(19)
(11)EP 3 477 414 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.09.2020 Bulletin 2020/37

(21)Application number: 18153500.6

(22)Date of filing:  25.01.2018
(51)International Patent Classification (IPC): 
G05D 1/02(2020.01)

(54)

METHOD AND DEVICE FOR MOBILE ROBOT TO MOVE IN PROXIMITY TO OBSTACLE

VERFAHREN UND VORRICHTUNG ZUM BEWEGEN EINES MOBILEN ROBOTERS IN DER NÄHE EINES HINDERNISSES

PROCÉDÉ ET DISPOSITIF POUR DÉPLACEMENT D'UN ROBOT MOBILE À PROXIMITÉ D'OBSTACLES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 25.10.2017 CN 201711006125

(43)Date of publication of application:
01.05.2019 Bulletin 2019/18

(73)Proprietor: Shanghai Slamtec Co., Ltd.
201210 Shanghai Shanghai (CN)

(72)Inventors:
  • Li, Yuxiang
    Shanghai, Shanghai 201210 (CN)
  • Bai, Jing
    Shanghai, Shanghai 201210 (CN)
  • Zhao, Yonghua
    Shanghai, Shanghai 201210 (CN)

(74)Representative: HGF 
Neumarkter Straße 18
81673 München
81673 München (DE)


(56)References cited: : 
EP-A1- 2 251 758
WO-A1-2017/050358
EP-A1- 3 059 650
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present application relates to the field of computer techniques and, in particular, to a technique for a mobile robot to move in proximity to an obstacle.

    BACKGROUND



    [0002] At present, using of mobile robots is increasingly popular. In particular, domestic service robots and shopping guide robots such as sweeping robots and mopping robots bring great convenience to people's lives. However, a robot during moving will encounter obstacles, e.g., a wall. In this case, the robot needs to move in proximity to the obstacle without hitting it.

    [0003] In the related art, moving in proximity to an obstacle is mainly implemented by using a known map. Such method is based on a case that there is a known map, and cannot adapt to an environmental change well, thus having a small application scope and failing to meet requirements of variable environment. An example of a method for guarantying a safe navigation of a mobile robot is disclosed in the application WO2017050358A1, and the application EP3059650A1 discloses a movable object controller. In addition, the application EP2251758A1 discloses a control method and system for controlling autonomous mobile body.

    SUMMARY



    [0004] An object of the present application is to provide a method for a mobile robot to move in proximity to an obstacle.

    [0005] According to one aspect of the present application, a method for a mobile robot to move in proximity to an obstacle is provided. The method includes: moving, by the mobile robot, at a preset speed in a preset direction when it is detected that a distance between the mobile robot and the obstacle reaches a preset distance; calculating a robot predicted moving space of the mobile robot in a next moving cycle based on the preset speed and the preset direction; and determining an adjusted speed and an adjusted direction of the mobile robot based on the robot predicted moving space, so as to make the mobile robot move in proximity to the obstacle at the adjusted speed in the adjusted direction.

    [0006] Further, before the step of moving, by the mobile robot, at the preset speed in the preset direction when it is detected that the distance between the mobile robot and the obstacle reaches the preset distance, the method further includes: approaching the obstacle at a current speed in a specified direction when the distance between the mobile robot and the obstacle is greater than the preset distance.

    [0007] Further, before the step of moving, by the mobile robot, at the preset speed in the preset direction when it is detected that the distance between the mobile robot and the obstacle reaches the preset distance, the method further includes: determining, according to acquired laser data, a target position in proximity to the obstacle when the distance between the mobile robot and the obstacle is greater than the preset distance, so as to make the mobile robot move towards a direction of the target position.

    [0008] Further, the target position is a position nearest to the mobile robot currently in distance.

    [0009] Further, the step of determining the adjusted speed and the adjusted direction of the mobile robot based on the robot predicted moving space includes: determining, based on the robot predicted moving space, whether the obstacle is within the robot predicted moving space; and reducing, when the obstacle is within the robot predicted moving space, the preset speed by a preset speed increment and rotating by a preset angle increment according to the preset direction, so as to determine the adjusted speed and the adjusted direction.

    [0010] Further, the step of determining the adjusted speed and the adjusted direction of the mobile robot based on the robot predicted moving space further includes: using the preset speed and the preset direction as the adjusted speed and the adjusted direction respectively when the obstacle is not within the robot predicted moving space.

    [0011] As compared to the related art, in the present application, the mobile robot moves at a preset speed in a preset direction when it is detected that a distance between the mobile robot and the obstacle reaches a preset distance; a robot predicted moving space of the mobile robot in a next moving cycle is calculated based on the preset speed and the preset direction; and an adjusted speed and an adjusted direction of the mobile robot are determined based on the robot predicted moving space, so as to make the mobile robot move in proximity to the obstacle at the adjusted speed in the adjusted direction. By such mode, a moving mode of the mobile robot can be flexibly adjusted according to environment changes so as to prevent the mobile robot from hitting the obstacle.

