(19)
(11)EP 3 469 838 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
22.07.2020 Bulletin 2020/30

(21)Application number: 17730547.1

(22)Date of filing:  08.06.2017
(51)International Patent Classification (IPC): 
H04W 56/00(2009.01)
H04W 84/18(2009.01)
H04B 7/02(2018.01)
H04L 5/00(2006.01)
H04B 7/08(2006.01)
(86)International application number:
PCT/GB2017/051666
(87)International publication number:
WO 2017/212275 (14.12.2017 Gazette  2017/50)

(54)

CLOCK SYNCHRONISATION IN WIRELESS MESH COMMUNICATIONS NETWORKS

TAKTSYNCHRONISATION IN DRAHTLOSEN MESH-KOMMUNIKATIONSNETZWERKEN

SYNCHRONISATION D'HORLOGE DANS DES RÉSEAUX DE COMMUNICATION MAILLÉS SANS FIL


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 10.06.2016 GB 201610136

(43)Date of publication of application:
17.04.2019 Bulletin 2019/16

(73)Proprietor: BluWireless Technology Ltd
Bristol BS2 0BY (GB)

(72)Inventor:
  • MCCONNELL, Ray
    Bristol BS2 0BY (GB)

(74)Representative: Jepsen, René Pihl 
Eltima Ltd Peak Hill House Steventon
Basingstoke, Hampshire, RG25 3AZ
Basingstoke, Hampshire, RG25 3AZ (GB)


(56)References cited: : 
WO-A2-2006/102558
US-A1- 2005 277 443
  
  • SUAREZ RAUL ET AL: "Extending OpenFlow for SDN-enabled synchronous Ethernet networks", PROCEEDINGS OF THE 2015 1ST IEEE CONFERENCE ON NETWORK SOFTWARIZATION (NETSOFT), IEEE, 13 April 2015 (2015-04-13), pages 1-6, XP032782120, DOI: 10.1109/NETSOFT.2015.7116183 [retrieved on 2015-06-01]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The present invention relates to clock synchronisation in wireless mesh communications networks.

BACKGROUND OF THE INVENTION



[0002] Figure 1 of the accompanying drawings illustrates a simplified example wireless mesh communications network which provides a multipath connection between a base network 14 and a cell 16 of a cellular wireless telecommunications network. The wireless mesh network comprises a plurality of network nodes 10 interconnected by bidirectional wireless communications links 12. The network nodes 10 operate to communicate with one another for the transfer of communications data therebetween. This type of network is known as a "mesh" network because of the multiple connections between network nodes that defines a mesh of communications links 12. One particular mesh network makes use of wireless communications links that operate in the millimetre waveband, for example around 60GHz.

[0003] Such a mesh network is suitable for providing a cell 16 of a cellular wireless telecommunications network with a connection to a fibre optic network connection 15 for communication with the base network 14. The cell 16 is operable to communicate with a plurality of mobile communications devices in accordance with well-known standards and techniques. For example, the Long Term Evolution (LTE) standard defines one suitable cellular communications technique. An example of a hierarchical mesh network is provided in WO2006/102558.

[0004] In the example of Figure 1, a first network node 101 is connected with a base network 14 using an optical connection 15. The connection between the first network node 101 and the base network 14 may be provided by any suitable connection technology. The mesh network provides a connection between the first network node 101 and a second network node 102. The second network node is connected with a cell station that defines a cell 16 of a cellular communications network. The mesh network provides communication for data from the cell 16 to other devices within or without the mesh network. Such a mesh network is known as a "backhaul" network.

[0005] In order for the cellular network to operate correctly, it is important that the cells of the network maintain a synchronous clock signal. Accordingly, it is necessary for the individual cells to maintain a clock signal that is synchronised with a master clock signal for the cellular network concerned. In addition, it is desirable for the individual network nodes to have access to a master reference clock signal in order that mobile phone cell to cell interference and signal management can be completed accurately.

[0006] One of the challenges associated with implementing a mesh network, particularly a wireless mesh network over a wide area, is that of maintaining such accurate and synchronised clock signals over the network. However, previously-considered network techniques for adjusting clock signal synchronisation are not ideally suited to wireless mesh networks, since the nature of multi-hop wireless connections mean that the clock signals can quickly become asynchronous.

[0007] Accordingly, it is desirable to provide a new technique that seeks to address the drawbacks of previously-considered clock synchronisation techniques.

SUMMARY OF THE INVENTION



[0008] According to one aspect of the present invention, there is provided a method of synchronising a local clock signal with a reference clock signal in a network node of a wireless mesh communications network which includes a plurality of such network nodes interconnected by another plurality of wireless communications links, the method comprising, at the network node, receiving a plurality of clock synchronising signals over respective wireless radio frequency signals at a beamforming steerable antenna of a transceiver having a beamforming steerable antenna for which reception parameters define a reception direction for the antenna, the clock synchronising signals being received on respective incoming beam reception directions; selecting one of the received clock synchronising signals as a reference clock signal by selecting an incoming beam reception direction of the antenna; producing a reference comparison value by comparing the reference clock signal with a local clock signal of the network node; and adjusting the local clock signal in dependence upon the reference comparison value.

[0009] According to another aspect of the present invention, there is provided a network node for a wireless mesh communications network which includes a plurality of such network nodes interconnected by another plurality of wireless communications links, the network node comprising: a selection unit operable to select one of such a plurality of received clock synchronising signals as a reference clock signal, to produce a reference comparison value by comparing the reference clock signal with a local clock signal of the network node, and to adjust the local clock signal in dependence upon the reference comparison value, and a transceiver operable to receive a plurality of clock synchronising signals over respective wireless radio frequency signals at a beamforming steerable antenna for which reception parameters define a reception direction for the antenna, and wherein the transceiver is operable to receive such clock synchronising signals on respective incoming beam reception directions, and wherein the selection unit is operable to select one such received clock synchronising signal by selecting an incoming beam reception direction of the antenna.

[0010] In one example, the network node comprises a plurality of transceivers, each of which includes a beamforming steerable antenna and a processing unit, the antennas having respective communications directions, and receiving a plurality of clock signals includes receiving respective radio frequency signals at the transceivers, extracting respective clock signals form the received radio frequency signals, and selecting one of the received clock synchronising signals as a reference clock signal, producing a reference comparison value by comparing the reference clock signal with a local clock signal, and adjusting the local clock signal in dependence upon the reference comparison value are performed for each transceiver.

