(19)
(11)EP 3 478 068 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
23.12.2020 Bulletin 2020/52

(21)Application number: 17821231.2

(22)Date of filing:  29.06.2017
(51)International Patent Classification (IPC): 
A01N 43/90(2006.01)
A01P 7/00(2006.01)
A01N 65/42(2009.01)
A01N 63/23(2020.01)
(86)International application number:
PCT/US2017/039926
(87)International publication number:
WO 2018/005756 (04.01.2018 Gazette  2018/01)

(54)

MIXTURES OF SABADILLA ALKALOIDS AND BACILLUS THURINGIENSIS AND USES THEREOF

MISCHUNGEN VON SABADILLA-ALKALOIDEN UND BACILLUS THURINGIENSIS UND VERWENDUNGEN DAVON

MÉLANGES D'ALCALOÏDES DE SÉBADILLE ET DE BACILLUS THURINGIENSIS ET UTILISATIONS DE CES MÉLANGES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 01.07.2016 US 201662357899 P

(43)Date of publication of application:
08.05.2019 Bulletin 2019/19

(60)Divisional application:
20207303.7

(73)Proprietor: Mclaughlin Gormley King Company
Golden Valley MN 55472 (US)

(72)Inventors:
  • SURANYI, Robert, A.
    Golden Valley, MN 55472 (US)
  • SUNDQUIST, Donald, L.
    Golden Valley, MN 55472 (US)

(74)Representative: Elkington and Fife LLP 
Prospect House 8 Pembroke Road
Sevenoaks, Kent TN13 1XR
Sevenoaks, Kent TN13 1XR (GB)


(56)References cited: : 
DE-A1- 2 552 295
US-A1- 2007 104 750
US-A1- 2012 316 205
US-A1- 2014 357 585
US-A- 5 508 032
US-A1- 2011 033 436
US-A1- 2014 315 840
US-A1- 2015 231 191
  
  • "PASSAGE ED - TOMLIN C D S (ED)", 1 January 2000 (2000-01-01), PESTICIDE MANUAL. WORLD COMPENDIUM; [PESTICIDE MANUAL], FARNHAM : BCPC, GB, PAGE(S) 84, 139/140, 157/158, 230/231, 408/409, 541/5 - 42, 831, 866/867, XP001237267, ISBN: 978-1-901396-12-6 * compound 693 *
  • RAJASHEKAR et al.: "Botanicals as Grain Protectants", Psyche, 14 June 2012 (2012-06-14), pages 1-13, XP055451516, Retrieved from the Internet: URL:https://www.hindawi.com/journals/psych e/2012/646740 [retrieved on 2017-08-31]
  • TABASHNIK et al.: "Resistance to Toxins from Bacillus thuringiensis subsp. kurstaki Causes Minimal Cross-Resistance to B. thuringiensis subsp. aizawai in the Diamondback Moth (Lepidoptera: Plutellidae)", Applied and Environmental Microbiology, vol. 59, no. 5 1 May 1993 (1993-05-01), pages 1332-1335, XP055472274, Retrieved from the Internet: URL:https://www.ncbi.nlm.nih.gov/pmc/artic les/PMC182085/pdf/aem00034-0086.pdf [retrieved on 2017-08-31]
 
Remarks:
The file contains technical information submitted after the application was filed and not included in this specification
 
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

FIELD OF THE INVENTION



[0001] The present invention is directed to pesticidal mixtures comprising sabadilla alkaloids and Bacillus thuringiensis and methods of controlling pests including insects and mites by application of pesticidal mixtures comprising sabadilla alkaloids and Bacillus thuringiensis.

BACKGROUND OF THE INVENTION



[0002] Arthropod pests are one of the major threats to human welfare and exert continued stress on the food supply and transmit a broad array of medical and veterinary diseases. Synthetic insecticides played a significant role and in many ways ushered in modern agriculture and pest control. However, the widespread use of synthetic insecticides also created numerous environmental challenges. The acute effects of synthetic pesticides on professional applicators and other end users are well-known but the chronic long term human health effects can be equally serious. Further, the use of synthetic insecticides has led to the development of resistant insect populations. Insecticide resistance is a complex phenomenon underlined by a diverse array of physiological mechanisms. Major mechanisms that are responsible for the development of insecticide resistance are metabolic detoxification, target site mutation, reduced cuticular penetration and behavioral avoidance.