    BRIEF DESCRIPTION OF DRAWINGS



    [0012] Other features, objects and advantages of the present invention will become more apparent from a detailed description of non-restrictive embodiments with reference to the accompanying drawings.

    FIG. 1 is a flowchart illustrating a method for a mobile robot to move in proximity to an obstacle according to one aspect of the present application.

    FIG. 2 is a schematic diagram illustrating a device for a mobile robot to move in proximity to an obstacle according to another aspect of the present application.



    [0013] Same or similar reference numbers in the accompanying drawings denote same or similar components.

    DETAILED DESCRIPTION



    [0014] The present invention will be described below in further detail with reference to the accompanying drawings.

    [0015] In a typical configuration of the present application, a terminal, a service network device and a trusted party each include one or more processors (CPUs), input/output interfaces, network interfaces and memories.

    [0016] The memories may include computer-readable media like a volatile memory, a random access memory (RAM) and/or a non-volatile memory such as a read-only memory (ROM) or a flash RAM. A memory is an example of a computer-readable medium.

    [0017] The computer-readable media include non-volatile, volatile, removable and immovable media. Information can be stored using any method or technology. The information may be a computer-readable instruction, a data structure, a program module or other data. Examples of computer storage media include, but are not limited to, a phase-change memory (PRAM), a static random access memory (SRAM), a dynamic random access memory (DRAM), other types of RAMs, a ROM, an electrically erasable programmable read-only memory (EEPROM), a flash memory or other memory technologies, a compact disc read-only memory (CD-ROM), a digital versatile disc (DVD) or other optical storages, a magnetic-cassette mode magnetic tape, a magnetic tape or a magnetic disk or other magnetic storage devices, or any other non-transmission medium capable of storing information accessible to a computing device. As defined herein, the computer-readable media do not include non-transitory computer-readable media such as modulated data signals and carriers.

    [0018] To further elaborate on the technical means adopted and the effects achieved in the present application, the solutions of the present application are clearly and completely described below with reference to the accompanying drawings and preferred embodiments.

    [0019] FIG. 1 illustrates a method for a mobile robot to move in proximity to an obstacle according to one aspect of the present application. The method includes following steps.

    [0020] In step S11, the mobile robot moves at a preset speed in a preset direction when it is detected that a distance between the mobile robot and the obstacle reaches a preset distance.

    [0021] In step S12, a robot predicted moving space of the mobile robot in a next moving cycle is calculated based on the preset speed and the preset direction.

    [0022] In step S13, an adjusted speed and an adjusted direction of the mobile robot are determined based on the robot predicted moving space, so as to make the mobile robot move in proximity to the obstacle at the adjusted speed in the adjusted direction.

    [0023] In this embodiment, in the step S11, the mobile robot includes a device capable of automatically or passively controlling moving, e.g., a sweeping robot, a mopping robot and the like; and the obstacle includes an object capable of stopping the moving of the mobile robot. Here the obstacle is an obstacle responded based on laser data.

    [0024] When the mobile robot is moving, the distance between the mobile robot and the obstacle is constantly detected so as to enable the mobile robot to move along an outline of the obstacle when the mobile robot is in proximity to the obstacle. Here, ranging information with respect to the obstacle nearby may be obtained by a lidar, and the distance between the mobile robot and the obstacle may be obtained based on the ranging information. Here, the preset distance may be preset. The preset distance indicates that the mobile robot is close to but not in contact with the obstacle. A preset speed and a preset direction of the mobile robot when the mobile robot reaches the preset distance may be preset. The preset speed is an initial sampling speed of moving of the mobile robot when the mobile robot approaches the obstacle. The preset speed includes a linear speed and an angular speed. Here, it may be assumed that the mobile robot uses a largest linear speed and a largest angular speed as the preset speed. The preset direction is an initial moving direction of the mobile robot when the mobile robot approaches the obstacle. The preset direction may be preset to, e.g., leftwards or rightwards. When it is detected from an analysis of laser data that the distance between the mobile robot and the obstacle reaches the preset distance, the mobile robot moves at the preset speed in the preset direction.

    [0025] Preferably, before the step S11, the method further includes S14 (not shown) in which the mobile robot approaches the obstacle at a current speed in a specified direction when the distance between the mobile robot and the obstacle is greater than the preset distance. In this embodiment, when the mobile robot is far away from the obstacle, the mobile robot may move at its current speed in a current direction since the mobile robot will not hit the obstacle temporarily. Here, the current speed of the mobile robot may be preset, or may be a moving speed that can be automatically adjusted by the mobile robot and can be used when the mobile robot is far from the obstacle. The specified direction may include a current moving direction of the mobile robot, and may further include certain direction randomly set.