[0011] Such an example may also include routing any of the reference clock signals to any of the processing units for use thereby in reception and transmission of radio frequency signals received and transmitted from the associated antenna. In such an example, the network node may include a non-blocking multiplexer for the routing of the reference clock signals. In one example, such routing is performed in accordance with a timing schedule. In one example, such routing is controlled by a central controller of the network. In one example, the central controller is a software defined network controller.

[0012] In one example, the network node includes a plurality of such local clock signals, which are adjusted with reference to respective reference clock signals. In one example, adjusting the local clock signals is performed in accordance with a timing schedule. In one example, the timing schedule is provided a central controller of the network. In one example, the central controller is a software defined network controller.

[0013] According to an example, there is provided a method of providing a local clock signal in a network node of a wireless mesh communications network which includes a plurality of such network nodes interconnected by another plurality of wireless communications links, the method comprising, at the network node, receiving a plurality of clock synchronising signals on respective reception beam directions of a beamforming steerable antenna device; and selecting one of the received clock synchronising signals as a local reference clock signal by selecting one of the reception beam directions.

[0014] According to an example, there is provided a method of synchronising respective local clock signals of network nodes of a wireless mesh communications network which includes a plurality of such nodes interconnected by another plurality of wireless communications links, each node having at least one transceiver having a beamforming steerable antenna and operable to transmit and receive radio frequency signals in distinct signal beams having respective directions, the method comprising at a first network node: selecting a clock beam direction of the beamforming steerable antenna of the first network node; receiving a master clock signal on a radio frequency signal received by the beamforming antenna in the clock beam direction; synchronising a local clock signal of the first network node with the master clock signal; selecting a synchronisation beam direction of the beamforming antenna of the first network node; and forwarding a first synchronisation signal to a second network node on a radio frequency signal transmitted from the beamforming antenna in the synchronisation beam direction of the first network node, the first synchronisation signal being dependent upon one or both of the local clock signal of the first node and the master clock signal; at a second network node: selecting a synchronisation beam direction of the beamforming steerable antenna of the second network node; receiving the first synchronisation signal from the first network node on a radio frequency signal received by the antenna in the synchronisation beam direction of the second network node; and synchronising a local clock signal of the second network node with the first synchronisation signal, the first and second network nodes thereby forming a first clock region of the wireless mesh network.

BRIEF DESCRIPTION OF THE DRAWINGS



[0015] 

Figure 1 is a schematic block diagram illustrating a wireless mesh communications network;

Figure 2 illustrates one example of clock synchronisation across a wireless mesh communications network;

Figure 3 illustrates a network node embodying one aspect of the present invention;

Figure 4 illustrates a steerable beamforming antenna of the device of Figure 3

Figure 5 shows a simplified PHY packet structure;

Figure 6 is a flowchart showing steps in a method embodying one aspect of the present invention;

Figure 7 illustrates another example of clock synchronisation across a wireless mesh communications network;

Figure 8 illustrates another example of clock synchronisation across a wireless mesh communications network;

Figure 9 illustrates a network node embodying another aspect of the present invention;

Figure 10 illustrates part of the network node of Figure 9;

Figure 11 illustrates the part of Figure 10 in combination with parts of the network node of Figure 9;

Figure 12 is a flowchart showing steps in a method embodying another aspect of the present invention;

Figure 13 illustrates another example of clock synchronisation across a wireless mesh communications network in accordance with another aspect of the present invention; and

Figure 14 illustrates clock synchronisation according to the example of Figure 12; and

Figure 15 is a flowchart showing steps in a method embodying another aspect of the present invention.


DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS



[0016] Figure 2 illustrates clock synchronisation across a wireless communications network in accordance with an aspect of the present invention. The example network 2 of Figure 2 has a similar topology to that shown in Figure 1. It is to be understood that the network topologies shown in Figures 1 and 2 are merely exemplary, and do not have an impact on the techniques to be described below; the techniques are applicable to any wireless mesh network topology.

[0017] In the example of Figure 2, a first plurality of network nodes 20 are interconnected by a second plurality of wireless communications links 22. The network nodes 20 are shown arranged in a regular grid (rectilinear) pattern with communications links 22 between adjacent network nodes 20. The network nodes 20 may be arranged in any suitable topology, and the communications links 22 may be arranged appropriately.

[0018] In a preferred example, the wireless communication links 22 are radio frequency links, using radio frequency signals in the millimetre wave range, that is in the range 20GHz to 315GHZ, preferably in the 60GHZ waveband (as defined by the IEEE 802.11ad standard and typically in the range approximately 58GHz to 64GHz).

[0019] The network 2 also includes a node 24 which connects the mesh network to a base network 25. This node 24 is also known as a "point of presence (POP)" node. Such a POP node 24 is typically connected with a first network node 201 by way of a wired or optical connection 23A. The POP node 24 is connected to the base network 25 by way of a wired or optical connection 23B. The base network may be provided by any suitable communications network, such as a mobile network operator's packet data network or the Internet.

[0020] The POP node 24 provides a clock signal for the mesh and cellular networks, this clock is derived from a master clock signal is also known as a Grand Master (GM) clock signal. The GM clock signal can be generated locally or provided by the mobile network operator's packet data network. The POP node 24 provides the master clock signal to the first network node 201. As will be described below, the master clock signal is used to provide a reference clock signal across the mesh network, and to a cell of destination network node 206 in particular. Figure 2 shows a single example clock sync path 26 over which the master clock signal travels to the destination network node 206.

[0021] In the example clock sync path 26, the POP node 24 supplies the master clock signal to a first node 201. The first node 201 synchronises its internal clock with the received master clock signal, as will be described below, and passes the master clock signal to a second node 202. This process is repeated until the master clock signal reaches a predetermined destination node. In the example shown in Figure 2, the reference clock signal passes through first to sixth network nodes 201, 202, 203, 204, 205, and 206, with the sixth network node 206 being the destination node 20 for the clock signal being distributed across the network. Each network node may have the opportunity to receive more than one reference clock signal from adjacent network nodes, and in that case a network node selects a reference clock signal with which it synchronises. In this way, a master clock signal can be distributed across selected network nodes 20 of the network 2. It will be appreciated that there may be different clock sync paths across the network 2.

