(19)
(11)EP 3 468 110 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.09.2020 Bulletin 2020/37

(21)Application number: 16907809.4

(22)Date of filing:  06.07.2016
(51)International Patent Classification (IPC): 
H04L 12/52(2006.01)
H04J 3/16(2006.01)
H04L 12/46(2006.01)
H04L 12/721(2013.01)
(86)International application number:
PCT/CN2016/088931
(87)International publication number:
WO 2018/006304 (11.01.2018 Gazette  2018/02)

(54)

DATA TRANSMISSION METHOD AND FORWARDING DEVICE

DATENÜBERTRAGUNGSVERFAHREN UND WEITERLEITUNGSVORRICHTUNG

PROCÉDÉ DE TRANSMISSION DE DONNÉES, ET DISPOSITIF D'ACHEMINEMENT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
10.04.2019 Bulletin 2019/15

(60)Divisional application:
20181995.0

(73)Proprietor: Huawei Technologies Co., Ltd.
Longgang Shenzhen, Guangdong 518129 (CN)

(72)Inventors:
  • DU, Zongpeng
    Shenzhen Guangdong 518129 (CN)
  • CHEN, Guoyi
    Shenzhen Guangdong 518129 (CN)
  • DONG, Jie
    Shenzhen Guangdong 518129 (CN)
  • WANG, Xinyuan
    Shenzhen Guangdong 518129 (CN)
  • GONG, Jun
    Shenzhen Guangdong 518129 (CN)

(74)Representative: Isarpatent 
Patent- und Rechtsanwälte Behnisch Barth Charles Hassa Peckmann & Partner mbB Friedrichstrasse 31
80801 München
80801 München (DE)


(56)References cited: : 
EP-A2- 0 939 576
CN-A- 103 875 205
US-A1- 2016 119 075
CN-A- 102 891 813
CN-A- 104 426 631
  
  • EDITOR: "FlexE Implementation Agreement - Draft 1.3", ITU-T DRAFT ; STUDY PERIOD 2013-2016, INTERNATIONAL TELECOMMUNICATION UNION, GENEVA ; CH, 5 February 2016 (2016-02-05), pages 1-32, XP044165967, [retrieved on 2016-02-05]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] The present invention relates to the communications field, and more specifically, to a data sending method and a forwarding device.

BACKGROUND



[0002] Introduction of a concept of a flexible Ethernet (Flexible Ethernet, FlexE) provides a feasible evolution direction for Ethernet physical link virtualization. In the FlexE, one or more bonded PHYs constitute a flexible Ethernet group (FlexE Group). The FlexE group may be considered as a FlexE link between a sending device and a receiving device. The FlexE link is a logical link. Bandwidth of the logical link is equal to a sum of bandwidth of the multiple bonded PHYs. In a FlexE technical solution, bandwidth resources of the FlexE group are used by performing timeslot configuration (for example, 20 or 80 timeslots are configured), and a virtual link is implemented by performing timeslot configuration, so that the FlexE provides a service to a flexible Ethernet client (FlexE Client).

[0003] When a sending device and a receiving device transmit a FlexE client by using a virtual link supported by the FlexE group, the sending device may encode, according to a 64B/66B structure, an Ethernet frame corresponding to the FlexE client, so as to obtain 64B/66B data blocks. Under the control of a flexible Ethernet shim (FlexE SHIM), the FlexE client is transferred over a transport network (Transport Network).

[0004] After receiving the FlexE client, the receiving device needs to perform forwarding in a conventional layer 2 (link layer) or layer 3 (network layer) forwarding mode according to a layer 2 or layer 3 forwarding table. Therefore, a delay is relatively large.

[0005] Document EP 0939576 A2 discloses a circuit-switched network. A local switch serving a terminal constituting the destination of an IP packet is identified from the IP address of the packet, and time slot switching information is formed, this being information relating to a route through a Synchronous Transfer Mode (STM) network to this local switch. The packet can then be transferred through the STM network in accordance with this time slot switching information. As a result, a packet with an IP address can be transferred through an STM network.

SUMMARY



[0006] The object of the present invention is to provide a data sending method in which multiple timeslots are determined, and multiple first encoded data blocks are sent in the multiple timeslots, so as to reduce a delay. This object is solved by the independent claims and further embodiments thereof are listed in the depenent claims. Aspects of the invention which contribute to the understanding of the invention are mentioned below.

[0007] According to a first aspect, a data sending method is provided, including: respectively receiving, by a forwarding device by using a first FlexE group and in multiple timeslots included in a first timeslot set, multiple first encoded data blocks (encoded data block) generated by a physical coding sublayer (Physical Coding Sublayer, PCS), where the multiple first encoded data blocks are in a one-to-one correspondence with the multiple timeslots in the first timeslot set; determining, by the forwarding device according to the multiple timeslots included in the first timeslot set and the first FlexE group, a second FlexE group and multiple timeslots included in a second timeslot set; and respectively sending, by the forwarding device, the multiple first encoded data blocks by using the second FlexE group and in the multiple timeslots included in the second timeslot set, where the multiple first encoded data blocks are in a one-to-one correspondence with the multiple timeslots included in the second timeslot set.

[0008] According to the data sending method in this embodiment of the present invention, a forwarding device determines multiple timeslots in a second timeslot set and a second FlexE group that are corresponding to multiple timeslots in a first timeslot set and a first FlexE group, so that the forwarding device can map encoded data blocks received by using the first FlexE group and in the multiple timeslots in the first timeslot set into the multiple timeslots in the second timeslot set, and send the encoded data blocks by using the second FlexE group. That is, the forwarding device may determine the multiple timeslots, and send the multiple first encoded data blocks in the multiple timeslots. Therefore, the forwarding device does not need to process 64B/66B data blocks according to a conventional layer 2 (link layer) or layer 3 (network layer) forwarding mode, so as to reduce a processing delay, and reduce a transmission delay.

[0009] In a possible implementation manner, the determining, by the forwarding device according to the multiple timeslots included in the first timeslot set and the first FlexE group, a second FlexE group and multiple timeslots included in a second timeslot set includes: determining, by the forwarding device by searching a first mapping table, the second FlexE group and the multiple timeslots included in the second timeslot set, where the first mapping table includes a mapping relationship between the first FlexE group and the multiple timeslots included in the first timeslot set, and between the second FlexE group and the multiple timeslots included in the second timeslot set.

[0010] In a possible implementation manner, the determining, by the forwarding device according to the multiple timeslots included in the first timeslot set and the first FlexE group, a second FlexE group and multiple timeslots included in a second timeslot set includes: determining, by a first physical interface card PIC in the forwarding device by searching a second mapping table, an identifier of a first channel that is corresponding to the multiple timeslots included in the first timeslot set and the first FlexE group, where the second mapping table includes a mapping relationship between the multiple timeslots included in the first timeslot and the first FlexE group, and the identifier of the first channel, and the first channel is a channel between the first PIC and a first network processor NP in the forwarding device; determining, by the first NP by searching a third mapping table, a first subinterface corresponding to the identifier of the first channel, where the first subinterface is corresponding to the second FlexE group, and the third mapping table includes a mapping relationship between the identifier of the first channel and the first subinterface; determining, by a second NP in the forwarding device by searching a fourth mapping table, an identifier of a second channel that is corresponding to the first subinterface, where the fourth mapping table includes a mapping relationship between the first subinterface and the identifier of the second channel, and the second channel is a channel between the second NP and a second PIC in the forwarding device; and determining, by the second PIC by searching a fifth mapping table, the multiple timeslots included in the second timeslot set that are corresponding to the identifier of the second channel, where the fifth mapping table includes a mapping relationship between the identifier of the second channel and the multiple timeslots included in the second timeslot set.

[0011] In a possible implementation manner, after the respectively receiving, by a forwarding device by using a first flexible Ethernet group FlexE group and in multiple timeslots included in a first timeslot set, multiple first encoded data blocks generated by a physical coding sublayer, the method may further include: generating, by the first PIC, a target data packet according to the multiple first encoded data blocks.

[0012] In a possible implementation manner, the generating, by the first PIC, a target data packet according to the multiple first encoded data blocks includes: reassembling, by the first PIC, the multiple first encoded data blocks to restore one or more target data packets, where the target data packet is an Ethernet frame.

[0013] In this embodiment of the present invention, the received encoded data blocks are reassembled first to restore the Ethernet frame, and then timeslot mapping and forwarding are performed, so that modifications to an architecture of an existing forwarding device can be reduced.

[0014] In a possible implementation manner, the generating, by the first PIC, a target data packet according to the multiple first encoded data blocks includes: encapsulating, by the forwarding device, every N encoded data blocks in the multiple first encoded data blocks to generate the target data packet.

[0015] The method in which multiple data packets are buffered and encapsulated into a relatively large data packet and then are forwarded can improve transmission efficiency of the forwarding device.

[0016] In a possible implementation manner, after the determining, by a first physical interface card PIC in the forwarding device by searching a second mapping table, an identifier of a first channel that is corresponding to the multiple timeslots included in the first timeslot set and the first FlexE group, the method further includes: adding, by the first PIC, the identifier of the first channel to the target data packet; and sending, by the first PIC to the first NP by using the first channel, the data packet to which the identifier of the first channel is added; and after the determining, by a second NP in the forwarding device by searching a fourth mapping table, an identifier of a second channel that is corresponding to the first subinterface, the method further includes: adding, by the second NP, the identifier of the second channel to the target data packet; and sending, by the second NP to the second PIC by using the second channel, the data packet to which the identifier of the second channel is added.

[0017] In a possible implementation manner, the method may further include: respectively receiving, by the forwarding device by using the first FlexE group and in multiple timeslots included in a third timeslot set, multiple second encoded data blocks generated by the physical coding sublayer PCS, where the multiple second encoded data blocks are in a one-to-one correspondence with the multiple timeslots in the third timeslot set; and generating, by the forwarding device, an Ethernet frame according to the multiple second encoded data blocks, and performing layer 2 processing on the Ethernet frame, or performing layer 3 processing on an Internet Protocol packet included in the Ethernet frame.

[0018] In a possible implementation manner, the multiple first encoded data blocks are 64B/66B data blocks.

[0019] According to a second aspect, a forwarding device is provided, and is configured to execute the method in the first aspect or any possible implementation manner of the first aspect. Specifically, the forwarding device includes units configured to execute the method in the first aspect or any possible implementation manner of the first aspect.

