(19)
(11)EP 3 477 665 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
17.06.2020 Bulletin 2020/25

(21)Application number: 18195955.2

(22)Date of filing:  21.09.2018
(51)International Patent Classification (IPC): 
H01F 19/08(2006.01)
H03K 17/16(2006.01)
H01F 27/38(2006.01)
H03K 17/691(2006.01)

(54)

MAGNETICALLY IMMUNE GATEDRIVER CIRCUIT

MAGNETISCH UNEMPFINDLICHE GATE-TREIBERSCHALTUNG

CIRCUIT DE CONTRÔLE DE GRILLE MAGNÉTIQUEMENT IMMUNISÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 03.10.2017 DK PA201770751

(43)Date of publication of application:
01.05.2019 Bulletin 2019/18

(73)Proprietor: VESTAS WIND SYSTEMS A/S
8200 Aarhus N (DK)

(72)Inventor:
  • Pallesgaard, Stig Lund
    8831 Løgstrup (DK)

(74)Representative: Vestas Patents Department 
Hedeager 42
8200 Aarhus N
8200 Aarhus N (DK)


(56)References cited: : 
EP-A1- 2 302 798
US-A1- 2006 186 981
US-B2- 7 414 507
DE-A1- 2 551 179
US-A1- 2008 266 042
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention relates to the field of power converters, more specifically for circuites for control of power converters e.g. in wind turbines.

    BACKGROUND OF THE INVENTION



    [0002] Electric control signals for control of power switching circuits, gatedrive circuits, e.g. in a wind turbine, is normally transferred via galvanic separation means. The signals can e.g. be transferred via a traditional 1:1 electric transformer to provide galvanic separation. Such transformer will normally be located inside the converter cabinet, and thus inside the power stack where it is a part of the gatedriver, driving an IGBT module.

    [0003] Gatedriver circuits comprising transformers for galvanic separation between electric input and output are known from US7414507B2 and US 2008/0266042A1.

    [0004] In a wind turbine with an electric power of several MW, the environment inside the converter cabinet is influence by a strong magnetic radiation due to large currents running through the busbars, generating a surrounding magnetic field. There will also be stray magnetic fields around reactors in the converter, and finally EMI is generated by the commutation of the power modules. Very high currents processed in a MW converter in the busbars and components at switching frequencies of up to typically 10 kHz will generate strong fields which are picked up by the gatedriver transformer. This will lead to a wrong signal level transfer over the galvanic barrier of the gatedriver, thus distorting the control signals, which again may cause errors in the control function of the power electronic switches of the converter. In worst case scenarios this may lead to a cross conduction of the IGBT, if there is no other systems in place to secure this cannot happen, on the high voltage side of the gatedriver.

    SUMMARY OF THE INVENTION



    [0005] Thus, according to the above description, it is an object of the present invention to provide a device and method for providing a magnetically immune galvanic separation for use in high power gatedrivers, e.g. for use in the control of an electric power converter of a wind turbine.

    [0006] In a first aspect, the invention provides a gatedriver circuit arranged to generate an electric control signal output for controlling switching of a power electronic switch, the gatedriver circuit comprising
    • a transformer arranged to receive an electric control signal at its electric input and to transform the electric control signal to the electric control signal output at its electric output, wherein the transformer provides a galvanic separation between its electric input and output, and wherein the transformer comprises
      • separate first and second cores of magnetically conductive material, wherein each of the first and second cores are shaped to form respective closed loops,
      • a first electrical conductor forming the electric input, wherein the first electrical conductor has at least one winding arranged around a part of the first core and at least one winding arranged around a part of the second core,
      • a second electrical conductor forming the electric output, wherein the second electrical conductor has at least one winding arranged around a part of the first core and at elast one winding arranged around a part of the second core,
      wherein the first core is positioned in relation to the second core so as to allow mutual magnetic interaction between the first and second cores, and wherein the windings of the first and second electrical conductors around the first core have the same winding direction, and wherein the windings of the first and second electrical conductors around the second core have opposite winding direction of the windings of the first and second electrical conductors around the first core, so as to counteract electric influence induced by a common magnetic field through the closed loops of the first and second cores.


    [0007] Such gatedriver circuit is advantageous, since it allows galvanic separation which is highly immune towards strong magnetic fields which may disturb signal transfer using a traditional transformer. By the use of two separate cores and the opposite winding directions, the influence of magnetic fields on the control signal can be eliminated or at least significantly reduced, thereby allow the gatedriver circuit to function also in environments with strong magnetic fields.