[0022] The destination network node 206 provides packet data and synchronisation clock to a cell 29 for a cellular communications network device. The cell is able to communicate in a wireless manner using appropriate cellular technologies and techniques. The cell 29 makes use of the master clock signal delivered by the mesh network in order to maintain synchronicity with the cellular communications network of which it is part.

[0023] The clock sync path (or "tree") 26 can be defined by an appropriate network resource. For example, in a software defined network (SDN), a suitably modified SDN controller may be responsible for the definition of the clock sync path. The definition and choice of the clock sync path 26 may be dynamic and respond to changes in the mesh network 2, and in the requirements for clock distribution. For example, a particular network node on a defined clock sync path may become inactive or faulty in some way. In such a case the controller may define a new clock sync path to bypass the network node concerned. This redefinition of clock sync paths is particularly suitable in a mesh network, since the very nature of the mesh enables multiple routes across the network to be defined.

[0024] One example of a modified SDN controller that controls clock synchronisation signal routing is described in a paper entitled "Extending OpenFlow for SDN-enabled Synchronous Ethernet networks" by Raúl Suárez, David Rincón, and Sebastià Salient. The paper describes one possible modification of existing SDN controller functionality to enable the propagation of an Ethernet clock synchronisation signal across a software defined network. In an example embodiment of the present invention, this modified SDN controller is further extended in order to select a particular clock synchronisation signal from a plurality of received signals, such as those received from a plurality of antenna beam directions, as described in more detail below.

[0025] Synchronisation of an internal clock of a network node 20 with a received master clock signal will now be described with reference to Figures 3, to 6. Figure 3 illustrates parts of a network node 20. The network node 3 includes an internal oscillator unit 30 which supplies a reference oscillator signal 31 to a clock signal generator 34. The clock signal generator 34 produces an internal clock signal 35 for use by the network node 20 and for possible transmission to other network nodes, as will be described on more detail below.

[0026] The example of Figure 3 shows a network node 20 having a single processing unit 32 and a single antenna device 36. The antenna device 36, as will be described below, is a beamforming steerable antenna device, which is able to transmit and receive radio frequency signals in distinct signal beams having respective directions. In order to provide the mesh network shown in Figure 2, each network node 20 needs to include a number of devices that provide the required number of communications directions. A single antenna device 36 and processing unit 32 is shown in Figure 3 for the sake of clarity. An example network node having multiple processing units 32 and associated antenna units 36 will be described below.

[0027] With reference to Figure 3, the processing unit 32 receives and transmits radio frequency signals from and to the antenna device 36. The antenna device 36 includes a beamforming antenna that is able to communicate in a range of directions centred on a main direction. Each communication direction can provide a respective communication channel, and can be directed to a different network node. Each antenna device 36 receives the radio frequency signal and provides a down-converted baseband signal 37 to a baseband unit 38.

[0028] Figure 4 illustrates schematically a beamforming antenna 60 comprising a two-dimensional array of individual antenna elements. Such a beamforming antenna 60 is able to direct its effective transmission and reception beam pattern. One example of such a beamforming antenna is the well-known "phased array antenna". For example, the antenna may have a central beam 62, and first and second beams 63 and 64 to respective sides of the central beam 62. The antenna 60 may have any number of beams, and hence communications directions, thereby enabling the antenna 60 to direct transmissions to a specific receiving network node, and to receive signals from a selected transmitting network node. A particular beam for transmission or reception is selected by adjusting appropriate parameters of the antenna. For example, for a reception beam, receiver parameters, such as weighting values, may be adjusted so that radio frequency signals are received only from a selected direction, i.e. on a selected signal beam.

[0029] When in a receiving mode of operation, the reception characteristics of the antenna elements of the antenna 36,60 are modified according to weighting values determined by the processing unit 32 and supplied to the baseband unit 38, such that the antenna 36,60 receives RF signals from a specific direction (that is, from a specific transmitting network node).

[0030] In a transmitting mode of operation, respective drive signals are generated for the antenna elements of the antenna 36,60. The drive signals are respective modified versions of the RF modulated output signal specific to each antenna element. The output signal may be modified in phase and/or amplitude in order to produce the desired beam pattern, and hence beam direction.

[0031] The example network topologies of Figures 1 and 2 are simplified inasmuch as the network is arranged on a regular grid pattern, such that network node includes at least one antenna device 36 able to communicate with another antenna device 36 along the centre direction. In a real-world network, the network nodes may be arranged in a more irregular pattern, with the result that an individual antenna device 36 may be able to communicate with a number of different nodes using different respective beam directions.

[0032] The processing unit 32 will now be described. The processing unit 32 is provided with a clock generator 34. The processing unit 32 includes the baseband unit 38 which receives the baseband signal 37. The baseband unit 38 operates to synchronise to the start of a packet in the baseband signal and digitises the baseband signal into an encoded data stream 39 for further processing. This processing of the baseband signal 37 requires a clock signal 35.

[0033] The data stream 39 represents a series of data packets, a very simplified structure of which is illustrated in Figure 5. A data packet 70 has a preamble portion 71, and a payload portion 72 which includes a PHY header portion 73, and a packet portion 74. The packet portion includes synchronisation indicators 75 which are spaced at regular times through the packet portion 74. As is well known and understood, and defined in the relevant IEEE specifications, the preamble of the data packet is used to enable a first estimate of frequency and phase of the data packet to be identified. The preamble includes short training field (STF) portion and a channel estimate field (CEF) portion, the structures of which are well known and understood, particularly with reference to the appropriate standard(s).

[0034] The PHY header portion 73 includes information about the modulation and coding scheme used for the packet portion 74. The packet portion 74 also includes a media access control (MAC) header portion and a user data portion. The MAC header portion contains data identifying the source and destination for the user data portion. The user data portion contains at least one user data packet, and possibly associated additional control or header data, for delivery to the ultimate destination.

[0035] In one example of an aspect of the present invention, the payload portion 72 is a dedicated synchronisation payload, and so contains only the synchronisation indicators 75, and does not contain data items for transfer through the node.

[0036] In such an example, the network node may be configured to switch to the synchronisation signal at regular intervals, for example every 1 millisecond, or according to an appropriate timing schedule, in order that the local clock can remain synchronised with the master clock. Where the reception direction for the beam carrying the synchronisation signal is different to that of the current data transfer beam, the network node switches between data transfer and synchronisation beams appropriately.