[0020] According to a third aspect, a forwarding device is provided. The forwarding device includes a receiver, a transmitter, a processor, a memory, and a bus system. The receiver, the transmitter, the processor, and the memory are connected by using the bus system. The memory is configured to store an instruction. The processor is configured to execute the instruction stored in the memory, so as to control the receiver to receive a signal and control the transmitter to send a signal. In addition, when the processor executes the instruction stored in the memory, the processor executes the method in the first aspect or any possible implementation manner of the first aspect.

[0021] According to a fourth aspect, this application provides a computer readable medium. The computer readable medium is configured to store a computer program. The computer program includes an instruction used to execute the method in the first aspect or any possible implementation manner of the first aspect.

BRIEF DESCRIPTION OF DRAWINGS



[0022] To describe the technical solutions in the embodiments of the present invention more clearly, the following briefly describes the accompanying drawings required for describing the embodiments or the prior art. Apparently, the accompanying drawings in the following description merely show some embodiments of the present invention, and persons of ordinary skill in the art can derive other drawings from these accompanying drawings without creative efforts.

FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention;

FIG. 2 is a schematic flowchart of a data sending method according to an embodiment of the present invention;

FIG. 3 is a schematic block diagram of a data sending method according to an embodiment of the present invention;

FIG. 4 is a schematic flowchart of a data sending method according to another embodiment of the present invention;

FIG. 5 is a schematic block diagram of a forwarding device according to an embodiment of the present invention; and

FIG. 6 is a schematic structural diagram of a forwarding device according to an embodiment of the present invention.


DESCRIPTION OF EMBODIMENTS



[0023] The following clearly describes the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. The described embodiments are some but not all of the embodiments of the present invention. Based on the embodiments in the present invention, persons of ordinary skill in the art may derive other embodiments without creative efforts.

[0024] The following briefly describes the technical terms used in the embodiments of the present invention.

[0025] A flexible Ethernet client (FlexE Client) is an Ethernet flow (Ethernet flow). For the Ethernet flow, an Ethernet MAC rate (Ethernet MAC rate) is corresponding to or not corresponding to an Ethernet PHY rate (Ethernet PHY rate).

[0026] A flexible Ethernet group (FlexE Group) is a group of from 1 to n bonded Ethernet PHYs (a Group of from 1 to n bonded Ethernet PHYs), where a value of n is equal to 254. For example, the FlexE group may be one bonded Ethernet PHY. The FlexE group may be two bonded Ethernet PHYs. The FlexE group may be five bonded Ethernet PHYs.

[0027] For the one bonded Ethernet PHY, one send PHY (send PHY) is bonded to a receive PHY (receive PHY). The number of send PHYs is equal to the number of receive PHYs.

[0028] For multiple bonded Ethernet PHYs, multiple send PHYs are respectively bonded to multiple receive PHYs. The number of multiple send PHYs is equal to the number of multiple receive PHYs.

[0029] The send PHY is a PHY used for sending data.

[0030] The receive PHY is a PHY used for receiving data.

[0031] All PHYs in this application are Ethernet PHYs.

[0032] For a flexible Ethernet (Flex Ethernet, FlexE), the FlexE client, and the FlexE group, refer to the Flexible Ethernet 1.0 Implementation Agreement (Flex Ethernet 1.0 Implementation Agreement) published by the Optical Internetworking Forum (Optical Internetworking Forum) on March, 2016.

[0033] A logical link is a link established on a physical link. One physical link may be divided into multiple logical links. Alternatively, multiple physical links may constitute one logical link.

[0034] Technical solutions provided in the embodiments of the present invention may be applied to a backbone network, a convergence network, an access network, an enterprise network, a mobile fronthaul network, or a backhaul network.

[0035] A data sending method in this embodiment of the present invention may be applied to a FlexE. In a FlexE scenario, each bonded Ethernet PHY in a FlexE grouptransmits an encoded data block flow in a period of 20 timeslots. There is an overhead (overhead) code block at an interval of 1023 groups of encoded data blocks in the encoded data block flow. The overhead code block occupies 66 bits. Each group of encoded data blocks generally includes 20 64B/66B encoded data blocks. The 20 64B/66B data blocks are respectively transmitted in 20 timeslots. When a sending device and a receiving device transmit a FlexE client by using a virtual link supported by the FlexE group, timeslot resources occupied by the virtual link may be determined based on a timeslot configuration table corresponding to each bonded Ethernet PHY in the FlexE group, and then these timeslot resources are used to transmit the FlexE client to the receiving device.

[0036] FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention. As shown in FIG. 1, a sending device 1, a receiving device 1, and s forwarding devices (a forwarding device 1 to a forwarding device s) are included, where s is an integer greater than 1. A FlexE link is established between the sending device 1 and the forwarding device 1 by using a FlexE group A. A FlexE link is established between the forwarding device s and the receiving device 1 by using the FlexE group A. A FlexE link is also established between two adjacent forwarding devices. The receiving device and the sending device transmit a FlexE client by using the forwarding device 1 to the forwarding device s.

[0037] In a technical solution, when the sending device 1 and the receiving device 1 transmit a FlexE client by using the forwarding device 1 to the forwarding device s, each one of the forwarding device 1 to the forwarding device s needs to generate an Ethernet frame according to encoded data blocks, and perform layer 2 processing or layer 3 processing on the Ethernet frame. Therefore, a delay is relatively large.

[0038] To improve transmission efficiency, an embodiment of the present invention provide a data sending method. The following gives detailed description with reference to FIG. 2.

[0039] FIG. 2 is a schematic flowchart of a data sending method according to an embodiment of the present invention.

[0040] It should be understood that a timeslot used in this embodiment of the present invention may be specifically a calendar slot (calendar slot). For details of the calendar slot, refer to the Flexible Ethernet 1.0 Implementation Agreement.

[0041] 210. A forwarding device respectively receives, by using a first flexible Ethernet group FlexE group and in multiple timeslots included in a first timeslot set, multiple first encoded data blocks generated by a physical coding sublayer.

[0042] For example, the first FlexE group includes one or more send PHYs. The first FlexE group includes one or more receive PHYs. The send PHY in the first FlexE group is bonded to the receive PHY in the first FlexE group. The forwarding device includes the receive PHY in the first FlexE group. A sending device includes the send PHY in the first FlexE group. The forwarding device is a next-hop device of the sending device.

[0043] For example, the multiple first encoded data blocks may be generated after the physical coding sublayer of the sending device encodes an Ethernet frame corresponding to a FlexE client. For example, the multiple first encoded data blocks may be multiple 64B/66B data blocks or multiple 8B/10B data blocks.

[0044] In this embodiment of the present invention, the forwarding device and the sending device may establish a logical link by using the first FlexE group. The sending device may send the multiple first encoded data blocks by using the first FlexE group and in the multiple timeslots included in the first timeslot set. The forwarding device may receive, by using the first FlexE group and in the multiple timeslots included in the first timeslot set, the multiple first encoded data blocks sent by the sending device.

[0045] Specifically, the multiple first encoded data blocks are in a one-to-one correspondence with the multiple timeslots in the first timeslot set. The forwarding device may receive, by using the first FlexE group and in the multiple timeslots in the first timeslot set, the multiple first encoded data blocks corresponding to the FlexE client.

[0046] For example, the first FlexE group may be a FlexE group 1, and the multiple timeslots in the first timeslot set may include timeslots 0, 2, 4, and 5. The sending device may respectively transmit, by using the FlexE group 1 and in the timeslots 0, 2, 4, and 5 in each period, the multiple first encoded data blocks generated by the physical coding sublayer of the sending device. The forwarding device may respectively receive the multiple first encoded data blocks by using the FlexE group 1 and in the timeslots 0, 2, 4, and 5 in each period.

[0047] Herein, for example, during time domain resource allocation, time domain resources may be divided into multiple periods. Each period in the multiple periods may include 20 timeslots, which are a timeslot 0 to a timeslot 19 respectively. Duration of each timeslot may be 1 millisecond (millisecond, ms). Duration of a period may be 20 ms.

[0048] It should be understood that in this embodiment of the present invention, the forwarding device may be any one of the s forwarding devices shown in FIG. 1. More specifically, the forwarding device may be a device that has a function of forwarding a FlexE client. For example, the forwarding device may be a router or a switch. In this embodiment of the present invention, for example, when the forwarding device is a forwarding device 2, the sending device is the forwarding device 1. When the forwarding device is the forwarding device 1, the sending device is the sending device 1.

[0049] 220. The forwarding device determines, according to the multiple timeslots included in the first timeslot set and the first FlexE group, a second FlexE group and multiple timeslots included in a second timeslot set.

[0050] For example, the second FlexE group includes one or more send PHYs. The second FlexE group includes one or more receive PHYs. The send PHY in the second FlexE group is bonded to the receive PHY in the second FlexE group. The forwarding device includes the send PHY in the second FlexE group. A receiving device includes the receive PHY in the second FlexE group.

[0051] Herein, the multiple timeslots in the second timeslot set are in a one-to-one correspondence with the multiple timeslots in the first timeslot set.

[0052] The second FlexE group is a FlexE group used by the forwarding device to send the multiple first encoded data blocks. The multiple timeslots included in the second timeslot set are timeslots used when the forwarding device sends the multiple first encoded data blocks. A forwarding path may be determined by determining the second FlexE group and the second timeslot set that are corresponding to the first FlexE group and the first timeslot set.

[0053] In this embodiment of the present invention, the forwarding device may pre-store a forwarding table. The forwarding table may store a correspondence between the multiple timeslots included in the first timeslot set and the first FlexE group, and a correspondence between the second FlexE group and the multiple timeslots included in the second timeslot set.

[0054] Specifically, the forwarding table in the forwarding device may store a correspondence between first information and second information. The first information includes the multiple timeslots included in the first timeslot set and the first FlexE group. The second information includes the second FlexE group and the multiple timeslots included in the second timeslot set.

[0055] Specifically, a logical link may be established between the forwarding device and the receiving device. The logical link may be the second FlexE group. The forwarding device may send the multiple first encoded data blocks by using the second FlexE group and in the multiple timeslots included in the second timeslot set. The receiving device may receive, by using the second FlexE group and in the multiple timeslots included in the second timeslot set, the multiple first encoded data blocks sent by the forwarding device.

[0056] For example, the second FlexE group may be a FlexE group 3, and the second timeslot set may include timeslots 1, 3, 5, and 7. The forwarding device may respectively send the multiple first encoded data blocks by using the FlexE group 3 and in timeslots 1, 3, 5, and 7 in each period. The receiving device may respectively receive the multiple first encoded data blocks by using the FlexE group 3 and in the timeslots 1, 3, 5, and 7 in each period.