    [0008] Thus, such gatedriver circuit can be used in high power applications, such as for control of power electronic switches in an electric converter for powers of 1 MW or more, e.g. for large wind turbines, without functional problems due to magnetic interference with gatedriver control signals. Still, this galvanic separation can be obtained by the use of simple components.

    [0009] Even further, the gatedrive circuit according to the first aspect has the advantage that a traditional transformer can be replacement with the transformer of the invention without any further modification of the transmitter and receiver circuits.

    [0010] It has been found that a suppression of magnetic influence of 10-20 dB, or even more than 20 dB can be achieved.

    [0011] In the following, preferred embodiments and features of the gatedriver circuit will be described.

    [0012] Preferably, the first conductor has the same number of windings around the first and second cores, and the second conductor preferably also has the same number of windings around the first and second cores. This will provide the most effective cancelling of the magnetic influence.

    [0013] The first and second cores may have identical geometrical shapes, or they may have different shapes, e.g. they may have similar geometrical shapes but with different size. In a preferred embodiment, both of the first and second cores have toroid shapes, e.g. the two toroids may be identical, and they may be stacked, i.e. with the first core positioned on top of the second core. The toroids may have an outer diameter of such as 1-20 cm, such 2-10 cm.

    [0014] In some embodiments, the first and second cores have different sizes, but have , e.g. the same geometrical shape, thereby enabling that the first core to be positioned inside the closed loop of the second core.

    [0015] The first and second cores may be made of a ferrite material. However, other materials known to be used for transformer core material may be used.

    [0016] The first electrical conductor may have 2-50 windings arranged around a part of the first core and 2-50 windings arranged around a part of the second core. Likewise, the second electrical conductor has 2-50 windings arranged around a part of the first core and 2-50 windings arranged around a part of the second core. The transformer may be designed to provide a voltage transformation ratio of 0.5 to 2.0 from its electric input to its electric output. Especially, the number of windings of the first and second electrical conductors are equal or substantially equal, so as to provide a voltage ratio of 0.8-1.2, such as 10-20 windings of each of the first and second electrical conductors so as to provide a voltage ratio of 1.0.

    [0017] It is to be understood that the first and second electrical conductors are preferably electrically insulated wires, such as copper wires or wires of other electrically conductive materials.

    [0018] Preferably, the gatedriver circuit comprises a transmitter circuit connected to the first electrical conductor and a receiver circuit connected to the second electrical conductor. The transmitter circuit may especially be arranged to generate an electric control signal with a frequency within the interval 10 kHz to 5 MHz. Especially, the electric control signal may be a series of impulse signals.

    [0019] In a second aspect, the invention provides an electric power converter comprising a plurality of power electronic switches controlled and an electric gatedriver circuit according to the first aspect for controlling the plurality of power electronic switches. Especially, the gatedriver circuit is arranged to generate the electric control signal output to control the plurality of power electronic switches at a switching frequency of below 10 kHz.

    [0020] The power converter may especially comprise an insulated gate bipolar transistor (IGBT) module, wherein the gatedriver circuit is arranged to control switching of the IGBT module. Alernatively, or additionally, the power electronic switches may include one or more of: mosfet, GTO, IGCT, and/or comprises power electronic switches based on silicon carbide (SiC) technologies.

    [0021] Especially, the power converter may be dimensioned to convert electric power of at least 1 MW, such as 2-10 MW or more.

    [0022] In a third aspect, the invention provides a windturbine comprising a gatedriver circuit according to the first aspect, or an electric power converter according to the second aspect. Especially, the windturbine may comprise a power converter comprising an IGBT module, and wherein the gatedriver circuit is arranged to control switching of the IGBT module. Especially, the windturbine may comprise an electric power generator arranged to generate an electric power of at least 1 MW, such as 2-10 MW or more. In such MW wind turbines, the gatedriver circuit and thus also the galvanic separation, is present close to the switching currents of thousands of amperes, and thus for such size wind turbines, the gatedriver circuit according to the invention can significantly improve the quality of the transferred control signals.

