
    5. Procédé selon une quelconque revendication précédente, dans lequel l'agent mouillant est choisi dans le groupe constitué de Mo2C, de TiC, de NiO, de Fe2O3, de Cr3C2 et de WC.
     
    6. Procédé selon une quelconque revendication précédente, dans lequel le matériau métallique est choisi dans le groupe constitué de cuivre, d'alliages de cuivre, d'aluminium, d'alliages d'aluminium, de nickel, d'alliages de nickel, de platine, d'alliages de platine, d'argent, d'alliages d'argent, d'alliages de soudure, d'alliages de brasure et de combinaisons de ceux-ci.
     
    7. Procédé selon une quelconque revendication précédente, dans lequel le matériau métallique est une feuille, une poudre, un fil, une boue, une solution ou une vapeur.
     
    8. Procédé selon la revendication 3, dans lequel le traitement thermique de l'élément chauffant de carbone allotrope mouillé se produit entre 50 et 2 000 degrés Celsius.
     
    9. Procédé selon une quelconque revendication précédente, dans lequel la fusion du matériau métallique se produit entre 80 et 2 000 degrés Celsius.
     
    10. Procédé selon une quelconque revendication précédente, dans lequel l'introduction d'un matériau métallique dans une partie de l'élément chauffant de carbone allotrope se produit par conversion d'une partie d'une surface de l'élément chauffant de carbone allotrope en un carbure.
     
    11. Élément chauffant de carbone allotrope (10) comprenant :

    un matériau de carbone allotrope ; et

    un revêtement métallique sur une partie (14) du matériau de carbone allotrope, le revêtement métallique étant lié au matériau de carbone allotrope par une couche mouillante ;

    caractérisé en ce que la couche mouillante est choisie dans le groupe constitué de carbures, d'oxydes et de nitrures.


     
    12. Élément chauffant de carbone allotrope selon la revendication 11, dans lequel l'élément chauffant de carbone allotrope est constitué d'un matériau choisi dans le groupe constitué de nanotubes de carbone, de graphène, de nanorubans de graphène, de graphite, de nanotubes de nitrure de bore et de combinaisons de ceux-ci.
     
    13. Élément chauffant de carbone allotrope selon les revendications 11 ou 12, dans lequel la couche mouillante est choisie dans le groupe constitué de Mo2C, de TiC, de NiO, de Fe2O3, de Cr3C2 et de WC.
     
    14. Élément chauffant de carbone allotrope selon l'une quelconque des revendications 11 à 13, dans lequel le revêtement métallique est choisi dans le groupe constitué de cuivre, d'alliages de cuivre, d'aluminium, d'alliages d'aluminium, de nickel, d'alliages de nickel, de platine, d'alliages de platine, d'argent, d'alliages d'argent, d'alliages de soudure, d'alliages de brasure et de combinaisons de ceux-ci.
     
    15. Élément chauffant de carbone allotrope selon l'une quelconque des revendications 11 à 14, dans lequel la couche mouillante est formée par conversion d'une partie de la surface du matériau de carbone allotrope en un carbure.
     




    Drawing









    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description