[0057] In this embodiment of the present invention, method 1 or method 2 may be used when the forwarding device determines the second FlexE group and the multiple timeslots included in the second timeslot set. The following describes method 1 and method 2 in detail.

[0058] For example, in this embodiment of the present invention, when the forwarding device is the forwarding device 2 shown in FIG. 1, and s is greater than 2, the receiving device is a forwarding device 3. When the forwarding device is the forwarding device s, the receiving device is the receiving device 1. The receiving device may receive, by using the second FlexE group and in the multiple timeslots included in the second timeslot set, the multiple first encoded data blocks sent by the forwarding device. The receiving device may generate, according to the multiple first encoded data blocks, an Ethernet frame corresponding to the FlexE client.

[0059] 230. The forwarding device respectively sends the multiple first encoded data blocks by using the second FlexE group and in the multiple timeslots included in the second timeslot set.

[0060] Specifically, the forwarding device may respectively receive, by using the first FlexE group and in the multiple timeslots included in the first timeslot set, the multiple first encoded data blocks sent by the sending device. After determining the second FlexE group and the multiple timeslots included in the second timeslot set, the forwarding device may respectively send the multiple first encoded data blocks by using the second FlexE group and in the multiple timeslots included in the second timeslot set. That is, the forwarding device may determine the multiple timeslots, and send the multiple first encoded data blocks in the multiple timeslots. Therefore, the forwarding device does not need to process received data according to a conventional layer 2 (link layer) or layer 3 (network layer) forwarding mode. Therefore, the foregoing technical solution helps reduce a forwarding delay.

[0061] Optionally, the method may further include: respectively receiving, by the forwarding device by using the first FlexE group and in multiple timeslots included in a third timeslot set, multiple second encoded data blocks generated by the physical coding sublayer, where the multiple second encoded data blocks are in a one-to-one correspondence with the multiple timeslots in the third timeslot set; and generating, by the forwarding device, an Ethernet frame according to the multiple second encoded data blocks, and performing layer 2 processing on the Ethernet frame, or performing layer 3 processing on an Internet Protocol packet included in the Ethernet frame.

[0062] Herein, the multiple second encoded data blocks may be generated after the physical coding sublayer of the sending device encodes an Ethernet frame corresponding to another FlexE client. For example, the multiple second encoded data blocks may be multiple 64B/66B data blocks or multiple 8B/10B data blocks.

[0063] Specifically, the forwarding device may process, in a conventional manner, the multiple second encoded data blocks received by using the first FlexE group and in the multiple timeslots included in the third timeslot set. That is, the forwarding device first restores the Ethernet frame according to the second encoded data blocks, and then performs layer 2 processing on the restored Ethernet frame, or performs layer 3 processing on the Internet Protocol packet included in the Ethernet frame.

[0064] In this embodiment of the present invention, method 1 may be used when the forwarding device determines, according to the multiple timeslots included in the first timeslot set and the first FlexE group, the second FlexE group and the multiple timeslots included in the second timeslot set.

Method 1:



[0065] The forwarding device may first search a first mapping table that is pre-established and stored by the forwarding device, and then determine the second FlexE group and the multiple timeslots included in the second timeslot set.

[0066] Specifically, the first mapping table records a mapping relationship between an inbound FlexE group and an inbound timeslot set, and between an outbound FlexE group and an outbound timeslot set. The forwarding device may determine, by searching the first mapping table, the second FlexE group and the multiple timeslots included in the second timeslot set.

[0067] The following describes method 1 in detail with reference to FIG. 3 and Table 1.

[0068] A specific form of the first mapping table may be shown in FIG. 1. It should be understood that an inbound FlexE group in Table 1 represents a FlexE group used by the forwarding device to receive encoded data blocks, and is represented by using a FlexE group number (number). An inbound timeslot set includes timeslots used by the forwarding device to receive the encoded data blocks, and is represented by using a timeslot number. An outbound FlexE group represents a FlexE group used by the forwarding device to send the encoded data blocks, and is represented by using a FlexE group number. An outbound timeslot set includes timeslots used by the forwarding device to send the encoded data blocks, and is represented by using a timeslot number. It should be further understood that the inbound FlexE group and the outbound FlexE group are different FlexE groups. The inbound FlexE group is a FlexE group connected between the forwarding device and the sending device. The outbound FlexE group is a FlexE group connected between the forwarding device and the receiving device.
Table 1
Inbound FlexE groupInbound timeslot setOutbound FlexE groupOutbound timeslot set
1 0, 2,4,5 3 1,3,5,7
1 1, 3, 6 to 19 none  
2 2, 10, 16 3 2, 6, 11
2 0, 1, 3 to 9, 11 to 15, 17 to 19 none  
... ... ... ...


[0069] With reference to Table 1 and FIG. 3, for example, when the first FlexE group is the inbound FlexE group 1, and the first timeslot set includes the timeslots 0, 2, 4, and 5, it may be determined that the second FlexE group is the outbound FlexE group 3, and the second timeslot set includes the timeslots 1, 3, 5, and 7. Specifically, the forwarding device may receive, by using the inbound FlexE group 1 connected to the sending device and in the timeslots 0, 2, 4, and 5, the multiple first encoded data blocks generated by the physical coding sublayer of the sending device. After the forwarding device determines the second FlexE group and the second timeslot set by searching the first mapping table, the forwarding device may send the multiple first encoded data blocks by using the outbound FlexE group 3 connected to the receiving device and in the timeslots 1, 3, 5, and 7. If there are multiple forwarding devices on the forwarding path, each forwarding device may receive and forward the multiple first encoded data blocks according to a mapping table stored in each forwarding device. After receiving the multiple first encoded data blocks, the receiving device may restore the FlexE client corresponding to the multiple first encoded data blocks. In addition, for the multiple second encoded data blocks received by using the inbound FlexE group 1 and in the timeslots, for example, timeslots 1, 3, and 6 to 19, included in the third inbound timeslot set, it is determined that there is no corresponding outbound FlexE group (none). In this case, the forwarding device performs Ethernet encapsulation and restoration on the multiple second encoded data blocks received in the timeslots 1, 3, and 6 to 19. Specifically, the multiple second encoded data blocks received in the inbound timeslots 1, 3, and 6 to 19 are reassembled to generate an Ethernet frame. Then, the forwarding device may perform layer 2 processing or layer 3 processing on the Ethernet frame.

[0070] For another example, when the first FlexE group is the inbound FlexE group 2, and the first timeslot set includes the timeslots 2, 10, and 16, it may be determined that the second FlexE group is the outbound FlexE group 3, and the second timeslot set includes the timeslots 2, 6, and 11. Specifically, the forwarding device may receive, by using the inbound FlexE group 2 connected to the sending device and in the timeslots 2, 10, and 16, the multiple first encoded data blocks generated by the physical coding sublayer of the sending device. After the forwarding device determines the second FlexE group and the second timeslot set by searching the first mapping table, the forwarding device may send the multiple first encoded data blocks by using the outbound FlexE group 3 connected to the receiving device and in the timeslots 2, 6, and 11. If there are multiple forwarding devices on the forwarding path, each forwarding device may perform receiving and sending according to a mapping table stored in each forwarding device. After receiving the multiple first encoded data blocks, the receiving device may restore the FlexE client corresponding to the multiple first encoded data blocks. In addition, for the multiple second encoded data blocks received by using the inbound FlexE group 2 and in the timeslots, for example, timeslots 0, 1, 3 to 9, 11 to 15, and 17 to 19, included in the third timeslot set, it is determined that there is no corresponding outbound FlexE group. In this case, the forwarding device may perform Ethernet encapsulation and restoration on the multiple second encoded data blocks received in the inbound timeslots 0, 1, 3 to 9, 11 to 15, and 17 to 19. Specifically, the multiple second encoded data blocks received in the timeslots 0, 1, 3 to 9, 11 to 15, and 17 to 19 are reassembled to restore an Ethernet frame, and then layer 2 or layer 3 processing is performed.

[0071] It should be understood that the first mapping table shown in Table 1 is merely an example for description, and shall not constitute any limitation on the present invention. The first mapping table established by the forwarding device includes the inbound FlexE group, the inbound timeslot set, the outbound FlexE group, and the outbound timeslot set. However, Table 1 may not necessarily be an expression form of the first mapping table. Alternatively, the forwarding device may represent the first mapping table by using Table 1 or by using another form different from Table 1.

[0072] Therefore, according to the data sending method in this embodiment of the present invention, a forwarding device directly maps a FlexE client corresponding to multiple first encoded data blocks received by using a first FlexE group and in multiple timeslots in a first timeslot set into multiple timeslots in a second timeslot set, and performs forwarding by using a second FlexE group, so that a processing delay caused by an operation of reassembling the received first encoded data blocks to restore an Ethernet frame and an operation of performing layer 2 or layer 3 processing on the Ethernet frame can be reduced, thereby improving transmission efficiency.

[0073] In 220, method 2 may be further used when the forwarding device determines, according to the multiple timeslots included in the first timeslot set and the first FlexE group, the second FlexE group and the multiple timeslots included in the second timeslot set. Method 2 is shown in FIG. 4.

Method 2:



[0074] 410. A first physical interface card PIC in the forwarding device determines, by searching a pre-stored second mapping table, an identifier of a first channel that is corresponding to the multiple timeslots included in the first timeslot set and the first FlexE group.

[0075] The second mapping table is stored in the first PIC, that is, an inbound PIC in the forwarding device, and records a mapping relationship between the multiple first timeslots included in the first timeslot set and the first FlexE group, and the identifier of the first channel. The first channel is a channel between the first PIC and a first network processor NP in the forwarding device. The first encoded data blocks may be transmitted from the first PIC to the first NP by using the first channel.

[0076] 420. A first NP determines, by searching a third mapping table, a first subinterface corresponding to the identifier of the first channel.

[0077] The third mapping table is stored in the first NP in the forwarding device, that is, an inbound NP in the forwarding device, and records a mapping relationship between the identifier of the first channel and the first subinterface. Herein, the first subinterface is corresponding to the second FlexE group. The second FlexE group may be corresponding to multiple subinterfaces. After the first subinterface is determined, the second FlexE group is determined.

[0078] 430. A second NP in the forwarding device determines, by searching a fourth mapping table, an identifier of a second channel that is corresponding to the first subinterface.