    [0026] Preferably, before the step S11, the method further includes S15 (not shown) in which a target position in proximity to the obstacle is determined according to acquired laser data when the distance between the mobile robot and the obstacle is greater than the preset distance, so as to make the mobile robot move towards a direction of the target position.

    [0027] In this embodiment, when the mobile robot is far away from the obstacle, a target position, which is a position for approaching the obstacle, is determined according to the acquired laser data. The mobile robot may adjust speed and direction according to the target position so as to approach the target position. Preferably, the target position is a position nearest to the mobile robot currently in distance, i.e., the mobile robot may approach the obstacle by moving for a shortest distance.

    [0028] Still in this embodiment, in the step S12, the robot predicted moving space of the mobile robot in the next moving cycle is calculated based on the preset speed and the preset direction. Here, the moving cycle may be a preset sampling cycle. The robot predicted moving space of the mobile robot in the next moving cycle may be calculated through the sampling cycle, the preset speed and the preset direction. The robot predicted moving space is used for indicating position information of the mobile robot in the next moving cycle, and may be a position point or a position range.

    [0029] Still in this embodiment, in the step S13, the adjusted speed and the adjusted direction of the mobile robot are determined based on a positional relationship between the robot predicted moving space and the obstacle, so as to make the mobile robot move in proximity to the obstacle at the adjusted speed in the adjusted direction.

    [0030] Preferably, the step S13 includes: determining, based on the robot predicted moving space, whether the obstacle is within the robot predicted moving space; and reducing, when the obstacle is within the robot predicted moving space, the preset speed by a preset speed increment and rotating by a preset angle increment according to the preset direction, so as to determine the adjusted speed and the adjusted direction.

    [0031] In this embodiment, the acquired laser data may be used for determining the distance between the mobile robot and the obstacle and a distance of the robot predicted moving space. Here, preferably, the robot predicted moving space is position information of a point closest to the obstacle. The distance between the mobile robot and the obstacle and the distance to the robot predicted moving space are compared to determine whether the obstacle is within the robot predicted moving space. That is, such method can be used for calculating whether the mobile robot hits the obstacle in the next moving cycle.

    [0032] When the obstacle is within the robot predicted moving space, the mobile robot will hit the obstacle and thus the moving speed and direction of the mobile robot need to be adjusted. Here, as an adjusting mode, it is feasible to reduce the preset speed by the preset speed increment and rotate by the preset angle increment according to the preset direction, so as to determine the adjusted speed and the adjusted direction. Here, the preset speed increment may be a preset adjustment amount of the speed. The adjustment amount may be fixed or may vary according to actual situations. For example, when the possibility of a collision is high, the preset speed may be reduced by a larger amount, i.e., the absolute value of the preset speed increment is large; and when the possibility of the collision is small, the preset speed may be reduced by a smaller amount, i.e., the absolute value of the preset speed increment may be small. Meanwhile, to avoid collisions, it is also needed to adjust the mobile robot leftwards or rightwards by certain preset angular increment, so as to slightly change the moving direction of the mobile robot.

    [0033] Preferably, the step S13 includes: using the preset speed and the preset direction as the adjusted speed and the adjusted direction respectively when the obstacle is not within the robot predicted moving space.

    [0034] In this embodiment, when the mobile robot does not hit the obstacle in the next moving cycle, the mobile robot continues moving according to the preset speed and the preset direction as initially approaching the obstacle. After moving for certain distance, a mobile robot predicted moving space in another moving cycle is further calculated according to the preceding mode, so as to enable the mobile robot to keep moving along the obstacle.

    [0035] As compared to the related art, in the present application, the mobile robot moves at a preset speed in a preset direction when it is detected that a distance between the mobile robot and the obstacle reaches a preset distance; a robot predicted moving space of the mobile robot in a next moving cycle is calculated based on the preset speed and the preset direction; and an adjusted speed and an adjusted direction of the mobile robot are determined based on the robot predicted moving space, so as to make the mobile robot move in proximity to the obstacle at the adjusted speed in the adjusted direction. By such mode, a moving mode of the mobile robot can be flexibly adjusted according to environment changes so as to prevent the mobile robot from hitting the obstacle.

    [0036] FIG. 2 illustrates a device for control the mobile robot to move in proximity to the obstacle according to another aspect of the present application, in which a device 1 includes following apparatuses.

    [0037] A first apparatus is configured to enable the mobile robot to move at a preset speed in a preset direction when it is detected that a distance between the mobile robot and the obstacle reaches a preset distance.

    [0038] A second apparatus is configured to calculate a robot predicted moving space of the mobile robot in a next moving cycle based on the preset speed and the preset direction.