    [0023] In a third aspect, the invention provides a method for providing a galvanic separation of an electric gatedriver control signal for controlling swithing of a power electronic switch, the method comprising
    • providing a transformer arranged to receive an electric control signal at its electric input and to transform the electric control signal to the electric control signal output at its electric output, the providing of the transformer comprising
    • providing separate first and second cores of magnetically conductive material, wherein each of the first and second cores are shaped to form respective closed loops,
    • providing a first electrical conductor forming the electric input, wherein the first electrical conductor has at least one winding arranged around a part of the first core and at least one winding arranged around a part of the second core,
    • providing a second electrical conductor forming the electric output, wherein the second electrical conductor has at least one winding arranged around a part of the first core and at elast one winding arranged around a part of the second core, and positioning the first core in relation to the second core so as to allow mutual magnetic interaction between the first and second cores, and wherein the windings of the first and second electrical conductors around the first core have the same winding direction, and wherein the windings of the first and second electrical conductors around the second core have opposite winding direction of the windings of the first and second electrical conductors around the first core, so as to counteract electric influence induced by a common magnetic field through the closed loops of the first and second cores.


    [0024] It is to be understood that the same advantages and preferred embodiments and features apply for the second, third and fourth apsects, as described for the first aspect, and the aspects may be mixed in any way.

    BRIEF DESCRIPTION OF THE FIGURES



    [0025] The invention will now be described in more detail with regard to the accompanying figures of which

    Fig. 1 illustrates a wind turbine, in which the gatedriver circuit of the invention is advantageous,

    Fig. 2 illustrates a prior art galvanic separation transformer,

    Fig. 3 illlustrates the principle of the magnetically immune transformer of the invention,

    Figs. 4 and 5 illustrate embodiments of the transformer,

    Fig. 6 illustrates a gatedriver circuit embodiment,

    Fig. 7 illustrates an electric power converter system, and

    Fig. 8 illustrates steps of a method embodiment.



    [0026] The figures illustrate specific ways of implementing the present invention and are not to be construed as being limiting to other possible embodiments falling within the scope of the attached claim set.

    DETAILED DESCRIPTION OF THE INVENTION



    [0027] The gatedriver circuit according to the invention is advantageous for wind turbines, e.g. wind turbines capable of generating high electric power such as more than 1 MW. However, it is to be understood that the invention may be other power electric applications, especially where operation of power electronic switches are controlled by control signals in an environment involving strong magnetic fields.

    [0028] Fig. 1 illustrates a wind turbine with three rotor blades for driving an electric generator located inside the nacelle on top of a tower. Typically, the electric power converter in a wind turbine can be placed up-tower or down tower. The full scale converter typically comprises a power stack for AC/DC conversion and a power stack for DC/AC conversion. Furthermore the converter system comprises reactors, filter capacitors, breakers, busbars and other converter related systems. The gatedriver circuit with the galvanic separation transformer according to the invention will normally be located inside the converter cabinet, inside the power stack where it is a part of the gatedriver, driving power electronic switches in the form of an IGBT module. Strong magnetic fields are present inside the converter, due to large currents, e.g. thousands of amperes, running through the busbars, generating surrounding magnetic field. There will also be stray magnetic fields around reactors in the converter. Further, EMI is generated by the commutation of the power.

    [0029] Fig. 2 shows an example of a traditional toroid transformer for providing galvanic separation in the transfer of control signals, typically impulse signals in the frequency range 10 kHz to 5 MHz, for controlling of switching of power electronic switches of the electric power converter which operate at a switching frequency of up to 10 kHz, e.g. 1 kHz to 10 kHz. Here, a primary winding around a part of the toroid core serves to receive an electric input signals E_I and generate a corresponding electric output signal E_O at a secondary winding. However, a magnetic field B will induce a voltage in the secondary winding which will influence the electric output signals E_O, and thus makes the signal transfer susceptible to external magnetic air flux field. This can lead to errors in the control signals, and generate a false turn on of the power electronic switches in the connected power module if not handled properly.

    [0030] Fig. 3 shows an embodiment of the transformer for the gatedriver circuit according to the invention. In this embodiment, two separate identical toroid cores of magnetically conductive material are wound by a first electrical conductor forming an electric input E_I, and a second electrical conductor forms an electric output E_O. The first electrical conductor has windings arranged around a part of the first core and windings arranged around a part of the second core. The second electrical conductor has windings arranged around a part of the first core and at least one winding arranged around a part of the second core.

    [0031] The winding directions are indicated on the conductors with arrows, and the first and second electrical conductors around the first core have the same winding direction, and wherein the windings of the first and second electrical conductors around the second core have opposite winding direction of the windings of the first and second electrical conductors around the first core. In operation, the two cores are positioned so as to allow mutual magnetic interaction between the first and second cores, i.e. the two cores are placed near each other to provide a high mutual magnetic interaction.