[0079] The fourth mapping table is stored in the second NP in the forwarding device, that is, an outbound NP in the forwarding device, and records a mapping relationship between the first subinterface and the identifier of the second channel. The second channel is a channel between the second NP and a second PIC in the forwarding device. The first encoded data blocks may be transmitted from the second NP to the second PIC by using the second channel.

[0080] 440. A second PIC in the forwarding device determines, by searching a fifth mapping table, the multiple timeslots in the second timeslot set that are corresponding to the identifier of the second channel.

[0081] The fifth mapping table is stored in the second PIC in the forwarding device, that is, an outbound PIC in the forwarding device, and records a mapping relationship between the identifier of the second channel and the corresponding multiple timeslots in the second timeslot set.

[0082] Specifically, in this embodiment of the present invention, different units, for example, the first NP and the first PIC, in the forwarding device may pre-store different mapping tables. During data forwarding, different units in the forwarding device determine, by searching mapping tables stored by the units, the second FlexE group and the multiple timeslots included in the second timeslot set, and forward the corresponding multiple first encoded data blocks by using the second FlexE group and in the multiple timeslots included in the second timeslot set.

[0083] The following describes the method shown in FIG. 4 in detail with reference to FIG. 3, Table 2, Table 3, Table 4, and Table 5.

[0084] Specific forms of the second mapping table, the third mapping table, the fourth mapping table, and the fifth mapping table may be respectively shown in Table 2, Table 3, Table 4, and Table 5. It should be understood that in the following tables, an inbound FlexE group represents a FlexE group used by the forwarding device to receive encoded data blocks, and is represented by using a FlexE group number (number). An inbound timeslot set includes timeslots used by the forwarding device to receive the encoded data blocks, and is represented by using a timeslot number. An inbound interface channel represents a channel between the first NP and the first PIC. An outbound interface channel represents a channel between the second NP and the second PIC. The inbound interface channel is different from the outbound interface channel.
Table 2
Inbound FlexE groupInbound timeslot setInbound interface channel
1 0, 2, 4, 5 1
1 1, 3, 6 to 19 none
2 2, 10, 16 2
2 0, 1, 3 to 9, 11 to 15, 17 to 19 none
... ... ...
Table 3
Inbound interface channelSubinterface
1 1
2 2
... ...
Table 4
SubinterfaceOutbound interface channel
1 3
2 5
... ...
Table 5
Outbound interface channelOutbound timeslot set
3 1, 3, 5, 7
5 2, 6, 11
... ...


[0085] In this embodiment of the present invention, that the first FlexE group is the FlexE group 1, the multiple timeslots included in the first timeslot set are the inbound timeslots 0, 2, 4, and 5, and the multiple timeslots included in the third timeslot set are the inbound timeslots 1, 3, and 6 to 19 is used as an example for description.

[0086] When successively receiving the multiple first encoded data blocks by using the first FlexE group 1 and in the multiple timeslots 0, 2, 4, and 5 in the first timeslot set, the first PIC may determine, by searching Table 2, that an inbound interface channel corresponding to the FlexE group 1 and the multiple timeslots 0, 2, 4, and 5 in the first timeslot set is the inbound interface channel 1. It should be understood that the inbound interface channel 1 is an example of the first channel. Then, it may be determined, by searching Table 3, that a subinterface corresponding to the inbound interface channel 1 is the subinterface 2. It should be understood that the subinterface 2 is an example of the first subinterface, and determining the subinterface is equivalent to determining the second FlexE group, that is, the FlexE group 2 herein. The second NP may determine, by searching Table 4, that an outbound interface channel corresponding to the subinterface 2 is the outbound interface channel 3. It should be understood that the outbound interface channel 3 is an example of the second channel. The second PIC may determine, by searching Table 5, that the multiple timeslots included in the second timeslot set that are corresponding to the outbound interface channel 3 are the outbound timeslots 1, 3, 5, and 7. In this way, the forwarding device may forward, by using the FlexE group 2 and in the outbound timeslots 1, 3, 5, and 7 respectively, the multiple first encoded data blocks received by using the first FlexE group 1 and in the inbound timeslots 0, 2, 4, and 5. In addition, when successively receiving the multiple second encoded data blocks by using the FlexE group 1 and in the multiple timeslots 1, 3, and 6 to 19 in the third timeslot set, the first PIC may determine, by searching Table 2, that there is no inbound interface channel corresponding to the FlexE group 1 and the multiple timeslots 1, 3, and 6 to 19 in the third timeslot set. In this case, the forwarding device reassembles the multiple second encoded data blocks received in the timeslots 1, 3, and 6 to 19 to generate an Ethernet frame. Then, the forwarding device may perform layer 2 processing or layer 3 processing on the Ethernet frame.

[0087] It should be understood that Table 2 shown in the foregoing is merely an example for description, and shall not constitute any limitation on the present invention. In this embodiment of the present invention, the forwarding device may represent the second mapping table by using Table 2 or by using another form different from Table 2. Correspondingly, Table 3, Table 4, and Table 5 in the foregoing are also merely examples for description, and shall not constitute any limitation on the present invention.

[0088] Therefore, according to the data sending method in this embodiment of the present invention, a forwarding device directly maps a FlexE client corresponding to multiple first encoded data blocks received by using a first FlexE group and in multiple timeslots in a first timeslot set into multiple timeslots in a first timeslot set, and performs forwarding by using a second FlexE group, so that a processing delay caused by an operation of reassembling the received first encoded data blocks to restore an Ethernet frame and an operation of performing layer 2 or layer 3 processing on the Ethernet frame can be reduced, thereby improving transmission efficiency.

[0089] Optionally, after the forwarding device respectively receives, by using the first flexible Ethernet group FlexE group and in the multiple timeslots included in the first timeslot set, the multiple first encoded data blocks generated by the physical coding sublayer, the method may further include: generating, by the first PIC, a target data packet according to the multiple first encoded data blocks.

[0090] Specifically, there are two cases in which the first PIC generates the target data packet according to the multiple first encoded data blocks.

[0091] Case 1: The first PIC reassembles the multiple received first encoded data blocks, to restore the Ethernet frame.

[0092] Specifically, the first PIC may first reassemble the multiple received first encoded data blocks, to restore the Ethernet frame. The first PIC adds the identifier of the first channel to each Ethernet frame by searching Table 2, and transmits each Ethernet frame to the first NP by using the first channel. The first NP sends the Ethernet frame to the second NP by searching Table 3. Herein, the second NP is corresponding to the subinterface. It should be noted that the Ethernet frame that is being transmitted does not carry the identifier of the first channel. After receiving the Ethernet frame, the second NP adds the identifier of the second channel to each Ethernet frame by searching Table 3, and transmits each Ethernet frame to the second PIC by using the second channel. The second PIC encodes the Ethernet frame, maps, by searching Table 5, the encoded data blocks into the multiple timeslots in the second timeslot set, and forwards the encoded data blocks by using the second FlexE group. It should be further noted that the first encoded data blocks mapped into the multiple timeslots in the second timeslot set do not carry the ID of the second channel.

[0093] It should be understood that the forwarding device may generate one or more Ethernet frames according to the multiple first encoded data blocks.

[0094] In this embodiment of the present invention, the received first encoded data blocks are reassembled first to restore the Ethernet frame, and then timeslot mapping and forwarding are performed, so that modifications to an architecture of an existing forwarding device can be reduced.

[0095] Case 1: The first PIC encapsulates every N first encoded data blocks in the multiple received first encoded data blocks into a relatively large data packet. The relatively large data packet may be referred to as a target data packet.

[0096] Specifically, multiple buffers may be disposed in the forwarding device, and each buffer can buffer first encoded data blocks corresponding to a same FlexE client. During receiving, the forwarding device successively buffers, to a buffer according to a receiving sequence, the first encoded data blocks received by using the first FlexE group and in the multiple timeslots in the first timeslot set. The forwarding device may specify a quantity N of buffered first encoded data blocks in advance. After the N first encoded data blocks are buffered, the first PIC encapsulates the N first encoded data blocks into a relatively large data packet. Then, the identifier of the first channel is added to the large data packet, and the data packet is transmitted to the first NP by using the first channel. The first NP sends the large data packet to the second NP. The second NP then adds the identifier of the second channel to the relatively large data packet, and transmits the data packet to the second PIC by using the second channel. The second PIC maps the N first encoded data blocks in the relatively large data packet into the multiple timeslots in the second timeslot set, and the N first encoded data blocks are forwarded by using the second FlexE group.

[0097] A value of N is not limited in this embodiment of the present invention. For example, N may be 100 or may be 50.

[0098] It should be understood that a first encoded data block may be continuously received in the multiple timeslots included in the first timeslot set. Therefore, even if there is no actual data packet in a timeslot, the timeslot also needs to be counted when statistics about a quantity of buffered data blocks are collected.

[0099] The method in which multiple data packets are buffered and encapsulated into a relatively large data packet or restored to an Ethernet data packet, and then are forwarded can improve transmission efficiency of the forwarding device.

[0100] The foregoing describes the data sending method according to the embodiments of the present invention with reference to FIG. 1 to FIG. 4. The following describes a forwarding device according to the embodiments of the present invention with reference to FIG. 5 and FIG. 6.

[0101] FIG. 5 shows a schematic block diagram of a forwarding device 500 according to an embodiment of the present invention. As shown in FIG. 5, the forwarding device 500 includes a receiving unit 510, a determining unit 520, and a sending unit 530. The forwarding device 500 may be used to execute the method shown in FIG. 2. Alternatively, the forwarding device 500 may be used to perform steps performed by a forwarding device in the method shown in FIG. 4. For specific implementation of the forwarding device 500, refer to the foregoing description for FIG. 2 and FIG. 4, and details are not described herein again.

[0102] The receiving unit 510 is configured to respectively receive, by using a first flexible Ethernet group FlexE group and in multiple timeslots included in a first timeslot set, multiple first encoded data blocks generated by a physical coding sublayer PCS. The multiple first encoded data blocks are in a one-to-one correspondence with the multiple timeslots in the first timeslot set.

[0103] The determining unit 520 is configured to determine, according to the multiple timeslots included in the first timeslot set and the first FlexE group, a second FlexE group and multiple timeslots included in a second timeslot set.

[0104] The sending unit 530 is configured to respectively send the multiple first encoded data blocks by using the second FlexE group and in the multiple timeslots included in the second timeslot set. The multiple first encoded data blocks are in a one-to-one correspondence with the multiple timeslots included in the second timeslot set.