[0037] In a preferred example, the network node that is responsible for transmitting the clock synchronisation signal will adhere to the predetermined timing schedule, and will adjust the transmission parameters of its beamforming steerable antenna so that the synchronisation transmission beam is transmitted in the correct direction and at the appropriate time. The adherence to the predetermined timing schedule both the transmitting network node and the receiving network node allows for the regular synchronisation of the clock signals.

[0038] For the case where the synchronising signal is a dedicated signal, the low amount of data (only the synchronisation indicators) being transferred allows for the use of a modulation and coding scheme that maximises the range of the synchronisation signal. The positions of the synchronisation indicators do not depend upon the modulation and coding scheme used.

[0039] In another example of an aspect of the present invention, the payload portion 72 includes data items to be transferred by the node, and includes the synchronisation indicators 75.

[0040] In another example, timing information may be derived from detected changes in the data modulation constellation, or by any other suitable technique.

[0041] Returning to Figure 3, a preamble processing unit 40 receives the data stream 39 and identifies and processes the preamble portion (71, Figure 5) of each data packet in the data stream 39. The preamble processing unit 40 produces an initial estimate of the relative phase difference between the internal reference clock signal and the incoming data stream 39 using the short training field and channel estimate fields in accordance with the appropriate techniques specified in the standard. The preamble processing unit 40 outputs a first phase signal 41a, and passes the remainder of the data packet 41 (that is, the payload portion 72, Figure 5) to a payload processing unit 42.

[0042] The payload processing unit 42 demodulates and decodes the payload portion, thereby producing a series of data packets 43 which is supplied to a media access controller (MAC) 46. The payload processing unit 42 generates a second phase signal 43a relating to the relative phase of the reference clock 35 to the encoded reference signal of the payload. The second phase signal 43a is more precise than the first phase signal 41a. The second phase signal 43a also provides a running estimate of phase changes with respect to the reference clock 35 during the payload portion of the incoming data stream. The payload processing unit 42 identifies the synchronisation indicators (75, Figure 5) in the payload, and compares the timing of these indicators with the local clock signal to produce the second phase signal 43a.

[0043] A detection unit 44 receives the first phase signal 41a from the preamble processor 40, and the second phase signal 43a from the payload processing unit 42. The detection unit 44 combines the first and second phase signals 41a and 43a and generates a signal 45 which relates the phase changes between the data stream and the internal reference clock. In summary, the detection unit 44 determines the difference between the reference clock and the carrier frequency (the "carrier frequency offset (CFO)"), and determines the difference between the reference clock and the sampling frequency (the "sampling frequency offset (SFO)").

[0044] The detection unit 44 outputs the indicator signal 45 to a computational unit 48 which in turn is able to process the indicator signal 45, in order to create a long term adjustment signal 49 for phase offset adjustment of the reference clock that doesn't interfere with the baseband unit 38, the preamble processor 40, and the payload processing unit 42 data processing chain.

[0045] The MAC 46 determines routing decisions for the data packet from the header portion of the packet, and outputs each data packet appropriately, as an output data stream 47. In addition, the MAC 46 produces a signal 47a used by the computational unit 48 to indicate valid inclusion of that signal from data derived from the packet header. In such a manner, the computational unit 48 is able to use a synchronisation signal from the correct source, as determined by the MAC 46.

[0046] The long term adjustment signal 49 is output to a phase processing unit 50. The phase processing unit 50 determines how the clock generator unit 34 must be adjusted in order to reduce the phase difference between the internal clock signal 35 and the data stream 37. The phase processing unit 50 outputs a control signal 51 to the clock generator 34. The clock generator 34 adjusts the local clock signal 35 for the processing unit 32 so that the phase difference values originating from the CFO and SFO and computed by the detection unit 44, the computational unit 48 and the phase processing unit 50 tend to zero.

[0047] The local clock signal 35 is adjusted at a slower rate of change than the incoming data stream required offset adjustments, and the adjustment is controlled such that the local clock signal is in a holdover and remains within appropriate tolerance even if a synchronisation signal is not available.

[0048] In one alternative example, an additional number of clock generators 34 and associated phase processing units 50 are provided. Such an example allows multiple clock signals to be routed across the network through the network node concerned. This routing may be achieved by further multiplexing of the multiple clock signals. The routing may be governed by a timing schedule, which may be determined locally or by a central controller, such as a suitably modified SDN controller.

[0049] Figure 6 illustrates steps of synchronising the local clock with the selected received synchronisation signal. Such a method comprises the steps of:

101 receiving a plurality of radio frequency signals at a beamforming steerable antenna having reception parameters that define a reception direction for the antenna, each received radio frequency signal having a direction;

102 selecting one of the received radio frequency signals as a synchronisation signal by adjusting the reception parameters of the steerable antenna;

103 producing a digital data stream from the synchronisation signal using a local clock signal;

104 extracting a reference clock signal from the digital data stream;

105 producing a reference comparison value by comparing the reference clock signal with the local clock signal; and

106 adjusting the local clock signal in dependence upon the reference comparison value.



[0050] Figure 7 illustrates the network 2 in which the master clock signal is transmitted from the second network node 202 directly to the fourth network node 204, and then from the fourth network node 204 to the destination sixth network node 206. In example of Figure 7, the third and fifth network nodes 203 and 205 are removed from the clock sync path 28. The second and fourth network nodes 202 and 204 make use of a beamforming steerable antenna in one of the radio frequency channels in order to direct the master clock signal appropriately using dedicated synchronisation signal beams. In one example, this direct communication is possible because the beam used to transmit the master clock signal can have a lower data rate, and hence longer range, than the more usual communication links 22 between adjacent network nodes 20. This extended range allows the master clock signal to be transferred out of the usual network communications directions.

[0051] The provision of a clock sync path across a mesh network as described above enables the dynamic adaptation of the path. In addition, multiple clock sync paths may be defined when appropriate. For example, Figure 8 illustrates the network 2 from Figure 2 in which the clock sync path 26 is defined from a first network node 201 to a sixth (destination) network node 206. A second clock sync path 27 may be defined from the POP node 24 to the sixth network node 206. This second clock sync path 27 is routed through the first network node 201 via seventh, eighth, ninth and tenth network nodes 207, 208, 209, 2010 to the destination sixth node 206. The routing of the clock signal is enabled by the use of the steerable beamforming antenna unit 36 of each network node 20. As will be described below, it is preferable for at least some of the network node to include multiple processing units 32 and antenna devices 36 to provide the required number of communication directions.