[0003] Integrated Pest Management ("IPM") is a holistic approach to pest management. A fundamental aspect of insecticide utilization under the broader framework of IPM is the management of insecticide resistance (IRM) by the utilization of insecticide combinations that reduce the rate of resistance development. A combination of insecticides with different modes of action is fundamentally a concept based upon the idea of redundant killing of target insects. Insects adapted to one of the active ingredient in the combination product will still be killed by the other active ingredient. Mixtures can also reduce the amount of pesticides applied in the environment and the environmental impact associated with pesticide applications.

[0004] Most botanical insecticides are readily biodegradable and significantly less harmful to the environment and users than synthetic insecticides. The very short environmental persistence, usually less than 24 hours, of plant derived insecticides is favorable to the survival of non-target, beneficial parasites and predators which are important components of IPM. Unlike conventional insecticides which are typically based on a single active ingredient, plant derived insecticides usually comprise an array of chemical compounds that affect both behavioral and physiological functions of the target arthropods. The probability of pest resistance developing to plant derived insecticides is less than that for synthetic pesticides because these mixtures may have a variety of modes of action.

[0005] One effective naturally derived pesticide is found in the tissues of many of the plants of the genus Schoenocaulon, commonly referred to as sabadilla. The species with the longest history of use, and the most readily available, is Schoenocaulon officinale. The plant is indigenous to Central and South America and its seeds have been used for centuries for their insecticidal properties. The seeds contain several alkaloids including veratridine and cevadine, both of which are known to be active against arthropods.

[0006] Bacillus thuringiensis is a natural soil bacterium. Many Bacillus thuringiensis strains produce crystal proteins during sporulation called ╬┤-endotoxins which can be used as biological insecticides. Bacillus thuringiensis produces crystals which paralyze the digestive system of some larvae within minutes. The larvae eventually die of starvation. One advantage of using Bacillus thuringiensis is that they are target specific. They do not harm humans or other non-target species. Yet another advantage of Bacillus thuringiensis is that they can be used on organic crops. Further, with no mandated pre-harvest interval, it can also be used on crops right before harvest.

[0007] Bacillus thuringiensis subsp. aizawai is commercially available as XenTari® (available from Valent BioSciences Corporation, XenTari is a registered trademark of Valent BioSciences Corporation). Bacillus thuringiensis subsp. kurstaki is commercially available as Dipel® (available from Valent BioSciences Corporation, Dipel is a registered trademark of Valent BioSciences Corporation). Bacillus thuringiensis subsp. thuringiensis is commercially available as Novodor (available from Valent BioSciences Corporation).

[0008] DE 25 52 295 discloses an insecticidal agent comprising an insecticidal substance from Bacillus thuringiensis and a botanical insecticide from Ryania or Sabadilla.

[0009] Thus, there is a need in the art for pesticide combinations that contain naturally derived pesticides that decrease health concerns to humans and also decrease the risk of the development of pesticide resistance.

SUMMARY OF THE INVENTION



[0010] In one aspect, the present invention is directed to pesticidal mixtures of sabadilla alkaloids and Bacillus thuringiensis, wherein Bacillus thuringiensis consists of a subspecies selected from the group consisting of Bacillus thuringiensis aizawai, Bacillus thuringiensis kurstaki, and combinations thereof, and wherein the ratio of sabadilla alkaloids to Bacillus thuringiensis is from about 1:1 to about 1:100.

[0011] In another aspect, the present invention is directed to methods of controlling pests, including insects and mites, comprising applying an effective amount of a mixture of sabadilla alkaloids and B. thuringiensis, wherein Bacillus thuringiensis consists of a subspecies selected from the group consisting of Bacillus thuringiensis aizawai, Bacillus thuringiensis kurstaki, and combinations thereof, and wherein the ratio of sabadilla alkaloids to Bacillus thuringiensis is from about 1:1 to about 1:100.

[0012] In a preferred aspect, the sabadilla alkaloids are derived from Schoenocaulon officinale.

DETAILED DESCRIPTION OF THE INVENTION



[0013] Applicant unexpectedly discovered that pesticidal mixtures of sabdilla alkaloids and Bacillus thuringiensis provided enhanced pesticidal activity compared to either pesticide alone. Specifically, this combination results in a reduced rate of resistance development. Further, Applicant discovered that pesticidal mixtures of sabadilla alkaloids and Bacillus thuringiensis were capable of controlling a large variety of arthropods.