[0105] All units of the forwarding device 500 in this embodiment of the present invention and the foregoing other operations or functions are separately for implementing corresponding procedures executed by a forwarding device in the foregoing method. For brevity, details are not described herein.

[0106] Therefore, the forwarding device in this embodiment of the present invention directly maps a FlexE client corresponding to multiple first encoded data blocks received by using a first FlexE group and in multiple timeslots in a first timeslot set into multiple timeslots in a first timeslot set, and performs forwarding by using a second FlexE group, so that a processing delay caused by an operation of reassembling the received first encoded data blocks to restore an Ethernet frame and an operation of performing layer 2 or layer 3 processing on the Ethernet frame can be reduced, thereby improving transmission efficiency.

[0107] FIG. 6 is a schematic structural diagram of a forwarding device 600 according to an embodiment of the present invention. The forwarding device 600 may be used to implement the forwarding device 500 shown in FIG. 5. For specific implementation of the forwarding device 600, refer to the foregoing description for the forwarding device 500, and details are not described herein again. As shown in FIG. 6, the forwarding device 600 includes a receiver 610, a transmitter 620, a processor 630, a memory 640, and a bus system 650. The receiver 610, the transmitter 620, the processor 630, and the memory 640 are connected by using the bus system 650. The memory 640 is configured to store an instruction. The processor 630 is configured to execute the instruction stored in the memory 640, so as to control the receiver 610 to receive a signal, and control the transmitter 620 to send a signal.

[0108] The receiver 610 is configured to respectively receive, by using a first flexible Ethernet group FlexE group and in multiple timeslots included in a first timeslot set, multiple first encoded data blocks generated by a physical coding sublayer PCS. The multiple first encoded data blocks are in a one-to-one correspondence with the multiple timeslots in the first timeslot set.

[0109] The processor 630 is configured to determine, according to the multiple timeslots included in the first timeslot set and the first FlexE group, a second FlexE group and multiple timeslots included in a second timeslot set.

[0110] The transmitter 620 is configured to respectively send the multiple first encoded data blocks by using the second FlexE group and in the multiple timeslots included in the second timeslot set. The multiple first encoded data blocks are in a one-to-one correspondence with the multiple timeslots included in the second timeslot set.

[0111] It should be understood that, in this embodiment of the present invention, the processor 630 may be a central processing unit (central processing unit, "CPU" for short), or the processor 630 may be another general purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA), or another programmable logic device, a discrete gate, or a transistor logic device, a discrete hardware component, or the like. The general purpose processor may be a microprocessor or the processor may be any normal processor, or the like.

[0112] The memory 640 may include a read-only memory and a random access memory, and provide an instruction and data to the processor 630. A part of the memory 640 may further include a nonvolatile random access memory. For example, the memory 640 may further store device-type information.

[0113] In addition to a data bus, the bus system 650 may further include a power bus, a control bus, a status signal bus, and the like. However, for clarity of description, various buses are marked as the bus system 650 in the figure.

[0114] In an implementation process, the steps in the foregoing method may be completed by using an integrated logic circuit of hardware in the processor 630 or using an instruction in a form of software. The steps of the data sending method disclosed with reference to the embodiments of the present invention may be directly completed by a hardware processor, or may be completed by using a combination of hardware in the processor and a software module. The software module may be located in a mature storage medium in the field, such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an electrically-erasable programmable memory, or a register. The storage medium is located in the memory 640. The processor 630 reads information in the memory 640, and completes the steps of the foregoing method in combination with hardware of the processor 630. To avoid repetition, details are not described herein.

[0115] All units of the forwarding device 600 in this embodiment of the present invention and the foregoing other operations or functions are separately for implementing corresponding procedures executed by a forwarding device in the foregoing method. For brevity, details are not described herein.

[0116] Therefore, the forwarding device in this embodiment of the present invention directly maps a FlexE client corresponding to multiple first encoded data blocks received by using a first FlexE group and in multiple timeslots in a first timeslot set into multiple timeslots in a first timeslot set, and performs forwarding by using a second FlexE group, so that a processing delay caused by an operation of reassembling the received first encoded data blocks to restore an Ethernet frame and an operation of performing layer 2 or layer 3 processing on the Ethernet frame can be reduced, thereby improving transmission efficiency.

[0117] It should be understood that the term "and/or" in this specification describes only an association relationship for describing associated objects and represents that three relationships may exist. For example, A and/or B may represent the following three cases: Only A exists, both A and B exist, and only B exists. In addition, the character "/" in this specification generally indicates an "or" relationship between the associated objects.

[0118] It should be understood that sequence numbers of the foregoing processes do not mean execution sequences in various embodiments of the present invention. The execution sequences of the processes should be determined according to functions and internal logic of the processes, and should not be construed as any limitation on the implementation processes of the embodiments of the present invention.

[0119] Persons of ordinary skill in the art may be aware that, in combination with the examples described in the embodiments disclosed in this specification, units and algorithm steps may be implemented by electronic hardware or a combination of computer software and electronic hardware. Whether the functions are executed by hardware or software depends on particular applications and design constraint conditions of the technical solutions. Persons skilled in the art may use different methods to implement the described functions for each particular application.

[0120] It may be clearly understood by persons skilled in the art that, for the purpose of convenient and brief description, for a detailed working process of the foregoing system, apparatus, and unit, refer to a corresponding process in the foregoing method embodiments, and details are not described herein again.

[0121] In the several embodiments provided in the present application, it should be understood that the disclosed system, apparatus, and method may be implemented in other manners. For example, the described apparatus embodiment is merely an example. For example, the unit division is merely logical function division and may be other division in actual implementation. For example, a plurality of units or components may be combined or integrated into another system, or some features may be ignored or not performed. In addition, the displayed or discussed mutual couplings or direct couplings or communication connections may be implemented by using some interfaces. The indirect couplings or communication connections between the apparatuses or units may be implemented in electronic, mechanical, or other forms.

[0122] The units described as separate parts may or may not be physically separate, and parts displayed as units may or may not be physical units, may be located in one position, or may be distributed on a plurality of network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.

[0123] In addition, functional units in the embodiments of the present invention may be integrated into one processing unit, or each of the units may exist alone physically, or two or more units are integrated into one unit.

[0124] When the functions are implemented in the form of a software function unit and sold or used as an independent product, the functions may be stored in a computer-readable storage medium. Based on such an understanding, the technical solutions of the present invention essentially, or the part contributing to the prior art, or some of the technical solutions may be implemented in a form of a software product. The software product is stored in a storage medium, and includes several instructions for instructing a computer device (which may be a personal computer, a server, or a network device) to perform all or some of the steps of the methods described in the embodiments of the present invention. The foregoing storage medium includes any medium that can store program code, such as a USB flash drive, a removable hard disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk, or an optical disc.


Claims

1. A data sending method, comprising:

respectively receiving (210), by a forwarding device by using a first flexible Ethernet group, FlexE group, and in multiple timeslots comprised in a first timeslot set, multiple first encoded data blocks generated by a physical coding sublayer, PCS, wherein the multiple first encoded data blocks are in a one-to-one correspondence with the multiple timeslots in the first timeslot set;

determining (220), by the forwarding device according to the multiple timeslots comprised in the first timeslot set and the first FlexE group, a second FlexE group and multiple timeslots comprised in a second timeslot set; and

respectively sending (230), by the forwarding device, the multiple first encoded data blocks by using the second FlexE group and in the multiple timeslots comprised in the second timeslot set, wherein the multiple first encoded data blocks are in a one-to-one correspondence with the multiple timeslots comprised in the second timeslot set.


 
2. The method according to claim 1, wherein the determining, by the forwarding device according to the multiple timeslots comprised in the first timeslot set and the first FlexE group, a second FlexE group and multiple timeslots comprised in a second timeslot set comprises:
determining, by the forwarding device by searching a first mapping table, the second FlexE group and the multiple timeslots comprised in the second timeslot set, wherein the first mapping table comprises a mapping relationship between the first FlexE group and the multiple timeslots comprised in the first timeslot set, and between the second FlexE group and the multiple timeslots comprised in the second timeslot set.
 
3. The method according to claim 1, wherein the determining, by the forwarding device according to the multiple timeslots comprised in the first timeslot set and the first FlexE group, a second FlexE group and multiple timeslots comprised in a second timeslot set comprises:

determining, by a first physical interface card, PIC, in the forwarding device by searching a second mapping table, an identifier of a first channel that is corresponding to the multiple timeslots comprised in the first timeslot set and the first FlexE group, wherein the second mapping table comprises a mapping relationship between the multiple timeslots comprised in the first timeslot set and the first FlexE group, and the identifier of the first channel, and the first channel is a channel between the first PIC and a first network processor, NP, in the forwarding device;

determining, by the first NP by searching a third mapping table, a first subinterface corresponding to the identifier of the first channel, wherein the first subinterface is corresponding to the second FlexE group, and the third mapping table comprises a mapping relationship between the identifier of the first channel and the first subinterface;

determining, by a second NP in the forwarding device by searching a fourth mapping table, an identifier of a second channel that is corresponding to the first subinterface, wherein the fourth mapping table comprises a mapping relationship between the first subinterface and the identifier of the second channel, and the second channel is a channel between the second NP and a second PIC in the forwarding device; and

determining, by the second PIC by searching a fifth mapping table, the multiple timeslots comprised in the second timeslot set that are corresponding to the identifier of the second channel, wherein the fifth mapping table comprises a mapping relationship between the identifier of the second channel and the multiple timeslots comprised in the second timeslot set.


 
4. The method according to claim 3, wherein after the respectively receiving, by a forwarding device by using a first FlexE group and in multiple timeslots comprised in a first timeslot set, multiple first encoded data blocks generated by a PCS, the method further comprises:
generating, by the first PIC, a target data packet according to the multiple first encoded data blocks.
 
5. The method according to claim 4, wherein after the determining, by a first physical interface card PIC in the forwarding device by searching a second mapping table, an identifier of a first channel that is corresponding to the multiple timeslots comprised in the first timeslot set and the first FlexE group, the method further comprises:

adding, by the first PIC, the identifier of the first channel to the target data packet; and

sending, by the first PIC to the first NP by using the first channel, the data packet to which the identifier of the first channel is added; and

after the determining, by a second NP in the forwarding device by searching a fourth mapping table, an identifier of a second channel that is corresponding to the first subinterface, the method further comprises:

adding, by the second NP, the identifier of the second channel to the target data packet; and

sending, by the second NP to the second PIC by using the second channel, the data packet to which the identifier of the second channel is added.