    [0039] A third apparatus is configured to determine an adjusted speed and an adjusted direction of the mobile robot based on the robot predicted moving space, so as to make the mobile robot move in proximity to the obstacle at the adjusted speed in the adjusted direction.

    [0040] In the present application, the device 1 may be the mobile robot itself or other control devices capable of controlling the mobile robot. In this embodiment, the mobile robot includes a device capable of automatically or passively controlling moving, e.g., a sweeping robot, a mopping robot and the like; and the obstacle includes an object capable of stopping the moving of the mobile robot.

    [0041] When the mobile robot is moving, the first apparatus keeps detecting the distance between the mobile robot and the obstacle so as to enable the mobile robot to move along an outline of the obstacle when the mobile robot is in proximity to the obstacle. Here, ranging information with respect to the obstacle nearby may be obtained by a lidar, and the distance between the mobile robot and the obstacle may be obtained based on the ranging information. Here, the preset distance may be preset. The preset distance indicates that the mobile robot is close to but not in contact with the obstacle. A preset speed and a preset direction of the mobile robot when the mobile robot reaches the preset distance may be preset. The preset speed is an initial sampling speed of moving of the mobile robot when the mobile robot approaches the obstacle. The preset speed includes a linear speed and an angular speed. Here, it may be assumed that the mobile robot uses a largest linear speed and a largest angular speed as the preset speed. The preset direction is an initial moving direction of the mobile robot when the mobile robot approaches the obstacle. The preset direction may be preset to, e.g., leftwards or rightwards. When it is detected from an analysis of laser data that the distance between the mobile robot and the obstacle reaches the preset distance, the mobile robot moves at the preset speed in the preset direction.

    [0042] Preferably, the device 1 further includes a fourth apparatus (not shown) configured to enable the mobile robot to approach the obstacle at a current speed in a specified direction when the distance between the mobile robot and the obstacle is greater than the preset distance. In this embodiment, when the mobile robot is far away from the obstacle, the fourth apparatus may control the mobile robot to move at its current speed in a current direction since the mobile robot will not hit the obstacle temporarily. Here, the current speed of the mobile robot may be preset, or may be a moving speed that can be automatically adjusted by the mobile robot and can be used when the mobile robot is far from the obstacle. The specified direction may include a current moving direction of the mobile robot, and may further include certain direction randomly set.

    [0043] Preferably, the device 1 further includes a fifth apparatus (not shown) configured to determine a target position in proximity to the obstacle according to acquired laser data when the distance between the mobile robot and the obstacle is greater than the preset distance, so as to make the mobile robot move towards a direction of the target position.

    [0044] In this embodiment, when the mobile robot is far away from the obstacle, the fifth apparatus may determine a target position, which is a position for approaching the obstacle, according to the acquired laser data. The mobile robot may adjust speed and direction according to the target position so as to approach the target position. Preferably, the target position is a position nearest to the mobile robot currently in distance, i.e., the mobile robot may approach the obstacle by moving for a shortest distance.

    [0045] Still in this embodiment, the second apparatus calculates the robot predicted moving space of the mobile robot in the next moving cycle based on the preset speed and the preset direction. Here, the moving cycle may be a preset sampling cycle. The robot predicted moving space of the mobile robot in the next moving cycle may be calculated through the sampling cycle, the preset speed and the preset direction. The robot predicted moving space is used for indicating position information of the mobile robot in the next moving cycle, and may be a position point or a position range.

    [0046] Still in this embodiment, the third apparatus determines the adjusted speed and the adjusted direction of the mobile robot based on a positional relationship between the robot predicted moving space and the obstacle, so as to make the mobile robot move in proximity to the obstacle at the adjusted speed in the adjusted direction.

    [0047] Preferably, the third apparatus is configured to determine, based on the robot predicted moving space, whether the obstacle is within the robot predicted moving space; and reduce, when the obstacle is within the robot predicted moving space, the preset speed by a preset speed increment and rotate by a preset angle increment according to the preset direction, so as to determine the adjusted speed and the adjusted direction.

    [0048] In this embodiment, the third apparatus may use the acquired laser data to determine the distance between the mobile robot and the obstacle and a distance of the robot predicted moving space. Here, preferably, the robot predicted moving space is position information of a point closest to the obstacle. The distance between the mobile robot and the obstacle and the distance to the robot predicted moving space are compared to determine whether the obstacle is within the robot predicted moving space. That is, such method can be used for calculating whether the mobile robot hits the obstacle in the next moving cycle.