    [0032] With the proposed winding directions, electric influence induced by a common magnetic field through the closed loops of the first and second cores is counteracted, and the magnetic field that would enter the center part of the toroid will generate zero volt on the output E_O. Preferably, the first conductor has equal number of windings around the first and second toroid, and the second conductor has equal number of windings around the first and second toroid, so as to provide the most effective cancelling of the magnetic influence. E.g. the number of windings of the first and second conductors are equal, so as to provide a 1:1 voltage transformation.

    [0033] Fig. 4 shows an embodiment of the two toroid principle from Fig. 3 in a top view (upper part) and a side view (lower part). In this configuration, two identical toroids are stacked, i.e. mounted on top of each other so that the openings of their closed loops coincide.

    [0034] Fig. 5 shows another embodiment of the two toroid principle from Fig. 3 in a top view (upper part) and a side view (lower part). In this configuration, two toroids of different size are used as the first and second core, and the first core is positioned inside the closed loop of the second core.

    [0035] It is to be understood that various other shapes of the two cores can be envisaged, e.g. rectangular or square shaped cores, and their relative positions can also be different from those shown in Figs. 3-5.

    [0036] Fig. 6 shows a gatedriver circuit comprising a transmitter circuit TC and a receiver circuit RC with the transformer TR connected in between so as to provide a galvanic separation between the transmitter and receiver circuit. The receiver circuit generates the electric control signal CS in response to the signal received from the transformer TR, and the control signal CS can be applied to control a power electronic switch, e.g. switches of an IGBT module in an electric converter.

    [0037] Fig. 7 illustrates an electric power converter system with a gatedriver circuit GDC of the invention. The gatedriver circuit GDC generates a control signal CS to control switching of the power electronic switches of an electric power converter PCN. The electric power converter PCN serves to convert electric power from an electric power generator PG. The power converter PCN generates an electric power output PW e.g. for application to the public electric network, in case of a wind turbine.

    [0038] Fig. 8 illustrates steps of an embodiment of a method for providing a galvanic separation of an electric gatedriver control signal for controlling swithing of a power electronic switch. The method comprises providing a transformer to receive an electric control signal at its electric input and to transform the electric control signal to the electric control signal output at its electric output.
    The providing of the transformer comprises providing separate first and second cores P_C1_C2 of magnetically conductive material, wherein each of the first and second cores are shaped to form respective closed loops. Further, providing a first electrical conductor P_EC1 forming the electric input, wherein the first electrical conductor has at least one winding arranged around a part of the first core and at least one winding arranged around a part of the second core. Further, providing a second electrical conductor P_EC2 forming the electric output, wherein the second electrical conductor has at least one winding arranged around a part of the first core and at elast one winding arranged around a part of the second core. Next, positioning PS_C1_C2 the first core in relation to the second core so as to allow mutual magnetic interaction between the first and second cores, and wherein the windings of the first and second electrical conductors around the first core have the same winding direction, and wherein the windings of the first and second electrical conductors around the second core have opposite winding direction of the windings of the first and second electrical conductors around the first core, so as to counteract electric influence induced by a common magnetic field through the closed loops of the first and second cores.

    [0039] To sum up: the invention provides a gatedriver circuit for controlling a power electronic switch. The circuit provides a galvanic separation and is magnetically immune. The gatedriver circuit comprises a transformer arranged with two separate cores of magnetically conductive material each forming a closed loop. A first electrical conductor has windings around a part of both cores, and a second electrical conductor also has windings around part of both cores. The two cores are positioned close to each other to allow mutual magnetic interaction. The windings of the first and second electrical conductors around the first core have the same winding direction, and the windings of the first and second electrical conductors around the second core have opposite winding direction of the windings of the first and second electrical conductors around the first core, so as to counteract electric influence induced by a common magnetic field through the closed loops of the first and second cores. Hereby, such gatedriver circuit is suitable for controlling power switches in environments with strong magnetic fields, e.g. inside a high power wind turbine.

    [0040] Although the present invention has been described in connection with the specified embodiments, it should not be construed as being in any way limited to the presented examples. The scope of the present invention is to be interpreted in the light of the accompanying claim set. In the context of the claims, the terms "including" or "includes" do not exclude other possible elements or steps. Also, the mentioning of references such as "a" or "an" etc. should not be construed as excluding a plurality. The use of reference signs in the claims with respect to elements indicated in the figures shall also not be construed as limiting the scope of the invention. Furthermore, individual features mentioned in different claims, may possibly be advantageously combined, and the mentioning of these features in different claims does not exclude that a combination of features is not possible and advantageous.