[0014] The present invention is directed to pesticidal mixtures comprising an effective amount of sabadilla alkaloids and B. thuringiensis, wherein Bacillus thuringiensis consists of a subspecies selected from the group consisting of Bacillus thuringiensis aizawai, Bacillus thuringiensis kurstaki, and combinations thereof, and wherein the ratio of sabadilla alkaloids to Bacillus thuringiensis is from about 1:1 to about 1:100.

[0015] Sabadilla alkaloids may be derived from any species of Schoenocaulon. The genus Schoenocaulon includes the following species: S. calcicola, S. caricifolium, S. comatum, S. conzattii, S. dubium (alt. S. gracile), S. framei, S. ghiesbreghtii (alt. S. drummondii, S. yucatanense), S. ignigenum, S. intermedium, S. jaliscense, S. macrocarpum (alt. S. lauricola), S. madidorum, S. megarrhizum, S. mortonii, S. oaxacense, S. obtusum, S. officinale, S. pellucidum, S. plumosum, S. pringlei, S. rzedowskii, S. tenorioi, S. tenue, S. tenuifolium, S. texanum, and S. tigrense. In a preferred embodiment the Schoenocaulon sp. alkaloids are derived from S. officinale. In another preferred embodiment the Schoenocaulon sp. alkaloids are veratridine and cevadine.

[0016] B. thuringiensis includes many subspecies. Subspecies of B. thuringiensis include aizawai, alesti, berliner, ╬▓nitimus, cameroun, canadiensis, colmeri, coreanensis, dakota, darmstadiensis, dendrolimus, entomocidus, fukuokaensis, galleriae, higo, indiana, israelensis, japonensis, japonensis Buibui, jegathesan, kenyae, kumamotoensis, kunthala, kurstaki, kyushuensis, Medellin, mexcanensis, morrisoni, neoleonensis, nigeriae, oloke, ongbei, ostriniae, pakistani, pondicheriensis, roskildiensis, san diego, shandogiensis, shanghai, silo, sotto, subtoxicus, tenebrionis, thompsoni, thuringiensis, tochigiensis, tohokuensis, tolworthi, toumanoffi, wuhanensis, yunnanensis. In the present invention, B. thuringiensis consists of a subspecies selected from the group consisting of B. thuringiensis aizawai, B. thuringiensis kurstaki, and combinations thereof.

[0017] As used herein, all numerical values relating to amounts, weight percentages and the like are defined as "about" or "approximately" each particular value, namely, plus or minus 10 %. For example, the phrase "at least 5 % by weight" is to be understood as "at least 4.5 % to 5.5 % by weight." Therefore, amounts within 10 % of the claimed values are encompassed by the scope of the claims.

[0018] The term "effective amount" means the amount of the formulation that will control the target pest. The "effective amount" will vary depending on the mixture concentration, the type of pest(s) being treated, the severity of the pest infestation, the result desired, and the life stage of the pest during treatment, among other factors. Thus, it is not always possible to specify an exact "effective amount." However, an appropriate "effective amount" in any individual case may be determined by one of ordinary skill in the art.

[0019] The ratio of sabadilla alkaloids to B. thuringiensis is from about 1:1 to about 1:100.

[0020] In another preferred embodiment, the pesticidal mixtures of the present invention may contain one or more excipients selected from the group consisting of solvents, anti-caking agents, stabilizers, defoamers, slip agents, humectants, dispersants, wetting agents, thickening agents, emulsifiers, penetrants, adjuvants, synergists, polymers, propellants and/or preservatives.

[0021] The present invention is further directed to methods of controlling a pest comprising applying a pesticidal mixture comprising an effective amount of sabadilla alkaloids and B. thuringiensis to the pest or the pest's environment, wherein Bacillus thuringiensis consists of a subspecies selected from the group consisting of Bacillus thuringiensis aizawai, Bacillus thuringiensis kurstaki, and combinations thereof, and wherein the ratio of sabadilla alkaloids to Bacillus thuringiensis is from about 1:1 to about 1:100.

[0022] In a preferred embodiment, the pest is selected from an insect and a mite.