    [0049] When the obstacle is within the robot predicted moving space, the mobile robot will hit the obstacle and thus the moving speed and direction of the mobile robot need to be adjusted. Here, as an adjusting mode, it is feasible to reduce the preset speed by the preset speed increment and rotate by the preset angle increment according to the preset direction, so as to determine the adjusted speed and the adjusted direction. Here, the preset speed increment may be a preset adjustment amount of the speed. The adjustment amount may be fixed or may vary according to actual situations. For example, when the possibility of a collision is high, the preset speed may be reduced by a larger amount, i.e., the absolute value of the preset speed increment is large; and when the possibility of the collision is small, the preset speed may be reduced by a smaller amount, i.e., the absolute value of the preset speed increment may be small. Meanwhile, to avoid collisions, it is also needed to adjust the mobile robot leftwards or rightwards by certain preset angular increment, so as to slightly change the moving direction of the mobile robot.

    [0050] Preferably, the third apparatus is further configured to use the preset speed and the preset direction as the adjusted speed and the adjusted direction respectively when the obstacle is not within the robot predicted moving space.

    [0051] In this embodiment, when the mobile robot does not hit the obstacle in the next moving cycle, the mobile robot continues moving according to the preset speed and the preset direction as initially approaching the obstacle. After moving for certain distance, a mobile robot predicted moving space in another moving cycle is further calculated according to the preceding mode, so as to enable the mobile robot to keep moving along the obstacle.

    [0052] As compared to the related art, in the present application, the mobile robot moves at a preset speed in a preset direction when it is detected that a distance between the mobile robot and the obstacle reaches a preset distance; a robot predicted moving space of the mobile robot in a next moving cycle is calculated based on the preset speed and the preset direction; and an adjusted speed and an adjusted direction of the mobile robot are determined based on the robot predicted moving space, so as to make the mobile robot move in proximity to the obstacle at the adjusted speed in the adjusted direction. By such mode, a moving mode of the mobile robot can be flexibly adjusted according to environment changes so as to prevent the mobile robot from hitting the obstacle.

    [0053] It will be apparent to those skilled in the art that the present invention is not limited to the details of the above exemplary embodiments, and that the present invention can be embodied in other forms without departing from the spirit or essential features of the present invention. Thus, embodiments of the present invention are illustrative and not restrictive. The scope of the present invention is defined by the appended claims rather than by the foregoing description and is therefore intended to cover all changes that fall within the meaning and scope of an equivalency of the claims. Reference numbers in the claims are not to be construed as limiting the claims. In addition, it is apparent that the word "comprise" or "include" does not exclude other units or steps and the singular does not exclude the plural. The multiple units or apparatuses described in the device claims may also be implemented by one unit or apparatus through software or hardware. The words such as "first" and "second" are used for indicating names and do not represent any particular order.


    Claims

    1. A method for a mobile robot to move in proximity to an obstacle, characterized by comprising:

    in step A, moving (S11), by the mobile robot, at a preset speed in a preset direction when it is detected that a distance between the mobile robot and the obstacle reaches a preset distance;

    in step B, calculating (S12) a robot predicted moving space of the mobile robot in a next moving cycle based on the preset speed and the preset direction, wherein the robot predicted moving space comprises position information of a point closest to the obstacle; and

    in step C, determining (S13) an adjusted speed and an adjusted direction of the mobile robot based on a positional relationship between the robot predicted moving space and the obstacle, so as to make the mobile robot move in proximity to the obstacle at the adjusted speed in the adjusted direction and to move along an outline of the obstacle when the mobile robot is in proximity to the obstacle;

    before the moving (S11), by the mobile robot, at the preset speed in the preset direction when it is detected that the distance between the mobile robot and the obstacle reaches the preset distance, the method further comprises: determining, according to acquired laser data, a target position in proximity to the obstacle when the distance between the mobile robot and the obstacle is greater than the preset distance, so as to make the mobile robot move towards a direction of the target position at a current speed; and

    wherein the target position is a position nearest to the mobile robot currently in distance.


     
    2. The method according to one of the claim 1, wherein the step C comprises:

    determining, based on the robot predicted moving space, whether the obstacle is within the robot predicted moving space; and

    reducing, when the obstacle is within the robot predicted moving space, the preset speed by a preset speed increment and rotating by a preset angle increment according to the preset direction, so as to determine the adjusted speed and the adjusted direction.


     
    3. The method of claim 2, wherein the step C further comprises:
    using the preset speed and the preset direction as the adjusted speed and the adjusted direction respectively when the obstacle is not within the robot predicted moving space.
     