    Claims

    1. A gatedriver circuit (GDC) arranged to generate an electric control signal (CS) output for controlling switching of a power electronic switch, the gatedriver circuit (GDC) comprising

    - a transformer (TR) arranged to receive an electric control signal at its electric input (E_I) and to transform the electric control signal to the electric control signal output at its electric output (E_O), wherein the transformer (TR) provides a galvanic separation between its electric input (E_I) and output (E_O), and characterized in that the transformer (TR) comprises

    - separate first and second cores of magnetically conductive material, wherein each of the first and second cores are shaped to form respective closed loops,

    - a first electrical conductor forming the electric input, wherein the first electrical conductor has at least one winding arranged around a part of the first core and at least one winding arranged around a part of the second core,

    - a second electrical conductor forming the electric output, wherein the second electrical conductor has at least one winding arranged around a part of the first core and at least one winding arranged around a part of the second core,

    wherein the first core is positioned in relation to the second core so as to allow mutual magnetic interaction between the first and second cores, and wherein the windings of the first and second electrical conductors around the first core have the same winding direction, and wherein the windings of the first and second electrical conductors around the second core have opposite winding direction of the windings of the first and second electrical conductors around the first core, so as to counteract electric influence induced by a common magnetic field through the closed loops of the first and second cores.


     
    2. The gatedriver circuit according to claim 1, wherein the first core has a toroid shape.
     
    3. The gatedriver circuit according to claim 1 or 2, wherein the second core has a toroid shape.
     
    4. The gatedriver circuit according to any of the preceding claims, wherein the first core is positioned inside the closed loop of the second core.
     
    5. The gatedriver circuit according to any of claims 1-4, wherein the first and second cores are positioned on top of each other to form a stack.
     
    6. The gatedriver circuit according to any of the preceding claims, comprising a transmitter circuit (TC) connected to the first electrical conductor and a receiver circuit (RC) connected to the second electrical conductor.
     
    7. The gatedriver circuit according to claim 6, whererin the transmitter circuit (TC) is arranged to generate an electric control signal with a frequency within the interval 10 kHz to 5 MHz.
     
    8. The gatedriver circuit according to any of the preceding claims, wherein the first and second cores are made of a ferrite material.
     
    9. The gatedriver circuit according to any of the preceding claims, wherein the first electrical conductor has 2-50 windings arranged around a part of the first core and 2-50 windings arranged around a part of the second core.
     
    10. The gatedriver circuit according to any of the preceding claims, wherein the second electrical conductor has 2-50 windings arranged around a part of the first core and 2-50 windings arranged around a part of the second core.
     
    11. The gatedriver circuit according to any of the preceding claims, wherein the transformer provides a voltage transformation ratio of 0.5 to 2.0 from its electric input to its electric output.
     
    12. An electric power converter (PCN) comprising a plurality of power electronic switches and an electric gatedriver circuit (GDC) according to any of claims 1-11 for controlling the plurality of power electronic switches.
     
    13. A windturbine comprising a gatedriver circuit (GDC) according to any of claims 1-11.
     
    14. A method for providing a galvanic separation of an electric gatedriver control signal for controlling swithing of a power electronic switch, the method comprising

    - providing a transformer arranged to receive an electric control signal at its electric input and to transform the electric control signal to the electric control signal output at its electric output, the providing of the transformer comprising

    - providing separate first and second cores (P_C1_C2) of magnetically conductive material, wherein each of the first and second cores are shaped to form respective closed loops,

    - providing a first electrical conductor (P_EC1) forming the electric input, wherein the first electrical conductor has at least one winding arranged around a part of the first core and at least one winding arranged around a part of the second core,

    - a second electrical conductor (P_EC2) forming the electric output, wherein the second electrical conductor has at least one winding arranged around a part of the first core and at elast one winding arranged around a part of the second core, and

    positioning (PS_C1_C2) the first core in relation to the second core so as to allow mutual magnetic interaction between the first and second cores, and wherein the windings of the first and second electrical conductors around the first core have the same winding direction, and wherein the windings of the first and second electrical conductors around the second core have opposite winding direction of the windings of the first and second electrical conductors around the first core, so as to counteract electric influence induced by a common magnetic field through the closed loops of the first and second cores.