 
6. The method according to any one of claims 1 to 3, wherein the method further comprises:

respectively receiving, by the forwarding device by using the first FlexE group and in multiple timeslots comprised in a third timeslot set, multiple second encoded data blocks generated by the PCS, wherein the multiple second encoded data blocks are in a one-to-one correspondence with the multiple timeslots in the third timeslot set; and

generating, by the forwarding device, an Ethernet frame according to the multiple second encoded data blocks, and performing layer 2 processing on the Ethernet frame, or performing layer 3 processing on an Internet Protocol packet comprised in the Ethernet frame.


 
7. A forwarding device (500), comprising:

a receiving unit (510), configured to respectively receive, by using a first flexible Ethernet group, FlexE group, and in multiple timeslots comprised in a first timeslot set, multiple first encoded data blocks generated by a physical coding sublayer, PCS, wherein the multiple first encoded data blocks are in a one-to-one correspondence with the multiple timeslots in the first timeslot set;

a determining unit (520), configured to determine, according to the multiple timeslots comprised in the first timeslot set and the first FlexE group, a second FlexE group and multiple timeslots comprised in a second timeslot set; and

a sending unit (530), configured to respectively send the multiple first encoded data blocks by using the second FlexE group and in the multiple timeslots comprised in the second timeslot set, wherein the multiple first encoded data blocks are in a one-to-one correspondence with the multiple timeslots comprised in the second timeslot set.


 
8. The forwarding device according to claim 7, wherein the determining unit is configured to:
determine, by searching a first mapping table, the second FlexE group and the multiple timeslots comprised in the second timeslot set, wherein the first mapping table comprises a mapping relationship between the first FlexE group and the multiple timeslots comprised in the first timeslot set, and between the second FlexE group and the multiple timeslots comprised in the second timeslot set.
 
9. The forwarding device according to claim 7, wherein the forwarding device comprises a first physical interface card, PIC, a first network processor, NP, a second NP, and a second PIC, and the determining unit is implemented by using the first PIC, the first NP, the second NP, and the second PIC, wherein
the first PIC is configured to determine, by searching a second mapping table, an identifier of a first channel that is corresponding to the multiple timeslots comprised in the first timeslot set and the first FlexE group, wherein the second mapping table comprises a mapping relationship between the multiple timeslots comprised in the first timeslot set and the first FlexE group, and the identifier of the first channel, and the first channel is a channel between the first PIC and the first NP;
the first NP is configured to determine, by searching a third mapping table, a first subinterface corresponding to the identifier of the first channel, wherein the first subinterface is corresponding to the second FlexE group, and the third mapping table comprises a mapping relationship between the identifier of the first channel and the first subinterface;
the second NP is configured to determine, by searching a fourth mapping table, an identifier of a second channel that is corresponding to the first subinterface, wherein the fourth mapping table comprises a mapping relationship between the first subinterface and the identifier of the second channel, and the second channel is a channel between the second NP and the second PIC in the forwarding device; and
the second PIC is configured to determine, by searching a fifth mapping table, the multiple timeslots comprised in the second timeslot set that are corresponding to the identifier of the second channel, wherein the fifth mapping table comprises a mapping relationship between the identifier of the second channel and the multiple timeslots comprised in the second timeslot set.
 
10. The forwarding device according to claim 9, wherein the first PIC is further configured to:
generate a target data packet according to the multiple first encoded data blocks.
 
11. The forwarding device according to claim 10, wherein the first PIC is further configured to:

add the identifier of the first channel to the target data packet; and

send, to the first NP by using the first channel, the data packet to which the identifier of the first channel is added; and

the second NP is further configured to add the identifier of the second channel to the target data packet; and

send, to the second PIC by using the second channel, the data packet to which the identifier of the second channel is added.


 
12. The forwarding device according to any one of claims 7 to 9, wherein the receiving unit is further configured to:

respectively receive, by using the first FlexE group and in multiple timeslots comprised in a third timeslot set, multiple second encoded data blocks generated by the physical coding sublayer, wherein the multiple second encoded data blocks are in a one-to-one correspondence with the multiple timeslots in the third timeslot set; and

the forwarding device further comprises a processing unit, configured to: generate an Ethernet frame according to the multiple second encoded data blocks, and perform layer 2 processing on the Ethernet frame, or perform layer 3 processing on an Internet Protocol packet comprised in the Ethernet frame.


 


Ansprüche

1. Verfahren zum Senden von Daten, Folgendes umfassend:

jeweiliges Empfangen (210), durch eine Weiterleitungsvorrichtung durch Verwenden einer ersten flexiblen Ethernet-Gruppe (FlexE-Gruppe) und in mehreren Zeitschlitzen, die in einer ersten Menge von Zeitschlitzen enthalten sind, mehrerer erster codierter Datenblöcke, die durch eine physische Codierteilschicht (PCS) erzeugt werden, wobei zwischen den mehreren ersten codierten Datenblöcken und den mehreren Zeitschlitzen in der ersten Menge von Zeitschlitzen eine Eins-zu-eins-Korrespondenz vorliegt;

Bestimmen (220), durch die Weiterleitungsvorrichtung gemäß den mehreren Zeitschlitzen, die in der ersten Menge von Zeitschlitzen enthalten sind und der ersten FlexE-Gruppe, einer zweiten FlexE-Gruppe und mehrerer Zeitschlitze, die in einer zweiten Menge von Zeitschlitzen enthalten sind; und

jeweiliges Senden (230), durch die Weiterleitungsvorrichtung, der mehreren ersten codierten Datenblöcke durch Verwenden der zweiten FlexE-Gruppe und in den mehreren Zeitschlitzen, die in der zweiten Menge von Zeitschlitzen enthalten sind, wobei zwischen den mehreren ersten codierten Datenblöcken und den mehreren Zeitschlitzen, die in der zweiten Menge von Zeitschlitzen enthalten sind, eine Eins-zu-eins-Korrespondenz vorliegt.


 
2. Verfahren nach Anspruch 1, wobei das Bestimmen, durch die Weiterleitungsvorrichtung gemäß den mehreren Zeitschlitzen, die in der ersten Menge von Zeitschlitzen enthalten sind, und der ersten FlexE-Gruppe, einer zweiten FlexE-Gruppe und mehrerer Zeitschlitze, die in einer zweiten Menge von Zeitschlitzen enthalten sind, Folgendes umfasst:
Bestimmen, durch die Weiterleitungsvorrichtung durch Durchsuchen einer ersten Zuordnungstabelle, der zweiten FlexE-Gruppe und der mehreren Zeitschlitze, die in der zweiten Menge von Zeitschlitzen enthalten sind, wobei die erste Zuordnungstabelle eine Zuordnungsbeziehung zwischen der ersten FlexE-Gruppe und den mehreren Zeitschlitzen, die in der ersten Menge von Zeitschlitzen enthalten sind, und zwischen der zweiten FlexE-Gruppe und den mehreren Zeitschlitzen, die in der zweiten Menge von Zeitschlitzen enthalten sind, umfasst.
 
3. Verfahren nach Anspruch 1, wobei das Bestimmen, durch die Weiterleitungsvorrichtung gemäß den mehreren Zeitschlitzen, die in der ersten Menge von Zeitschlitzen enthalten sind, und der ersten FlexE-Gruppe, einer zweiten FlexE-Gruppe und mehrerer Zeitschlitze, die in einer zweiten Menge von Zeitschlitzen enthalten sind, Folgendes umfasst:

Bestimmen, durch eine erste physische Schnittstellenkarte (PIC) in der Weiterleitungsvorrichtung durch Durchsuchen einer zweiten Zuordnungstabelle, einer Kennung eines ersten Kanals, der mit den mehreren Zeitschlitzen, die in der ersten Menge von Zeitschlitzen enthalten sind, und der ersten FlexE-Gruppe korrespondiert, wobei die zweite Zuordnungstabelle eine Zuordnungsbeziehung zwischen den mehreren Zeitschlitzen, die in der ersten Menge von Zeitschlitzen enthalten sind, und der ersten FlexE-Gruppe und die Kennung des ersten Kanals umfasst, wobei der erste Kanal ein Kanal zwischen der ersten PIC und einem ersten Netzwerkprozessor (NP) in der Weiterleitungsvorrichtung ist;

Bestimmen, durch den ersten NP durch Durchsuchen einer dritten Zuordnungstabelle, einer ersten Teilschnittstelle, die mit der Kennung des ersten Kanals korrespondiert, wobei die erste Teilschnittstelle mit der zweiten FlexE-Gruppe korrespondiert und die dritte Zuordnungstabelle eine Zuordnungsbeziehung zwischen der Kennung des ersten Kanals und der ersten Teilschnittstelle umfasst;

Bestimmen, durch einen zweiten NP in der Weiterleitungsvorrichtung durch Durchsuchen einer vierten Zuordnungstabelle, einer Kennung eines zweiten Kanals, die mit der ersten Teilschnittstelle korrespondiert, wobei die vierte Zuordnungstabelle eine Zuordnungsbeziehung zwischen der ersten Teilschnittstelle und der Kennung des zweiten Kanals umfasst und der zweite Kanal ein Kanal zwischen dem zweiten NP und einer zweiten PIC in der Weiterleitungsvorrichtung ist; und

Bestimmen, durch die zweite PIC durch Durchsuchen einer fünften Zuordnungstabelle, der mehreren Zeitschlitze, die in der zweiten Menge von Zeitschlitzen enthalten sind und die mit der Kennung des zweiten Kanals korrespondieren, wobei die fünfte Zuordnungstabelle eine Zuordnungsbeziehung zwischen der Kennung des zweiten Kanals und den mehreren Zeitschlitzen, die in der zweiten Menge von Zeitschlitzen enthalten sind, umfasst.


 
4. Verfahren nach Anspruch 3, wobei nach dem jeweiligen Empfangen, durch eine Weiterleitungsvorrichtung durch Verwenden einer ersten FlexE-Gruppe und in mehreren Zeitschlitzen, die in einer ersten Menge von Zeitschlitzen enthalten sind, mehrerer erster codierter Datenblöcke, die durch eine PCS erzeugt werden, das Verfahren ferner Folgendes umfasst:
Erzeugen, durch die erste PIC, eines Zieldatenpakets gemäß der mehreren ersten codierten Datenblöcke.
 