[0023] In an embodiment, the pest controlled is selected from the group consisting of aphids (Homoptera), whiteflies (Hemiptera), thrips (Thysanoptera), bed bugs (Hemiptera), fleas (Siphonaptera), caterpillars/worms (Lepidoptera), beetles (Coleoptera), cockroaches (Blattodea), flies (Diptera), ants (Hymenoptera), mosquitoes (Culicidae) and mites (Acari). In a preferred embodiment, the pest controlled are selected from the group consisting of common bed bugs (Cimex lectularius), green peach aphids (Myzus persicae), house fly (Musca domestica), yellow fever mosquito (Aedes aegypti), southern house mosquito (Culex quinquefasciatus), African malaria mosquito (Anopheles gambiae), common malaria mosquito (Anopheles quadrimaculatus) and German cockroach (Blattella germanica).

[0024] The pesticidal mixtures of the present invention can be applied by any convenient means. Those skilled in the art are familiar with the modes of application including spraying, brushing, soaking, in-furrow treatments, granules, pressurized liquids (aerosols), fogging or side-dressing.

[0025] In a preferred embodiment, sabadilla alkaloids are applied to the pest or the pest's environment at a rate from about 1 to about 1,000 grams per hectare ("g/HA"), preferably from about 10 to about 700 g/HA and most preferably from about 22 to about 560 g/HA.

[0026] In a preferred embodiment, B. thuringiensis is applied to the pest or the pest's environment at a rate from about 1 to about 5,000 g/HA, more preferably from about 100 to about 3,000 g/HA and most preferably from about 560 to about 2,242 g/HA.

[0027] As used herein, "control" a pest or "controlling" pest(s) refers to killing, incapacitating, repelling, or otherwise decreasing the negative impact of the pest on plants or animals to a level that is desirable to the grower or animal.

[0028] As used herein, "pest's environment" refers to any area that the pest is present during any life stage. One environment likely to be treated by the methods of the present invention includes the plants that the pest is living on and the surrounding soil. The pest's environment may also include harvested plants, gardens, fields, greenhouses, or other buildings, and various indoor surfaces and structures, such as furniture including beds, and furnishings including books, clothing, etc.

[0029] The articles "a," "an" and "the" are intended to include the plural as well as the singular, unless the context clearly indicates otherwise. For example, the methods of the present invention are directed to controlling "pest" but this can include control of a multiple pests (such as a more than one insect or more than one insect species or more than one mite or more than one mite species).

[0030] The following examples are intended to illustrate the present invention and to teach one of ordinary skill in the art how to use the extracts of the invention. They are not intended to be limiting in any way.

EXAMPLES



[0031] Dipel® was used as the source of B. thuringiensis subspecies kurstaki ("Btk").

[0032] Xentari® was used as the source of B. thuringiensis subspecies aiwazai ("Bta").

[0033] Novodor was used as the source of B. thuringiensis subspecies thuringiensis ("Btt").

Example 1 - Control of caterpillars/worms (Lepidoptera) with B. thuringiensis subspecies aiwazai



[0034] In this study, the response of caterpillars/worms (Lepidoptera) to application of a 1:25, 1:1, 1:100 and 1:4 ratio of sabadilla (S. officinale) alkaloids to Bta will be observed. Specifically, sabadilla alkaloids and Bta will be applied to the pest at the respective rates of: 1) 22 g/HA and 560 g/HA; 2) 560 g/HA and 560 g/HA; 3) 22 g/HA and 2242 g/HA; and 4) 560 g/HA and 2242 g/HA.

[0035] The results of the study are predicted to show enhanced activity including reduced rates of resistance.

Example 2 - Control of caterpillars/worms (Lepidoptera) with B. thuringiensis subspecies kurstaki



[0036] In this study, the response of caterpillars/worms (Lepidoptera) to application of a 1:25, 1:1, 1:100 and 1:4 ratio of sabadilla (S. officinale) alkaloids to Bta will be observed. Specifically, sabadilla alkaloids and Bta will be applied to the pest at the respective rates of: 1) 22 g/HA and 560 g/HA; 2) 560 g/HA and 560 g/HA; 3) 22 g/HA and 2242 g/HA; and 4) 560 g/HA and 2242 g/HA.

[0037] The results of the study are predicted to show enhanced activity including reduced rates of resistance.