     


    Ansprüche

    1. Gate-Treiberschaltung (GDC), die angeordnet ist, ein elektrisches Steuersignal (CS) zu erzeugen, das zum Schalten eines elektronischen Leistungsschalters ausgegeben wird, die Gate-Treiberschaltung (GDC) umfassend

    - einen Transformator (TR), der angeordnet ist, ein elektrisches Steuersignal an seinem elektrischen Eingang (E_I) zu empfangen und das elektrische Steuersignal in das elektrische Steuersignal umzuformen, das an seinem elektrischen Ausgang (E_O) ausgegeben wird, wobei der Transformator (TR) eine galvanische Trennung zwischen seinem elektrischen Eingang (E_I) und Ausgang (E_O) bereitstellt, und
    dadurch gekennzeichnet, dass der Transformator (TR) umfasst

    - getrennte erste und zweite Kerne aus magnetisch leitfähigem Material, wobei jeder erste und zweite Kern geformt ist, eine entsprechende geschlossene Schleifen zu bilden,

    - einen ersten elektrischen Leiter, der den elektrischen Eingang bildet, wobei der erste elektrische Leiter mindestens eine Wicklung, die um einen Teil des ersten Kerns angeordnet ist, und mindestens eine Wicklung, die um einen Teil des zweiten Kerns angeordnet ist, aufweist,

    - einen zweiten elektrischen Leiter, der den elektrischen Ausgang bildet, wobei der zweite elektrische Leiter mindestens eine Wicklung, die um einen Teil des ersten Kerns angeordnet ist, und mindestens eine Wicklung, die um einen Teil des zweiten Kerns angeordnet ist, aufweist,
    wobei der erste Kern in Relation zu dem zweiten Kern so positioniert ist, dass eine wechselseitige magnetische Wechselwirkung zwischen dem ersten und zweiten Kern möglich ist, und wobei die Wicklungen des ersten und zweiten elektrischen Leiters um den ersten Kern dieselbe Wicklungsrichtung haben und wobei die Wicklungen des ersten und zweiten elektrischen Leiters um den zweiten Kern entgegengesetzte Wicklungsrichtung der Wicklungen des ersten und zweiten elektrischen Leiters um den ersten Kern haben, um so einem elektrischen Einfluss entgegenzuwirken, der durch ein gemeinsames Magnetfeld durch die geschlossenen Schleifen des ersten und zweiten Kerns induziert wird.


     
    2. Gate-Treiberschaltung nach Anspruch 1, wobei der erste Kern eine toroide Form aufweist.
     
    3. Gate-Treiberschaltung nach Anspruch 1 oder 2, wobei der zweite Kern eine toroide Form aufweist.
     
    4. Gate-Treiberschaltung nach einem der vorstehenden Ansprüche, wobei der erste Kern im Inneren der geschlossenen Schleife des zweiten Kerns positioniert ist.
     
    5. Gate-Treiberschaltung nach einem der Ansprüche 1-4, wobei der erste und zweite Kern übereinander positioniert sind, um einen Stapel zu bilden.
     
    6. Gate-Treiberschaltung nach einem der vorstehenden Ansprüche, umfassend eine Sendeschaltung (TC), die mit dem ersten elektrischen Leiter verbunden ist, und eine Empfangsschaltung (RC), die mit dem zweiten elektrischen Leiter verbunden ist.
     
    7. Gate-Treiberschaltung nach Anspruch 6, wobei die Sendeschaltung (TC) angeordnet ist, ein elektrisches Steuersignal mit einer Frequenz innerhalb des Intervalls von 10 kHz bis 5 kHz zu erzeugen.
     
    8. Gate-Treiberschaltung nach einem der vorstehenden Ansprüche, wobei der erste und zweite Kern aus einem Ferritmaterial hergestellt sind.
     
    9. Gate-Treiberschaltung nach einem der vorstehenden Ansprüche, wobei der erste elektrische Leiter 2-50 Wicklungen, die um einen Teil des ersten Kerns angeordnet sind, und 2-50 Wicklungen, die um einen Teil des zweiten Kerns angeordnet sind, aufweist.
     
    10. Gate-Treiberschaltung nach einem der vorstehenden Ansprüche, wobei der zweite elektrische Leiter 2-50 Wicklungen, die um einen Teil des ersten Kerns angeordnet sind, und 2-50 Wicklungen, die um einen Teil des zweiten Kerns angeordnet sind, aufweist.
     