[0052] The second clock sync path 27 provides an alternative route for the synchronisation of the destination network node 206. However, the destination network node 206, needs only a single master clock reference, and so the destination network device 206 determines which of the received master clock signals, received via the first and second clock signal paths 26 and 27, is to be used. This decision may be made by a suitable adapted SDN controller, or locally in the network node. A switching unit in each node 20 is used to direct the reference clock signals appropriately.

[0053] The network node 3 of Figure 3 was illustrated with a single processing unit 32 and associated antenna device 36, and represents a simplified node. For use in a mesh network, at least some of the network nodes need to have a plurality of interconnected processing units 32, which are connected with respective antenna devices 36.

[0054] Figure 9 illustrates a network node device 20 having four processing units 32A, 32B, 32C, 32D with respective associated antenna devices 36A, 36B, 36C, 36D. Such a network node device provides a desired number of communications directions. The network node 20 of Figure 9 includes, in this example, four processing units 32 for the processing of received radio frequency signals. A network node 20 may include any appropriate number of processing units 32.

[0055] The processing units 32A, 32B, 32C, 32D are interconnected by a switch unit 5 which operates to transfer data packets between the processing units 32A, 32B, 32C, 32D. In such a manner data packets can be routed through the network node 20. In addition, the switch unit 5 is connected with a local connection 6, for example a cell of a cellular communications network, or other local device.

[0056] Although the switch unit 5 is used for switching data packets through the network node for routing across the network, in the context of the present invention, it is the routing of clock synchronisation signals that is of interest. In this regard, the switching unit 5 is operable to switch such synchronisation signals between the processing units 32A, 32B, 32C, 32D.

[0057] Figure 10 illustrates a part of the switching unit 5 responsible for the routing of synchronisation signals between the processing units 32A, 32B, 32C, 32D. The switching unit 5 includes a non-blocking multiplexer 52 that is able to connect any of its inputs to any of its outputs, and to make multiple connections at any given time. In the present example, the multiplexer 52 is connected to receive respective outputs 35A,35B,35C,35D of the clock generators of the processing units 32A, 32B, 32C, 32D. In addition, the multiplexer is connected to receive an external clock synchronisation signal 35E from the local connection 6. This external signal 35E may be a SyncE (Ethernet sync) signal. The multiplexer 52 provides a series of outputs 35A',35B',35C',35D', which provide the clock signals for use by the respective baseband units of the processing units 32. In addition, an external synchronisation signal output 35E' is provided for supply to the locally connected external device. The multiplexer 52 has a control signal input 53 which is used to determine to which of the outputs the inputs are connected. The control of the multiplexer may be performed locally by the node itself or by a central control unit, such as a software defined network (SDN) controller.

[0058] Figure 11 illustrates the multiplexer 52 connected with parts of one processing unit 32A, and shows how the clock generator signal of that processing unit is routed through the multiplexer. The baseband unit 38A makes use of the clock signal 35A' supplied from the multiplexer 52, and this clock signal 35A' is used in the adjustment of the local clock signal 35A. Accordingly, the local clock signal 35A is able to be synchronised with any of the synchronisation signals received by any of the processing units of the network node.

[0059] In addition, any of the multiplexer outputs 35A',35B',35C',35D' can be transmitted as a clock synchronisation signal from any of the antenna units, on any appropriate beams. The clock synchronisation signal may be part of a data transfer signal, or may be dedicated clock synchronisation signals.

[0060] The reference clock signals are communicated over dedicated clock transmission steerable directional radio frequency beams from the antenna units of the network node 20. In the exemplary case of the sync path 26 of Figure 2, the first to sixth network nodes are instructed to transmit a reference clock beam, and to receive a reference clock signal on a particular beam so as to construct the clock sync path 26. In an alternative example, the clock synchronisation may be derived from a data transfer signal beam. The routing of the clock signal from the POP node 24 to the destination node is achieved by the control of the multiplexer 52 in each network node.

[0061] Figure 12 illustrates steps in a method according to another aspect of the present invention, in which a network node:

110 receiving a plurality of clock synchronising signals

111 selecting one of the received clock synchronising signals as a reference clock signal,

112 producing a reference comparison value by comparing the reference clock signal with a local clock signal, and

113 adjusting the local clock signal in dependence upon the reference comparison value.



[0062] The network may have more than one POP node. Figure 13 illustrates the network 2 of Figure 2 having the first POP node 24 which transmits the first master clock signal over the clock sync route 26, as described with reference to Figure 2. The network of Figure 13 also includes a second POP node 28 which transmits a second master clock signal to a second destination network node, in this example a fourteenth node 2014. The second POP node 28 defines a second clock signal route 29, which it passes through eleventh, ninth, eighth, second, twelfth, thirteenth and fourteenth network nodes 2011, 209, 208, 202, 2012, 2013, and 2014. The second network node 202, in this example, receives two clock reference signals from the first and second POP nodes 24 and 28, respectively. As such, the second network node 202 may use either master clock signal, and can be controlled locally or from a central SDN controller to determine which of the clock signals to use.

[0063] Figure 14 illustrates the resulting clock distribution. The first second third, fourth, fifth and sixth network nodes 201, 202, 203, 204, 205 and 206 make use of the first master clock signal from the first POP node 24, and are therefore in a first clock region 24. The eighth, ninth, eleventh, twelfth, thirteenth, and fourteenth network nodes 208, 209, 2011, 2012, 2013 and 2014 make use of the second master clock signal from the second POP node 28, and are therefore in a second clock region 28. As such, using first and second clock sources and respective routes across the network, it is possible to define different clock regions for different purposes.

[0064] Steps in a method embodying this aspect of the present invention are illustrated in Figure 15, and comprise:

121. at a first network node:

  1. a. receiving a master clock signal;
  2. b. synchronising a local clock signal of the first network node with the master clock signal; and
  3. c. forwarding a first synchronisation signal to a second network node, the first synchronisation signal being dependent upon on or both of the local clock signal of the first node and the master clock signal;

122. at a second network node:

  1. a. receiving the first synchronisation signal from the first network node; and
  2. b. synchronising a local clock signal of the second network node with the
    first synchronisation signal, the first and second network nodes thereby forming a first clock region of the wireless mesh network.