Example 3 - Control of caterpillars/worms (Lepidoptera) with B. thuringiensis subspecies thuringiensis



[0038] In this study, the response of caterpillars/worms (Lepidoptera) to application of a 1:25, 1:1, 1:100 and 1:4 ratio of sabadilla (S. officinale) alkaloids to Bta will be observed. Specifically, sabadilla alkaloids and Bta will be applied to the pest at the respective rates of: 1) 22 g/HA and 560 g/HA; 2) 560 g/HA and 560 g/HA; 3) 22 g/HA and 2242 g/HA; and 4) 560 g/HA and 2242 g/HA.

[0039] The results of the study are predicted to show enhanced activity including reduced rates of resistance.


Claims

1. A pesticidal mixture comprising an effective amount of sabadilla alkaloids and Bacillus thuringiensis, wherein Bacillus thuringiensis consists of a subspecies selected from the group consisting of Bacillus thuringiensis aizawai, Bacillus thuringiensis kurstaki, and combinations thereof, and wherein the ratio of sabadilla alkaloids to Bacillus thuringiensis is from about 1:1 to about 1:100.
 
2. The mixture of claim 1, wherein the sabadilla alkaloids are derived from Schoenocaulon officinale.
 
3. The mixture of claim 1, wherein the sabadilla alkaloids are veratridine and cevadine.
 
4. The mixture of claim 1 further comprising one or more excipients selected from the group consisting of solvents, anti-caking agents, stabilizers, defoamers, slip agents, humectants, dispersants, wetting agents, thickening agents, emulsifiers, penetrants, adjuvants, synergists, polymers, propellants and/or preservatives.
 
5. A non therapeutic method of controlling a pest comprising applying a pesticidal mixture comprising an effective amount of sabadilla alkaloids and Bacillus thuringiensis to the pest or the pest's environment, wherein Bacillus thuringiensis consists of a subspecies selected from the group consisting of Bacillus thuringiensis aizawai, Bacillus thuringiensis kurstaki, and combinations thereof, and wherein the ratio of sabadilla alkaloids to Bacillus thuringiensis is from about 1:1 to about 1:100.
 
6. The method of claim 5, wherein the pest is at least one of an insect and a mite.
 
7. The method of claim 5, wherein the pest is selected from the group consisting of aphids (Homoptera), whiteflies (Hemiptera), thrips (Thysanoptera), bed bugs (Hemiptera), fleas (Siphonaptera), caterpillars/worms (Lepidoptera), beetles (Coleoptera), cockroaches (Blattodea), flies (Diptera), ants (Hymenoptera), mosquitoes (Culicidae) and mites (Acari).
 
8. The method of claim 5, wherein the pest is selected from the group consisting of common bed bugs (Cimex lectularius), green peach aphids (Myzus persicae), house fly (Musca domestica) yellow fever mosquito (Aedes aegypti), southern house mosquito (Culex quinquefasciatus), African malaria mosquito (Anopheles gambiae), common malaria mosquito (Anopheles quadrimaculatus) and German cockroach (Blattella germanica).
 
9. The method of claim 5, wherein the sabadilla alkaloids are applied to the pest or the pest's environment at a rate from about 1 to about 1,000 grams per hectare, preferably from about 10 to about 700 grams per hectare, preferably from about 22 to about 560 grams per hectare.
 
10. The method of claim 5, wherein the Bacillus thuringiensis is applied to the pest or the pest's environment at a rate from about 1 to about 5,000 grams per hectare, preferably from about 100 to about 3,000 grams per hectare, preferably from about 560 to about 2,242 grams per hectare.
 


Ansprüche

1. Pestizidgemisch, umfassend eine wirksame Menge von Sabadilla-Alkaloiden und Bacillus thuringiensis, wobei Bacillus thuringiensis aus einer Unterspezies besteht, ausgewählt aus der Gruppe bestehend aus Bacillus thuringiensis aizawai, Bacillus thuringiensis kurstaki, und Kombinationen davon, und wobei das Verhältnis von Sabadilla-Alkaloiden zu Bacillus thuringiensis von etwa 1:1 bis etwa 1:100 ist.
 