5. Verfahren nach Anspruch 4, wobei nach dem Bestimmen, durch eine erste physische Schnittstellenkarte (PIC) in der Weiterleitungsvorrichtung durch Durchsuchen einer zweiten Zuordnungstabelle, einer Kennung eines ersten Kanals, die mit den mehreren Zeitschlitzen, die in der ersten Menge von Zeitschlitzen enthalten sind, und der ersten FlexE-Gruppe korrespondiert, wobei das Verfahren ferner Folgendes umfasst:

Hinzufügen, durch die erste PIC, der Kennung des ersten Kanals zu dem Zieldatenpaket; und

Senden, durch die erste PIC an den ersten NP durch Verwenden des ersten Kanals, des Datenpakets, dem die Kennung des ersten Kanals hinzugefügt wird; und wobei

nach dem Bestimmen, durch einen zweiten NP in der Weiterleitungsvorrichtung durch Durchsuchen einer vierten Zuordnungstabelle, einer Kennung eines zweiten Kanals, die mit der ersten Teilschnittstelle korrespondiert, das Verfahren ferner Folgendes umfasst:

Hinzufügen, durch den zweiten NP, der Kennung des zweiten Kanals zu dem Zieldatenpaket; und

Senden, durch den zweiten NP an die zweite PIC durch Verwenden des zweiten Kanals, des Datenpakets, dem die Kennung des zweiten Kanals hinzugefügt wird.


 
6. Verfahren nach einem der Ansprüche 1 bis 3, wobei das Verfahren ferner Folgendes umfasst:

jeweiliges Empfangen, durch die Weiterleitungsvorrichtung durch Verwenden der ersten FlexE-Gruppe und in mehreren Zeitschlitzen, die in einer dritten Menge von Zeitschlitzen enthalten sind, mehrerer zweiter codierter Datenblöcke, die durch die PCS erzeugt werden, wobei zwischen den mehreren codierten Datenblöcken und den mehreren Zeitschlitzen in der dritten Menge von Zeitschlitzen eine Eins-zu-eins-Korrespondenz vorliegt; und

Erzeugen, durch die Weiterleitungsvorrichtung, eines Ethernet-Rahmens gemäß den mehreren zweiten codierten Datenblöcken und Durchführen einer Layer-2-Verarbeitung an dem Ethernet-Rahmen oder Durchführen einer Layer-3-Verarbeitung an einem Internetprotokollpaket, das in dem Ethernet-Rahmen enthalten ist.


 
7. Weiterleitungsvorrichtung (500), Folgendes umfassend:

eine Empfangseinheit (510), die dazu konfiguriert ist, durch Verwenden einer ersten flexiblen Ethernet-Gruppe (FlexE-Gruppe) und in mehreren Zeitschlitzen, die in einer ersten Menge von Zeitschlitzen enthalten sind, jeweils mehrere erste codierte Datenblöcke zu empfangen, die durch eine physische Codierteilschicht (PCS) erzeugt werden, wobei zwischen den mehreren ersten codierten Datenblöcken und den mehreren Zeitschlitzen in der ersten Menge von Zeitschlitzen eine Eins-zu-eins-Korrespondenz vorliegt;

eine Bestimmungseinheit (520), die dazu konfiguriert ist, gemäß den mehreren Zeitschlitzen, die in der ersten Menge von Zeitschlitzen enthalten sind, und der ersten FlexE-Gruppe, eine zweite FlexE-Gruppe und mehrere Zeitschlitze, die in einer zweiten Menge von Zeitschlitzen enthalten sind, zu bestimmen; und

eine Sendeeinheit (530), die dazu konfiguriert ist, die mehreren ersten codierten Datenblöcke jeweils durch Verwenden der zweiten FlexE-Gruppe und in den mehreren Zeitschlitzen, die in der zweiten Menge von Zeitschlitzen enthalten sind, zu senden, wobei zwischen den mehreren ersten codierten Datenblöcken und den mehreren Zeitschlitzen, die in der zweiten Menge von Zeitschlitzen enthalten sind, eine Eins-zu-eins-Korrespondenz vorliegt.


 
8. Weiterleitungsvorrichtung nach Anspruch 7, wobei die Bestimmungseinheit zu Folgendem konfiguriert ist:
Bestimmen, durch Durchsuchen einer ersten Zuordnungstabelle, der zweiten FlexE-Gruppe und der mehreren Zeitschlitze, die in der zweiten Menge von Zeitschlitzen enthalten sind, wobei die erste Zuordnungstabelle eine Zuordnungsbeziehung zwischen der ersten FlexE-Gruppe und den mehreren Zeitschlitzen, die in der ersten Menge von Zeitschlitzen enthalten sind, und zwischen der zweiten FlexE-Gruppe und den mehreren Zeitschlitzen, die in der zweiten Menge von Zeitschlitzen enthalten sind, umfasst.
 
9. Weiterleitungsvorrichtung nach Anspruch 7, wobei die Weiterleitungsvorrichtung eine erste physische Schnittstellenkarte (PIC), einen ersten Netzwerkprozessor (NP), einen zweiten NP und eine zweite PIC umfasst und die Bestimmungseinheit durch Verwenden der ersten PIC, des ersten NP, des zweiten NP und der zweiten PIC implementiert wird, wobei
die erste PIC dazu konfiguriert ist, durch Durchsuchen einer zweiten Zuordnungstabelle, eine Kennung eines ersten Kanals zu bestimmen, die mit den mehreren Zeitschlitzen, die in der ersten Menge von Zeitschlitzen enthalten sind, und der ersten FlexE-Gruppe korrespondiert, wobei die zweite Zuordnungstabelle eine Zuordnungsbeziehung zwischen den mehreren Zeitschlitzen, die in der ersten Menge von Zeitschlitzen enthalten sind, und der ersten FlexE-Gruppe und die Kennung des ersten Kanals umfasst und wobei der erste Kanal ein Kanal zwischen der ersten PIC und dem ersten NP ist; der erste NP dazu konfiguriert ist, durch Durchsuchen einer dritten Zuordnungstabelle, eine erste Teilschnittstelle zu bestimmen, die mit der Kennung des ersten Kanals korrespondiert, wobei die erste Teilschnittstelle mit der zweiten FlexE-Gruppe korrespondiert und die dritte Zuordnungstabelle eine Zuordnungsbeziehung zwischen der Kennung des ersten Kanals und der ersten Teilschnittstelle umfasst;
der zweite NP dazu konfiguriert ist, durch Durchsuchen einer vierten Zuordnungstabelle, eine Kennung eines zweiten Kanals zu bestimmen, die mit der ersten Teilschnittstelle korrespondiert, wobei die vierte Zuordnungstabelle eine Zuordnungsbeziehung zwischen der ersten Teilschnittstelle und der Kennung des zweiten Kanals umfasst und der zweite Kanal ein Kanal zwischen dem zweiten NP und der zweiten PIC in der Weiterleitungsvorrichtung ist; und
die zweite PIC dazu konfiguriert ist, durch Durchsuchen einer fünften Zuordnungstabelle, die mehreren Zeitschlitze zu bestimmen, die in der zweiten Menge von Zeitschlitzen enthalten sind, die mit der Kennung des zweiten Kanals korrespondieren, wobei die fünfte Zuordnungstabelle eine Zuordnungsbeziehung zwischen der Kennung des zweiten Kanals und den mehreren Zeitschlitzen, die in der zweiten Menge von Zeitschlitzen enthalten sind, umfasst.
 
10. Weiterleitungsvorrichtung nach Anspruch 9, wobei die erste PIC ferner zu Folgendem konfiguriert ist:
Erzeugen eines Zieldatenpakets gemäß den mehreren ersten codierten Datenblöcken.
 
11. Weiterleitungsvorrichtung nach Anspruch 10, wobei die erste PIC ferner zu Folgendem konfiguriert ist:

Hinzufügen der Kennung des ersten Kanals zu dem Zieldatenpaket; und

Senden, an den ersten NP durch Verwenden des ersten Kanals, des Datenpakets, dem die Kennung des ersten Kanals hinzugefügt wird; und

der zweite NP ferner dazu konfiguriert ist, die Kennung des zweiten Kanals dem Zieldatenpaket hinzuzufügen; und

Senden, an die zweite PIC durch Verwenden des zweiten Kanals, des Datenpakets, dem die Kennung des zweiten Kanals hinzugefügt wird.


 
12. Weiterleitungsvorrichtung nach einem der Ansprüche 7 bis 9, wobei die Empfangseinheit ferner zu Folgendem konfiguriert ist:

jeweiliges Empfangen, durch Verwenden der ersten FlexE-Gruppe und in mehreren Zeitschlitzen, die in einer dritten Menge von Zeitschlitzen enthalten sind, mehrerer zweiter codierter Datenblöcke, die durch die physische Codierteilschicht erzeugt werden, wobei zwischen den mehreren zweiten codierten Datenblöcken und den mehreren Zeitschlitzen in der dritten Menge von Zeitschlitzen eine Eins-zu-eins-Korrespondenz vorliegt; und

die Weiterleitungsvorrichtung ferner eine Verarbeitungseinheit umfasst, die zu Folgendem konfiguriert ist: Erzeugen eines Ethernet-Rahmens gemäß den mehreren zweiten codierten Datenblöcken und Durchführen einer Layer-2-Verarbeitung an dem Ethernet-Rahmen oder Durchführen einer Layer-3-Verarbeitung an einem Internetprotokollpaket, das in dem Ethernet-Rahmen enthalten ist.


 


Revendications

1. Procédé d'envoi de données, comprenant :

la réception (210) respective, par un dispositif d'acheminement en utilisant un premier groupe Ethernet flexible, groupe FlexE, et dans de multiples créneaux temporels compris dans un premier ensemble de créneaux temporels, de multiples premiers blocs de données encodées générés par une première sous-couche de codage physique, PCS, dans lequel les multiples premiers blocs de données encodées sont en correspondance biunivoque avec les multiples créneaux temporels dans le premier ensemble de créneaux temporels ;

la détermination (220), par le dispositif d'acheminement selon les multiples créneaux temporels compris dans le premier ensemble de créneaux temporels et le premier groupe FlexE, d'un second groupe FlexE et de multiples créneaux temporels compris dans un deuxième ensemble de créneaux temporels ; et

l'envoi (230) respectif, par le dispositif d'acheminement, des multiples premiers blocs de données encodées en utilisant le second groupe FlexE et dans les multiples créneaux temporels compris dans le deuxième ensemble de créneaux temporels, dans lequel les multiples premiers blocs de données encodées sont en correspondance biunivoque avec les multiples créneaux temporels compris dans le deuxième ensemble de créneaux temporels.