[0065] Accordingly, embodiments of the various aspects of the present invention are able to provide improved techniques for the synchronisation of local clock signals of network nodes across a wireless mesh network having a plurality of such nodes.

[0066] In one example, an embodiment of the present invention is suitable for providing synchronising clock signals for different network slices. Network slicing is a concept in which a single hardware network is utilised by different operators using partitioning into multiple virtual networks allowing the operator to offer optimal support for different types of services for different types of customer segments. The key benefit of network slicing technology is that it enables network access as a service, which enhances operational efficiency while reducing time-to-market for new services. The network slices may be on any type of basis. For example, characteristics including latency or bandwidth requirements may be used to define different network slices. Other examples include time and location slicing. Network slices are isolated from each other in the control and user planes, and so embodiments of the present invention enable provision of the user experience of the network slice will be the same as if it was a physically separate network.


Claims

1. A method for synchronising a local clock signal of a network node with a reference clock signal, said network node is comprised within a wireless mesh communications network which includes a plurality of said network nodes interconnected by another plurality of wireless communications links, the method comprising, at said network node:

receiving (110) a plurality of clock synchronising signals over respective wireless radio frequency signals at a beamforming steerable antenna (60) of a transceiver having a beamforming steerable antenna (60) for which reception parameters define a reception direction for the antenna (60), the clock synchronising signals being received on respective incoming beam reception directions;

selecting (111) one of the received clock synchronising signals as a reference clock signal by selecting an incoming beam reception direction of the antenna (60);

producing (112) a reference comparison value by comparing the reference clock signal with a local clock signal of the network node; and

adjusting (113) the local clock signal in dependence upon the reference comparison value.


 
2. A method as claimed in claim 1, wherein the network node comprises a plurality of transceivers, each of which includes a beamforming steerable antenna (60) and a processing unit, the antennas (60) having respective communications directions, wherein the step of receiving (110) a plurality of clock signals includes receiving respective radio frequency signals at the transceivers, extracting respective clock signals from the received radio frequency signals, and wherein the steps of selecting (111) one of the received clock synchronising signals as a reference clock signal, producing (112) a reference comparison value by comparing the reference clock signal with a local clock signal, and adjusting (113) the local clock signal in dependence upon the reference comparison value are performed for each transceiver.
 
3. A method as claimed in claim 2, further comprising routing any of the reference clock signals to any of the processing units for use thereby in reception and transmission of radio frequency signals received and transmitted respectively from the associated antenna.
 
4. A method as claimed in claim 3, wherein the network node includes a non-blocking multiplexer for the routing of the reference clock signals.
 
5. A method as claimed in claim 3 or 4, wherein said routing is performed in accordance with a timing schedule.
 
6. A method as claimed in any one of claims 4 to 5, wherein said routing is controlled by a central controller of the network.
 
7. A method as claimed in claim 6, wherein the central controller is a software defined network controller.
 
8. A method as claimed in any one of the preceding claims, wherein the network node includes a plurality of local clock signals, and the method incudes adjusting said local clock signals with reference to respective reference clock signals.
 
9. A method as claimed in claim 7, wherein adjusting the local clock signals is performed in accordance with a timing schedule.
 
10. A method as claimed in claim 8, wherein the timing schedule is provided by a central controller of the network.
 
11. A method as claimed in claim 9, wherein the central controller is a software defined network controller.
 
12. A network node for a wireless mesh communications network which includes a plurality of such network nodes interconnected by another plurality of wireless communications links, the network node comprising:
a selection unit operable to select one of a plurality of received clock synchronising signals as a reference clock signal, to produce a reference comparison value by comparing the reference clock signal with a local clock signal of the network node, and to adjust the local clock signal in dependence upon the reference comparison value; and the network node further comprising:

a transceiver operable to receive said plurality of clock synchronising signals over respective wireless radio frequency signals at a beamforming steerable antenna (60) for which reception parameters define a reception direction for the antenna (60), and

wherein the transceiver is operable to receive said clock synchronising signals on respective incoming beam reception directions, and wherein the selection unit is operable to select one of the received clock synchronising signal by selecting an incoming beam reception direction of the antenna (60).


 
13. A network node as claimed in claim 12, further comprising a plurality of transceivers, each of which includes a beamforming steerable antenna (60) and a processing unit, the antennas (60) having respective communications directions, the transceivers being operable to receive respective radio frequency signals, and the processing units being operable to extract respective clock signals from said received radio frequency signals, wherein the selection unit is operable to select one of the received clock synchronising signal as a reference clock signal, to produce a reference comparison value by comparing the reference clock signal with a local clock signal, and to adjust the local clock signal in dependence upon the reference comparison value for each transceiver.
 
14. A network node as claimed in claim 13, further comprising a routing unit operable to route any of the reference clock signals to any of the processing units for use thereby in reception and transmission of radio frequency signals received and transmitted from the associated antenna (60).
 
15. A network node as claimed in claim 14, further comprising a non-blocking multiplexer operable to route the reference clock signals.
 


Ansprüche

1. Verfahren zum Synchronisieren eines lokalen Taktsignals eines Netzwerkknotens mit einem Bezugstaktsignal, wobei der Netzwerkknoten in einem drahtlosen Mesh-Kommunikationsnetzwerk enthalten ist, das eine Vielzahl der Netzwerkknoten aufweist, welche miteinander durch eine andere Vielzahl drahtloser Kommunikationsverbindungen verbunden sind, wobei das Verfahren an dem Netzwerkknoten umfasst:

Empfangen (110) einer Vielzahl von Taktsynchronisierungssignalen über jeweilige drahtlose Funkfrequenzsignale an einer strahlformenden steuerbaren Antenne (60) eines Transceivers, der eine strahlformende steuerbare Antenne (60) aufweist, für welche Empfangsparameter eine Empfangsrichtung für die Antenne (60) definieren, wobei die Taktsynchronisierungssignale auf jeweiligen Eingangsstrahlempfangsrichtungen empfangen werden;

Auswählen (111) eines der empfangenen Taktsynchronisierungssignale als ein Referenztaktsignal durch Auswählen einer Eingangsstrahlempfangsrichtung der Antenne (60);

Erzeugen (112) eines Referenzvergleichswerts durch Vergleichen des Referenztaktsignals mit einem lokalen Taktsignal des Netzwerkknotens; und

Einstellen (113) des lokalen Taktsignals in Abhängigkeit des Bezugsvergleichswerts.