    4. A device for controlling a mobile robot to move in proximity to an obstacle, characterized by comprising:

    a first apparatus (11), which is configured to enable (S11) the mobile robot to move at a preset speed in a preset direction when it is detected that a distance between the mobile robot and the obstacle reaches a preset distance;

    a second apparatus (12), which is configured to calculate (S12) a robot predicted moving space of the mobile robot in a next moving cycle based on the preset speed and the preset direction, wherein the robot predicted moving space comprises position information of a point closest to the obstacle; and

    a third apparatus (13), which is configured to determine (S13) an adjusted speed and an adjusted direction of the mobile robot based on a positional relationship between the robot predicted moving space and the obstacle, so as to make the mobile robot move in proximity to the obstacle at the adjusted speed in the adjusted direction and to move along an outline of the obstacle when the mobile robot is in proximity to the obstacle;

    a fourth apparatus, which is configured to enable the mobile robot to approach the obstacle at a current speed in a specified direction when the distance between the mobile robot and the obstacle is greater than the preset distance;

    a fifth apparatus, which is configured to determine, according to acquired laser data, a target position in proximity to the obstacle when the distance between the mobile robot and the obstacle is greater than the preset distance, so as to make the mobile robot move towards a direction of the target position; and

    the target position is a position nearest to the mobile robot currently in distance.


     
    5. The device of according to one of the claim 4, wherein the third apparatus (13) is configured to:

    determine, based on the robot predicted moving space, whether the obstacle is within the robot predicted moving space; and

    reduce, when the obstacle is within the robot predicted moving space, the preset speed by a preset speed increment and rotate by a preset angle increment according to the preset direction, so as to determine the adjusted speed and the adjusted direction.


     
    6. The device of claim 5, wherein the third apparatus (13) is further configured to:
    use the preset speed and the preset direction as the adjusted speed and the adjusted direction respectively when the obstacle is not within the robot predicted moving space.
     
    7. The device according to one of the claims 4 to 6, wherein the device is embodied to carry out the method according to one of the claims 1 to 4.
     


    Ansprüche

    1. Verfahren, um einen mobilen Roboter in der Nähe eines Hindernisses zu bewegen, dadurch gekennzeichnet, dass es umfasst:

    in Schritt A, Bewegungsausführung (S11), durch den mobilen Roboter, mit einer voreingestellten Geschwindigkeit in eine voreingestellte Richtung, wenn festgestellt wird, dass ein Abstand zwischen dem mobilen Roboter und dem Hindernis einen voreingestellten Abstand erreicht;

    in Schritt B, Berechnen (S12) eines vorhergesagten Roboterbewegungsraums des mobilen Roboters in einem nächsten Bewegungszyklus basierend auf der voreingestellten Geschwindigkeit und der voreingestellten Richtung, wobei der vorhergesagte Roboterbewegungsraum Positionsinformationen eines Punktes enthält, der dem Hindernis am nächsten liegt; und

    in Schritt C, Bestimmen (S13) einer angepassten Geschwindigkeit und einer angepassten Richtung des mobilen Roboters basierend auf einer Positionsbeziehung zwischen dem vorhergesagten Roboterbewegungsraum und dem Hindernis, um den mobilen Roboter dazu zu bringen, sich in der Nähe des Hindernisses mit der angepassten Geschwindigkeit in der angepassten Richtung zu bewegen und sich entlang eines Umrisses des Hindernisses zu bewegen, wenn sich der mobile Roboter in der Nähe des Hindernisses befindet;

    wobei vor der Bewegungsausführung (S11) durch den mobilen Roboter mit der voreingestellten Geschwindigkeit in der voreingestellten Richtung, wenn festgestellt wird, dass der Abstand zwischen dem mobilen Roboter und dem Hindernis den voreingestellten Abstand erreicht, das Verfahren darüber hinaus umfasst: Bestimmen einer Zielposition in der Nähe des Hindernisses in Abhängigkeit von erfassten Laserdaten, wenn der Abstand zwischen dem mobilen Roboter und dem Hindernis größer als der voreingestellte Abstand ist, um den mobilen Roboter dazu zu bringen, sich mit einer aktuellen Geschwindigkeit in einer Richtung zur Zielposition zu bewegen; und

    wobei die Zielposition eine Position ist, die dem mobilen Roboter am nächsten liegt, der sich gerade entfernt befindet.


     
    2. Verfahren nach Anspruch 1, wobei Schritt C umfasst:

    Bestimmen, basierend auf dem vorhergesagten Roboterbewegungsraum, ob sich das Hindernis innerhalb des vorhergesagten Roboterbewegungsraums befindet; und

    Reduzieren, wenn sich das Hindernis innerhalb des vorhergesagten Roboterbewegungsraums befindet, der voreingestellten Geschwindigkeit um ein voreingestelltes Geschwindigkeitsinkrement und Drehen um ein voreingestelltes Winkelinkrement entsprechend der voreingestellten Richtung, um so die angepasste Geschwindigkeit und die angepasste Richtung zu bestimmen.


     
    3. Verfahren nach Anspruch 2, wobei Schritt C darüber hinaus umfasst:
    Verwenden der voreingestellten Geschwindigkeit und der voreingestellten Richtung als die angepasste Geschwindigkeit bzw. die angepasste Richtung, wenn sich das Hindernis nicht innerhalb des vorhergesagten Roboterbewegungsraums befindet.
     