    11. Gate-Treiberschaltung nach einem der vorstehenden Ansprüche, wobei der Transformator ein Spannungstransformationsverhältnis von 0,5 bis 2,0 von seinem elektrischen Eingang zu seinem elektrischen Ausgang bereitstellt.
     
    12. Elektrischer Leistungswandler (PCN), umfassend eine Vielzahl von elektronischen Leistungsschaltern und eine elektrische Gate-Treiberschaltung (GDC) nach einem der Ansprüche 1-11 zur Steuerung der Vielzahl von elektronischen Leistungsschaltern.
     
    13. Windkraftanlage, umfassend eine Gate-Treiberschaltung (GDC) nach einem der Ansprüche 1-11.
     
    14. Verfahren zum Bereitstellen einer galvanischen Trennung eines elektrischen Gate-Treibersteuersignals zum Steuern eines Schaltens eines elektronischen Leistungsschalters, das Verfahren umfassend

    - Bereitstellen eines Transformators (TR), der angeordnet ist, ein elektrisches Steuersignal an seinem elektrischen Eingang zu empfangen und das elektrische Steuersignal in das elektrische Steuersignal umzuformen, das an seinem elektrischen Ausgang ausgegeben wird, das Bereitstellen des Transformators umfassend

    - Bereitstellen getrennter erster und zweiter Kerne (P_C1_C2) aus magnetisch leitfähigem Material, wobei jeder erste und zweite Kern geformt ist, eine entsprechende geschlossene Schleifen zu bilden,

    - Bereitstellen eines ersten elektrischen Leiters (P_EC1), der den elektrischen Eingang bildet, wobei der erste elektrische Leiter mindestens eine Wicklung, die um einen Teil des ersten Kerns angeordnet ist, und mindestens eine Wicklung, die um einen Teil des zweiten Kerns angeordnet ist, aufweist,

    - wobei ein zweiter elektrischer Leiter (P_EC2) den elektrischen Ausgang bildet, wobei der zweite elektrische Leiter mindestens eine Wicklung, die um einen Teil des ersten Kerns angeordnet ist, und mindestens eine Wicklung, die um einen Teil des zweiten Kerns angeordnet ist, aufweist, und
    Positionieren (PS_C1_C2) des ersten Kerns in Relation zu dem zweiten Kern, um eine wechselseitige magnetische Wechselwirkung zwischen dem ersten und zweiten Kern zu ermöglichen, und wobei die Wicklungen des ersten und zweiten elektrischen Leiters um den ersten Kern dieselbe Wicklungsrichtung haben und wobei die Wicklungen des ersten und zweiten elektrischen Leiters um den zweiten Kern entgegengesetzte Wicklungsrichtung der Wicklungen des ersten und zweiten elektrischen Leiters um den ersten Kern haben, um so einem elektrischen Einfluss entgegenzuwirken, der durch ein gemeinsames Magnetfeld durch die geschlossenen Schleifen des ersten und zweiten Kerns induziert wird.


     


    Revendications

    1. Circuit de driver de grille (GDC) agencé pour générer un signal de commande électrique (CS) émis pour commander la commutation d'un commutateur électronique de puissance, le circuit de driver de grille (GDC) comprenant

    - un transformateur (TR) agencé pour recevoir un signal de commande électrique au niveau de son entrée électrique (E_I) et pour transformer le signal de commande électrique en sortie de signal de commande électrique au niveau de sa sortie électrique (E_O), dans lequel le transformateur (TR) fournit une séparation galvanique entre ses entrée (E_I) et sortie électrique (E_O), et caractérisé en ce que
    le transformateur (TR) comprend

    - des premier et second noyaux séparés de matériau magnétiquement conducteur, dans lequel chacun des premier et second noyaux sont façonnés pour former des boucles fermées respectives,

    - un premier conducteur électrique formant l'entrée électrique, dans lequel le premier conducteur électrique présente au moins un enroulement agencé autour d'une partie du premier noyau et au moins un enroulement agencé autour d'une partie du second noyau,

    - un second conducteur électrique formant la sortie électrique, dans lequel le second conducteur électrique présente au moins un enroulement agencé autour d'une partie du premier noyau et au moins un enroulement agencé autour d'une partie du second noyau,
    dans lequel le premier noyau est positionné par rapport au second noyau de manière à permettre une interaction magnétique mutuelle entre les premier et second noyaux, et dans lequel les enroulements des premier et second conducteurs électriques autour du premier noyau présentent la même direction d'enroulement, et dans lequel les enroulements des premier et second conducteurs électriques autour du second noyau présentent une direction d'enroulement opposée des enroulements des premier et second conducteurs électriques autour du premier noyau, de manière à contrer l'influence électrique induite par un champ magnétique commun à travers les boucles fermées des premier et second noyaux.