 
2. Verfahren nach Anspruch 1, wobei der Netzwerkknoten eine Vielzahl von Transceivern umfasst, von denen jeder eine strahlformende steuerbare Antenne (60) und eine Verarbeitungseinheit enthält, wobei die Antennen (60) jeweilige Kommunikationsrichtungen aufweisen, wobei der Schritt zum Empfangen (110) einer Vielzahl von Taktsignalen ein Empfangen jeweiliger Funkfrequenzsignale an den Transceivern umfasst, ein Extrahieren jeweiliger Taktsignale von den empfangenen Funkfrequenzsignalen, und wobei die Schritte zum Auswählen (111) eines der empfangenen Taktsynchronisierungssignale als ein Bezugstaktsignal, zum Erzeugen (112) eines Bezugsvergleichswerts durch Vergleichen des Bezugstaktsignals mit einem lokalen Taktsignal, und zum Einstellen (113) des lokalen Taktsignals in Abhängigkeit von dem Bezugsvergleichswert für jeden Transceiver durchgeführt wird.
 
3. Verfahren nach Anspruch 2, das weiterhin ein Leiten irgendeines der Bezugstaktsignale zu irgendeiner der Verarbeitungseinheiten für deren Nutzung beim Empfangen und Senden von Funkfrequenzsignalen umfasst, die jeweils von den assoziierten Antennen empfangen und gesendet werden.
 
4. Verfahren nach Anspruch 3, wobei der Netzwerkknoten einen nicht blockierenden Multiplexer für das Führen der Bezugstaktsignale enthält.
 
5. Verfahren nach Anspruch 3 oder 4, wobei das Führen gemäß einem Timing-Plan ausgeführt wird.
 
6. Verfahren nach einem der Ansprüche 4 bis 5, wobei das Führen durch einen zentralen Controller des Netzwerks gesteuert wird.
 
7. Verfahren nach Anspruch 6, wobei der zentrale Controller ein softwaredefinierter Netzwerkcontroller ist.
 
8. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Netzwerkknoten eine Vielzahl von lokalen Taktsignalen enthält, wobei das Verfahren ein Einstellen der lokalen Taktsignale mit Bezug auf jeweilige Bezugstaktsignale enthält.
 
9. Verfahren nach Anspruch 7, wobei das Einstellen der lokalen Taktsignale gemäß einem Timing-Plan ausgeführt wird.
 
10. Verfahren nach Anspruch 8, wobei der Timing-Plan durch einen zentralen Controller des Netzwerks zur Verfügung gestellt wird.
 
11. Verfahren nach Anspruch 9, wobei der zentrale Controller ein softwaredefinierter Netzwerkcontroller ist.
 
12. Netzwerkknoten für ein drahtloses Mesh-Kommunikationsnetzwerk das eine Vielzahl solcher Netzwerkknoten enthält, die miteinander durch eine andere Vielzahl drahtloser Kommunikationsverbindungen verbunden sind, wobei der Netzwerkknoten umfasst:
eine Auswahleinheit, die betreibbar ist, um eines aus einer Vielzahl empfangener Taktsynchronisierungssignale als ein Bezugstaktsignal auszuwählen, um einen Bezugsvergleichswert durch Vergleichen des Bezugstaktsignals mit einem lokalen Taktsignal des Netzwerkknotens zu erzeugen und um das lokale Taktsignal in Abhängigkeit von dem Vergleichswert einzustellen; wobei der Netzwerkknoten weiterhin umfasst:

einen Transceiver, der betreibbar ist, um die Vielzahl von Taktsignalen über jeweilige drahtlose Funkfrequenzsignale an einer strahlformenden steuerbaren Antenne (60) zu empfangen, für welche Empfangsparameter eine Empfangsrichtung für die Antenne (60) definieren, und

wobei der Transceiver betreibbar ist, um die Taktsynchronisierungssignale auf jeweiligen Eingangsstrahlempfangsrichtungen zu empfangen, wobei die Auswahleinheit betreibbar ist, um eines der empfangenen Taktsynchronisierungssignale auszuwählen, indem eine Eingangsstrahlempfangsrichtung der Antenne (60) ausgewählt wird.


 
13. Netzwerkknoten nach Anspruch 12, der weiterhin eine Vielzahl von Transceivern umfasst, wobei jeder davon eine strahlformende steuerbare Antenne (60) und eine Verarbeitungseinheit enthält, wobei die Antennen (60) jeweilige Kommunikationsrichtungen aufweisen, wobei die Transceiver betreibbar sind, um jeweilige Funkfrequenzsignale zu empfangen und wobei die Verarbeitungseinheiten betreibbar sind, um jeweilige Taktsignale von den empfangenen Funkfrequenzsignalen zu extrahieren, wobei die Auswahleinheit betreibbar ist, um eines der empfangenen Taktsynchronisierungssignale als ein Bezugstaktsignal zu empfangen, um einen Bezugsvergleichswert zu erzeugen, indem das Bezugstaktsignal mit einem lokalen Taktsignal verglichen wird, und um das lokale Taktsignal in Abhängigkeit von dem Bezugsvergleichswert für jeden Transceiver einzustellen.
 
14. Netzwerkknoten nach Anspruch 13, der weiterhin eine Führungseinheit umfasst, die betreibbar ist, um irgendeines der Bezugstaktsignale zu irgendeiner der Verarbeitungseinheiten zu deren Nutzung beim Empfang und Senden von Funkfrequenzsignalen zu nutzen, die von der assoziierten Antenne (60) empfangen und gesendet werden.
 
15. Netzwerkknoten nach Anspruch 14, der weiterhin einen nicht blockierenden Multiplexer umfasst, welcher betreibbar ist, die Bezugstaktsignale zu leiten.
 