 
2. Procédé selon la revendication 1, dans lequel la détermination, par le dispositif d'acheminement selon les multiples créneaux temporels compris dans le premier ensemble de créneaux temporels et le premier groupe FlexE, d'un second groupe FlexE et de multiples créneaux temporels compris dans un deuxième ensemble de créneaux temporels comprend :
la détermination, par le dispositif d'acheminement en effectuant une recherche dans une première table de mappage, du second groupe FlexE et des multiples créneaux temporels compris dans le deuxième ensemble de créneaux temporels, dans lequel la première table de mappage comprend une relation de mappage entre le premier groupe FlexE et les multiples créneaux temporels compris dans le premier ensemble de créneaux temporels, et entre le second groupe FlexE et les multiples créneaux temporels compris dans le deuxième ensemble de créneaux temporels.
 
3. Procédé selon la revendication 1, dans lequel la détermination, par le dispositif d'acheminement selon les multiples créneaux temporels compris dans le premier ensemble de créneaux temporels et le premier groupe FlexE, d'un second groupe FlexE et de multiples créneaux temporels compris dans un deuxième ensemble de créneaux temporels comprend :

la détermination, par une première carte d'interface physique, PIC, dans le dispositif d'acheminement en effectuant une recherche dans une deuxième table de mappage, d'un identifiant d'un premier canal qui correspond aux multiples créneaux temporels compris dans le premier ensemble de créneaux temporels et au premier groupe FlexE, dans lequel la deuxième table de mappage comprend une relation de mappage entre les multiples créneaux temporels compris dans le premier ensemble de créneaux temporels et le premier groupe FlexE, et l'identifiant du premier canal, et le premier canal est un canal entre la première PIC et un premier processeur de réseau, NP, dans le dispositif d'acheminement ;

la détermination, par le premier NP en effectuant une recherche dans une troisième table de mappage, d'une première sous-interface correspondant à l'identifiant du premier canal, dans lequel la première sous-interface correspond au second groupe FlexE, et la troisième table de mappage comprend une relation de mappage entre l'identifiant du premier canal et la première sous-interface ;

la détermination, par un second NP dans le dispositif d'acheminement en effectuant une recherche dans une quatrième table de mappage, d'un identifiant d'un second canal qui correspond à la première sous-interface, dans lequel la quatrième table de mappage comprend une relation de mappage entre la première sous-interface et l'identifiant du second canal, et le second canal est un canal entre le second NP et une seconde PIC dans le dispositif d'acheminement ; et

la détermination, par la seconde PIC en effectuant une recherche dans une cinquième table de mappage, des multiples créneaux temporels compris dans le deuxième ensemble de créneaux temporels qui correspondent à l'identifiant du second canal, dans lequel la cinquième table de mappage comprend une relation de mappage entre l'identifiant du second canal et les multiples créneaux temporels compris dans le deuxième ensemble de créneaux temporels.


 
4. Procédé selon la revendication 3, dans lequel après la réception respective, par un dispositif d'acheminement en utilisant un premier groupe FlexE et dans de multiples créneaux temporels compris dans un premier ensemble de créneaux temporels, de multiples premiers blocs de données encodées générés par une PCS, le procédé comprend en outre :
la génération, par la première PIC, d'un paquet de données cible selon les multiples premiers blocs de données encodées.
 
5. Procédé selon la revendication 4, dans lequel après la détermination, par une première carte d'interface physique PIC dans le dispositif d'acheminement en effectuant une recherche dans une deuxième table de mappage, d'un identifiant d'un premier canal qui correspond aux multiples créneaux temporels compris dans le premier ensemble de créneaux temporels et au premier groupe FlexE, le procédé comprend en outre :

l'ajout, par la première PIC, de l'identifiant du premier canal au paquet de données cible ; et

l'envoi, par la première PIC au premier NP en utilisant le premier canal, du paquet de données auquel est ajouté l'identifiant du premier canal ; et

après la détermination, par un second NP dans le dispositif d'acheminement en effectuant une recherche dans une quatrième table de mappage, d'un identifiant d'un second canal qui correspond à la première sous-interface, le procédé comprend en outre :

l'ajout, par le second NP, de l'identifiant du second canal au paquet de données cible ; et

l'envoi, par le second NP à la seconde PIC en utilisant le second canal, du paquet de données auquel est ajouté l'identifiant du second canal.


 
6. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le procédé comprend en outre :

la réception respective, par le dispositif d'acheminement en utilisant le premier groupe FlexE et dans de multiples créneaux temporels compris dans un troisième ensemble de créneaux temporels, de multiples seconds blocs de données encodées générés par la PCS, dans lequel les multiples seconds blocs de données encodées sont en correspondance biunivoque avec les multiples créneaux temporels dans le troisième ensemble de créneaux temporels ; et

la génération, par le dispositif d'acheminement, d'une trame Ethernet selon les multiples seconds blocs de données encodées, et la réalisation d'un traitement de couche 2 sur la trame Ethernet, ou la réalisation d'un traitement de couche 3 sur un paquet de protocole Internet compris dans la trame Ethernet.


 
7. Dispositif d'acheminement (500), comprenant :

une unité de réception (510), conçue pour recevoir respectivement, en utilisant un premier groupe Ethernet flexible, groupe FlexE, et dans de multiples créneaux temporels compris dans un premier ensemble de créneaux temporels, des multiples premiers blocs de données encodées générés par une sous-couche de codage physique, PCS, dans lequel les multiples premiers blocs de données encodées sont en correspondance biunivoque avec les multiples créneaux temporels dans le premier ensemble de créneaux temporels ;

une unité de détermination (520), conçue pour déterminer, selon les multiples créneaux temporels compris dans le premier ensemble de créneaux temporels et le premier groupe FlexE, un second groupe FlexE et de multiples créneaux temporels compris dans un deuxième ensemble de créneaux temporels ; et

une unité d'envoi (530), conçue pour envoyer respectivement les multiples premiers blocs de données encodées en utilisant le second groupe FlexE et dans les multiples créneaux temporels compris dans le deuxième ensemble de créneaux temporels, dans lequel les multiples premiers blocs de données encodées sont en correspondance biunivoque avec les multiples créneaux temporels compris dans le deuxième ensemble de créneaux temporels.


 
8. Dispositif d'acheminement selon la revendication 7, dans lequel l'unité de détermination est conçue pour :
déterminer, en effectuant une recherche dans une première table de mappage, le second groupe FlexE et les multiples créneaux temporels compris dans le deuxième ensemble de créneaux temporels, dans lequel la première table de mappage comprend une relation de mappage entre le premier groupe FlexE et les multiples créneaux temporels compris dans le premier ensemble de créneaux temporels, et entre le second groupe FlexE et les multiples créneaux temporels compris dans le deuxième ensemble de créneaux temporels.
 
9. Dispositif d'acheminement selon la revendication 7, dans lequel le dispositif d'acheminement comprend une première carte d'interface physique, PIC, un premier processeur de réseau, NP, un second NP, et une seconde PIC, et l'unité de détermination est implémentée en utilisant la première PIC, le premier NP, le second NP, et la seconde PIC, dans lequel la première PIC est conçue pour déterminer, en effectuant une recherche dans une deuxième table de mappage, un identifiant d'un premier canal qui correspond aux multiples créneaux temporels compris dans le premier ensemble de créneaux temporels et au premier groupe FlexE, dans lequel la deuxième table de mappage comprend une relation de mappage entre les multiples créneaux temporels compris dans le premier ensemble de créneaux temporels et le premier groupe FlexE, et l'identifiant du premier canal, et le premier canal est un canal entre la première PIC et le premier NP ;
le premier NP est conçu pour déterminer, en effectuant une recherche dans une troisième table de mappage, une première sous-interface correspondant à l'identifiant du premier canal, dans lequel la première sous-interface correspond au second groupe FlexE, et la troisième table de mappage comprend une relation de mappage entre l'identifiant du premier canal et la première sous-interface ;
le second NP est conçu pour déterminer, en effectuant une recherche dans une quatrième table de mappage, un identifiant d'un second canal qui correspond à la première sous-interface, dans lequel la quatrième table de mappage comprend une relation de mappage entre la première sous-interface et l'identifiant du second canal, et le second canal est un canal entre le second NP et la seconde PIC dans le dispositif d'acheminement ; et
la seconde PIC est conçue pour déterminer, en effectuant une recherche dans une cinquième table de mappage, les multiples créneaux temporels compris dans le deuxième ensemble de créneaux temporels qui correspondent à l'identifiant du second canal, dans lequel la cinquième table de mappage comprend une relation de mappage entre l'identifiant du second canal et les multiples créneaux temporels compris dans le deuxième ensemble de créneaux temporels.
 
10. Dispositif d'acheminement selon la revendication 9, dans lequel la première PIC est en outre conçue pour :
générer un paquet de données cible selon les multiples premiers blocs de données encodées.
 
11. Dispositif d'acheminement selon la revendication 10, dans lequel la première PIC est en outre conçue pour :

ajouter l'identifiant du premier canal au paquet de données cible ; et

envoyer, au premier NP en utilisant le premier canal, le paquet de données auquel est ajouté l'identifiant du premier canal ; et

le second NP est en outre conçu pour ajouter l'identifiant du second canal au paquet de données cible ; et

envoyer, à la seconde PIC en utilisant le second canal, le paquet de données auquel est ajouté l'identifiant du second canal.


 
12. Dispositif d'acheminement selon l'une quelconque des revendications 7 à 9, dans lequel l'unité de réception est en outre conçue pour :

recevoir respectivement, en utilisant le premier groupe FlexE et dans de multiples créneaux temporels compris dans un troisième ensemble de créneaux temporels, de multiples seconds blocs de données encodées générés par la sous-couche de codage physique, dans lequel les multiples seconds blocs de données encodées sont en correspondance biunivoque avec les multiples créneaux temporels dans le troisième ensemble de créneaux temporels ; et

le dispositif d'acheminement comprend en outre une unité de traitement, conçue pour : générer une trame Ethernet selon les multiples seconds blocs de données encodées, et réaliser un traitement de couche 2 sur la trame Ethernet, ou réaliser un traitement de couche 3 sur un paquet de protocole Internet compris dans la trame Ethernet.


 




Drawing

















Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description