    4. Vorrichtung zum Steuern eines mobilen Roboters, um sich in der Nähe eines Hindernisses zu bewegen, dadurch gekennzeichnet, dass sie aufweist:

    eine erste Einrichtung (11), die so konfiguriert ist, dass sie es dem mobilen Roboter ermöglicht (S11), sich mit einer voreingestellten Geschwindigkeit in einer voreingestellten Richtung zu bewegen, wenn festgestellt wird, dass ein Abstand zwischen dem mobilen Roboter und dem Hindernis einen voreingestellten Abstand erreicht;

    eine zweite Einrichtung (12), die so konfiguriert ist, dass sie einen vorhergesagten Roboterbewegungsraum des mobilen Roboters in einem nächsten Bewegungszyklus basierend auf der voreingestellten Geschwindigkeit und der voreingestellten Richtung berechnet (S12), wobei der vorhergesagte Roboterbewegungsraum Positionsinformationen eines Punktes umfasst, der dem Hindernis am nächsten liegt; und

    eine dritte Einrichtung (13), die so konfiguriert ist, dass sie basierend auf einer Positionsbeziehung zwischen dem vorhergesagten Roboterbewegungsraum und dem Hindernis eine angepasste Geschwindigkeit und eine angepasste Richtung des mobilen Roboters bestimmt (S13), um den mobilen Roboter dazu zu bringen, sich in der Nähe des Hindernisses mit der angepassten Geschwindigkeit in der angepassten Richtung zu bewegen und sich entlang einer Kontur des Hindernisses zu bewegen, wenn sich der mobile Roboter in der Nähe des Hindernisses befindet;

    eine vierte Einrichtung, die so konfiguriert ist, dass sie es dem mobilen Roboter ermöglicht, sich dem Hindernis mit einer aktuellen Geschwindigkeit in einer bestimmten Richtung zu nähern, wenn der Abstand zwischen dem mobilen Roboter und dem Hindernis größer als der voreingestellte Abstand ist;

    eine fünfte Einrichtung, die so konfiguriert ist, dass sie in Abhängigkeit von erfassten Laserdaten eine Zielposition in der Nähe des Hindernisses bestimmt, wenn der Abstand zwischen dem mobilen Roboter und dem Hindernis größer als der voreingestellte Abstand ist, um den mobilen Roboter dazu zu bringen, sich in einer Richtung zur Zielposition zu bewegen; und

    wobei die Zielposition eine Position ist, die dem mobilen Roboter am nächsten liegt, der sich gerade entfernt befindet.


     
    5. Vorrichtung nach Anspruch 4, wobei die dritte Einrichtung (13) für Folgendes ausgelegt ist:

    Bestimmen, basierend auf dem vorhergesagten Roboterbewegungsraum, ob sich das Hindernis innerhalb des vorhergesagten Roboterbewegungsraums befindet; und,

    wenn sich das Hindernis innerhalb des vorhergesagten Roboterbewegungsraums befindet, die voreingestellte Geschwindigkeit um ein voreingestelltes Geschwindigkeitsinkrement zu reduzieren und eine Drehung um ein voreingestelltes Winkelinkrement entsprechend der voreingestellten Richtung auszuführen, um so die angepasste Geschwindigkeit und die angepasste Richtung zu bestimmen.


     
    6. Vorrichtung nach Anspruch 5, wobei die dritte Einrichtung (13) darüber hinaus für Folgendes ausgelegt ist:
    Verwenden der voreingestellten Geschwindigkeit und der voreingestellten Richtung als angepasste Geschwindigkeit bzw. angepasste Richtung, wenn sich das Hindernis nicht innerhalb des vorhergesagten Roboterbewegungsraums befindet.
     
    7. Vorrichtung nach einem der Ansprüche 4 bis 6, wobei die Vorrichtung dazu verwirklicht ist, das Verfahren nach einem der Ansprüche 1 bis 4 durchzuführen.
     


    Revendications

    1. Procédé de déplacement d'un robot mobile à proximité d'un obstacle, caractérisé en ce qu'il comprend :

    à l'étape A, le déplacement (S11), par le robot mobile, à une vitesse prédéfinie dans une direction prédéfinie lorsqu'il est détecté qu'une distance entre le robot mobile et l'obstacle atteint une distance prédéfinie ;

    à l'étape B, le calcul (S12) d'un espace de déplacement prévu de robot du robot mobile dans un cycle de déplacement suivant sur la base de la vitesse prédéfinie et de la direction prédéfinie, sachant que l'espace de déplacement prévu de robot comprend des informations de position d'un point le plus proche de l'obstacle ; et