Revendications

1. Procédé destiné à synchroniser un signal d'horloge local d'un nœud de réseau avec un signal d'horloge de référence, ledit nœud de réseau étant compris au sein d'un réseau de communications maillé sans fil qui inclut une pluralité desdits nœuds de réseau interconnectés par une autre pluralité de liaisons de communications sans fil, le procédé comprenant, au niveau dudit nœud de réseau :

la réception (110) d'une pluralité de signaux de synchronisation d'horloge par l'intermédiaire de signaux de fréquence radio sans fil respectifs au niveau d'une antenne orientable à formation de faisceau (60) d'un émetteur-récepteur ayant une antenne orientable à formation de faisceau (60) pour laquelle des paramètres de réception définissent une direction de réception pour l'antenne (60), les signaux de synchronisation d'horloge étant reçus sur des directions de réception de faisceau entrant respectives ;

la sélection (111) de l'un des signaux de synchronisation d'horloge reçus en tant que signal d'horloge de référence grâce à la sélection d'une direction de réception de faisceau entrant de l'antenne (60) ;

la production (112) d'une valeur de comparaison de référence grâce à la comparaison du signal d'horloge de référence avec un signal d'horloge local du nœud de réseau ; et

l'ajustement (113) du signal d'horloge local en dépendance de la valeur de comparaison de référence.


 
2. Procédé tel que revendiqué dans la revendication 1, dans lequel le nœud de réseau comprend une pluralité d'émetteurs-récepteurs, dont chacun inclut une antenne orientable à formation de faisceau (60) et une unité de traitement, les antennes (60) ayant des directions de communications respectives, dans lequel l'étape de réception (110) d'une pluralité de signaux d'horloge inclut la réception de signaux de fréquence radio respectifs au niveau des émetteurs-récepteurs, l'extraction de signaux d'horloge respectifs à partir des signaux de fréquence radio reçus, et dans lequel les étapes de sélection (111) de l'un des signaux de synchronisation d'horloge reçus en tant que signal d'horloge de référence, de production (112) d'une valeur de comparaison de référence grâce à la comparaison du signal d'horloge de référence avec un signal d'horloge local, et d'ajustement (113) du signal d'horloge local en dépendance de la valeur de comparaison de référence sont réalisées pour chaque émetteur-récepteur.
 
3. Procédé tel que revendiqué dans la revendication 2, comprenant en outre l'acheminement de n'importe lequel des signaux d'horloge de référence à n'importe laquelle des unités de traitement pour qu'il soit ainsi utilisé lors de la réception et de la transmission de signaux de fréquence radio reçus et transmis respectivement à partir de l'antenne associée.
 
4. Procédé tel que revendiqué dans la revendication 3, dans lequel le nœud de réseau inclut un multiplexeur sans blocage pour l'acheminement des signaux d'horloge de référence.
 
5. Procédé tel que revendiqué dans la revendication 3 ou 4, dans lequel ledit acheminement est réalisé en conformité avec un programme de cadencement.
 
6. Procédé tel que revendiqué dans l'une quelconque des revendications 4 à 5, dans lequel ledit acheminement est commandé par un organe de commande central du réseau.
 
7. Procédé tel que revendiqué dans la revendication 6, dans lequel l'organe de commande central est un organe de commande de réseau défini par le logiciel.
 
8. Procédé tel que revendiqué dans l'une quelconque des revendications précédentes, dans lequel le nœud de réseau inclut une pluralité de signaux d'horloge locaux, et le procédé inclut l'ajustement desdits signaux d'horloge locaux par rapport à des signaux d'horloge de référence respectifs.
 
9. Procédé tel que revendiqué dans la revendication 7, dans lequel l'ajustement des signaux d'horloge locaux est réalisé en conformité avec un programme de cadencement.
 
10. Procédé tel que revendiqué dans la revendication 8, dans lequel le programme de cadencement est fourni par un organe de commande central du réseau.
 
11. Procédé tel que revendiqué dans la revendication 9, dans lequel l'organe de commande central est un organe de commande de réseau défini par le logiciel.
 
12. Nœud de réseau pour un réseau de communications maillé sans fil qui inclut une pluralité de tels nœuds de réseau interconnectés par une autre pluralité de liaisons de communications sans fil, le nœud de réseau comprenant :
une unité de sélection exploitable pour sélectionner l'un d'une pluralité de signaux de synchronisation d'horloge reçus en tant que signal d'horloge de référence, pour produire une valeur de comparaison de référence grâce à la comparaison du signal d'horloge de référence avec un signal d'horloge local du nœud de réseau, et pour ajuster le signal d'horloge local en dépendance de la valeur de comparaison de référence ; et le nœud de réseau comprenant en outre :

un émetteur-récepteur exploitable pour recevoir ladite pluralité de signaux de synchronisation d'horloge par l'intermédiaire de signaux de fréquence radio sans fil respectifs au niveau d'une antenne orientable à formation de faisceau (60) pour laquelle des paramètres de réception définissent une direction de réception pour l'antenne (60), et

dans lequel l'émetteur-récepteur est exploitable pour recevoir lesdits signaux de synchronisation d'horloge sur des directions de réception de faisceau entrant respectives, et dans lequel l'unité de sélection est exploitable pour sélectionner l'un des signaux de synchronisation d'horloge reçus grâce à la sélection d'une direction de réception de faisceau entrant de l'antenne (60).


 
13. Nœud de réseau tel que revendiqué dans la revendication 12, comprenant en outre une pluralité d'émetteurs-récepteurs, dont chacun inclut une antenne orientable à formation de faisceau (60) et une unité de traitement, les antennes (60) ayant des directions de communications respectives, les émetteurs-récepteurs étant exploitables pour recevoir des signaux de fréquence radio respectifs, et les unités de traitement étant exploitables pour extraire des signaux d'horloge respectifs à partir desdits signaux de fréquence radio reçus, dans lequel l'unité de sélection est exploitable pour sélectionner l'un des signaux de synchronisation d'horloge reçus en tant que signal d'horloge de référence, pour produire une valeur de comparaison de référence grâce à la comparaison du signal d'horloge de référence avec un signal d'horloge local, et pour ajuster le signal d'horloge local en dépendance de la valeur de comparaison de référence pour chaque émetteur-récepteur.
 
14. Nœud de réseau tel que revendiqué dans la revendication 13, comprenant en outre une unité d'acheminement exploitable pour acheminer n'importe lequel des signaux d'horloge de référence à n'importe laquelle des unités de traitement pour qu'il soit ainsi utilisé lors de la réception et de la transmission de signaux de fréquence radio reçus et transmis respectivement à partir de l'antenne associée (60).
 
15. Nœud de réseau tel que revendiqué dans la revendication 14, comprenant en outre un multiplexeur sans blocage exploitable pour acheminer les signaux d'horloge de référence.
 




Drawing


















































Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description