     
    2. Circuit de driver de grille selon la revendication 1, dans lequel le premier noyau présente une forme toroïdale.
     
    3. Circuit de driver de grille selon la revendication 1 ou 2, dans lequel le second noyau présente une forme toroïdale.
     
    4. Circuit de driver de grille selon l'une quelconque des revendications précédentes, dans lequel le premier noyau est positionné à l'intérieur de la boucle fermée du second noyau.
     
    5. Circuit de driver de grille selon l'une quelconque des revendications 1-4, dans lequel les premier et second noyaux sont positionnés l'un au-dessus de l'autre pour former une pile.
     
    6. Circuit de driver de grille selon l'une quelconque des revendications précédentes, comprenant un circuit de transmetteur (TC) connecté au premier conducteur électrique et un circuit de récepteur (RC) connecté au second conducteur électrique.
     
    7. Circuit de driver de grille selon la revendication 6, dans lequel le circuit de transmetteur (TC) est agencé pour générer un signal de commande électrique à une fréquence dans l'intervalle 10 kHz à 5 MHz.
     
    8. Circuit de driver de grille selon l'une quelconque des revendications précédentes, dans lequel les premier et second noyaux sont composés d'un matériau ferrite.
     
    9. Circuit de driver de grille selon l'une quelconque des revendications précédentes, dans lequel le premier conducteur électrique présente 2-50 enroulements agencés autour d'une partie du premier noyau et 2-50 enroulements agencés autour d'une partie du second noyau.
     
    10. Circuit de driver de grille selon l'une quelconque des revendications précédentes, dans lequel le second conducteur électrique présente 2-50 enroulements agencés autour d'une partie du premier noyau et 2-50 enroulements agencés autour d'une partie du second noyau.
     
    11. Circuit de driver de grille selon l'une quelconque des revendications précédentes, dans lequel le transformateur fournit un rapport de transformation de tension de 0,5 à 2,0 de son entrée électrique à sa sortie électrique.
     
    12. Convertisseur de puissance électrique (PCN) comprenant une pluralité de commutateurs électroniques de puissance et un circuit de driver de grille (GDC) électrique selon l'une quelconque des revendications 1-11 pour la commande de la pluralité de commutateurs électroniques de puissance.
     
    13. Éolienne comprenant un circuit de driver de grille (GDC) selon l'une quelconque des revendications 1-11.
     
    14. Procédé pour fournir une séparation galvanique d'un signal de commande de driver de grille électrique pour la commande de la commutation d'un commutateur électronique de puissance, le procédé comprenant

    - la fourniture d'un transformateur agencé pour recevoir un signal de commande électrique à son entrée électrique et pour transformer le signal de commande électrique en sortie de signal de commande électrique au niveau de sa sortie électrique, la fourniture du transformateur comprenant

    - la fourniture de premier et second noyaux (P_C1_C2) séparés de matériau magnétiquement conducteur, dans lequel chacun des premier et second noyaux sont façonnés pour former des boucles fermées respectives,

    - la fourniture d'un premier conducteur électrique (P_EC1) formant l'entrée électrique, dans lequel le premier conducteur électrique présente au moins un enroulement agencé autour d'une partie du premier noyau et au moins un enroulement agencé autour d'une partie du second noyau,

    - un second conducteur électrique (P_EC2) formant la sortie électrique, dans lequel le second conducteur électrique présente au moins un enroulement agencé autour d'une partie du premier noyau et au moins un enroulement agencé autour d'une partie du second noyau, et
    le positionnement (PS_C1_C2) du premier noyau par rapport au second noyau de manière à permettre une interaction magnétique mutuelle entre les premier et second noyaux, et dans lequel les enroulements des premier et second conducteurs électriques autour du premier noyau présentent la même direction d'enroulement, et dans lequel les enroulements des premier et second conducteurs électriques autour du second noyau présentent une direction d'enroulement opposée des enroulements des premier et second conducteurs électriques autour du premier noyau, de manière à contrer l'influence électrique induite par un champ magnétique commun à travers les boucles fermées des premier et second noyaux.


     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description