    à l'étape C, la détermination (S13) d'une vitesse ajustée et d'une direction ajustée du robot mobile sur la base d'un rapport de position entre l'espace de déplacement prévu de robot et l'obstacle, de manière que le robot mobile se déplace à proximité de l'obstacle à la vitesse ajustée dans la direction ajustée et se déplace le long d'un contour de l'obstacle lorsque le robot mobile est à proximité de l'obstacle ;

    avant le déplacement (S11), par le robot mobile, à la vitesse prédéfinie dans la direction prédéfinie lorsqu'il est détecté que la distance entre le robot mobile et l'obstacle atteint la distance prédéfinie, le procédé comprend en outre : la détermination, selon des données laser acquises, d'une position cible à proximité de l'obstacle lorsque la distance entre le robot mobile et l'obstacle est plus grande que la distance prédéfinie, de manière que le robot mobile se déplace dans une direction vers la position cible à une vitesse présente ; et

    sachant que la position cible est une position la plus proche du robot mobile présentement à distance.


     
    2. Le procédé selon la revendication 1, sachant que l'étape C comprend :

    le fait de déterminer, sur la base de l'espace de déplacement prévu de robot, si l'obstacle se trouve dans l'espace de déplacement prévu de robot ; et

    la réduction, lorsque l'obstacle se trouve dans l'espace de déplacement prévu de robot, de la vitesse prédéfinie à raison d'un incrément de vitesse prédéfini et la rotation à raison d'un incrément d'angle prédéfini selon la direction prédéfinie, de manière à déterminer la vitesse ajustée et la direction ajustée.


     
    3. Le procédé selon la revendication 2, sachant que l'étape C comprend en outre :
    l'utilisation de la vitesse prédéfinie et de la direction prédéfinie en tant que la vitesse ajustée et la direction ajustée, respectivement, lorsque l'obstacle ne se trouve pas dans l'espace de déplacement prévu de robot.
     
    4. Dispositif de commande d'un robot mobile pour se déplacer à proximité d'un obstacle, caractérisé en ce qu'il comprend :

    un premier appareil (11), qui est configuré pour permettre (S11) au robot mobile de se déplacer à une vitesse prédéfinie dans une direction prédéfinie lorsqu'il est détecté qu'une distance entre le robot mobile et l'obstacle atteint une distance prédéfinie ;

    un deuxième appareil (12), qui est configuré pour calculer (S12) un espace de déplacement prévu de robot du robot mobile dans un cycle de déplacement suivant sur la base de la vitesse prédéfinie et de la direction prédéfinie, sachant que l'espace de déplacement prévu de robot comprend des informations de position d'un point le plus proche de l'obstacle ; et

    un troisième appareil (13), qui est configuré pour déterminer (S13) une vitesse ajustée et une direction ajustée du robot mobile sur la base d'un rapport de position entre l'espace de déplacement prévu de robot et l'obstacle, de manière que le robot mobile se déplace à proximité de l'obstacle à la vitesse ajustée dans la direction ajustée et se déplace le long d'un contour de l'obstacle lorsque le robot mobile est à proximité de l'obstacle ;

    un quatrième appareil, qui est configuré pour permettre au robot mobile de s'approcher de l'obstacle à une vitesse présente dans une direction spécifiée lorsque la distance entre le robot mobile et l'obstacle est plus grande que la distance prédéfinie ;

    un cinquième appareil, qui est configuré pour déterminer, selon des données laser acquises, une position cible à proximité de l'obstacle lorsque la distance entre le robot mobile et l'obstacle est plus grande que la distance prédéfinie, de manière que le robot mobile se déplace dans une direction vers la position cible ; et

    la position cible est une position la plus proche du robot mobile présentement à distance.


     
    5. Le dispositif selon la revendication 4, sachant que le troisième appareil (13) est configuré pour :

    déterminer, sur la base de l'espace de déplacement prévu de robot, si l'obstacle se trouve dans l'espace de déplacement prévu de robot ; et

    réduire, lorsque l'obstacle se trouve dans l'espace de déplacement prévu de robot, la vitesse prédéfinie à raison d'un incrément de vitesse prédéfini et opérer une rotation à raison d'un incrément d'angle prédéfini selon la direction prédéfinie, de manière à déterminer la vitesse ajustée et la direction ajustée.


     
    6. Le dispositif de la revendication 5, sachant que le troisième appareil (13) est en outre configuré pour :
    utiliser la vitesse prédéfinie et la direction prédéfinie en tant que la vitesse ajustée et la direction ajustée, respectivement, lorsque l'obstacle ne se trouve pas dans l'espace de déplacement prévu de robot.
     
    7. Le dispositif selon l'une des revendications 4 à 6, sachant que le dispositif est implémenté pour exécuter le procédé selon l'une des revendications 1 à 4.
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description