2. Gemisch nach Anspruch 1, wobei die Sabadilla-Alkaloide abgeleitet sind von Schoenocaulon officinale.
 
3. Gemisch nach Anspruch 1, wobei die Sabadilla-Alkaloide Veratridin und Cevadin sind.
 
4. Gemisch nach Anspruch 1, ferner umfassend einen oder mehrere Hilfsstoffe, ausgewählt aus der Gruppe bestehend aus Lösungsmitteln, Rieselhilfen, Stabilisatoren, Entschäumern, Gleitmitteln, Feuchthaltemitteln, Dispergiermitteln, Netzmitteln, Verdickungsmitteln, Emulgatoren, Penetrationsmitteln, Adjuvantien, Synergisten, Polymeren, Treibmitteln und/oder Konservierungsmitteln.
 
5. Nicht therapeutisches Verfahren zum Bekämpfen eines Schädlings, umfassend ein Anwenden eines Pestizidgemischs, umfassend eine wirksame Menge von Sabadilla-Alkaloiden und Bacillus thuringiensis auf den Schädling oder die Umgebung des Schädlings, wobei Bacillus thuringiensis aus einer Unterspezies besteht, ausgewählt aus der Gruppe bestehend aus Bacillus thuringiensis aizawai, Bacillus thuringiensis kurstaki, und Kombinationen davon, und wobei das Verhältnis von Sabadilla-Alkaloiden zu Bacillus thuringiensis von etwa 1:1 bis etwa 1:100 ist.
 
6. Verfahren nach Anspruch 5, wobei der Schädling mindestens ein Insekt und eine Milbe ist.
 
7. Verfahren nach Anspruch 5, wobei der Schädling ausgewählt wird aus der Gruppe bestehend aus Blattläusen (Homoptera), Weißen Fliegen (Hemiptera), Thripsen (Thysanoptera), Wanzen (Hemiptera), Flöhen (Siphonaptera), Raupen/Würmern (Lepidoptera), Käfern (Coleoptera), Schaben (Blattodea), Fliegen (Diptera), Ameisen (Hymenoptera), Mücken (Culicidae) und Milben (Acari).
 
8. Verfahren nach Anspruch 5, wobei der Schädling aus der Gruppe ausgewählt ist, bestehend aus gemeinen Bettwanzen besteht (Cimex lectularius), grünen Pfirsichläusen (Myzus persicae), Stubenfliege (Musca domestica), Gelbfiebermücke (Aedes aegypti), südliche Hausmücke (Culex quinquefasciatus), afrikanische Malaria-Mücke (Anopheles gambiae), gewöhnliche Malariamücke (Anopheles quadrimaculatus) und deutsche Kakerlake (Blattella germanica).
 
9. Verfahren nach Anspruch 5, wobei die Sabadilla-Alkaloide mit einer Rate von etwa 1 bis etwa 1000 Gramm pro Hektar, vorzugsweise von etwa 10 bis etwa 700 Gramm pro Hektar, vorzugsweise von etwa 22 bis etwa 560 Gramm pro Hektar, auf den Schädling oder die Umgebung des Schädlings angewendet werden.
 
10. Verfahren nach Anspruch 5, wobei der Bacillus thuringiensis mit einer Rate von etwa 1 bis etwa 5.000 Gramm pro Hektar, vorzugsweise von etwa 100 bis etwa 3.000 Gramm pro Hektar, vorzugsweise von etwa 560 bis etwa 2.242 Gramm pro Hektar, auf den Schädling oder die Umgebung des Schädlings angewendet wird.
 


Revendications

1. Mélange pesticide comprenant une quantité efficace d'alcaloïdes de cébadille et de Bacillus thuringiensis, dans lequel Bacillus thuringiensis est constituée par une sous-espèce choisie parmi le groupe constitué par Bacillus thuringiensis aizawai, Bacillus thuringiensis kurstaki, et des combinaisons de celles-ci, et dans lequel le rapport des alcaloïdes de cébadille à Bacillus thuringiensis est d'environ 1/1 à environ 1/100.
 
2. Mélange selon la revendication 1, dans lequel les alcaloïdes de cébadille sont dérivés de Schoenocaulon officinale.
 
3. Mélange selon la revendication 1, dans lequel les alcaloïdes de cébadille sont la vératridine et la cévadine.
 
4. Mélange selon la revendication 1 comprenant en outre un ou plusieurs excipients choisis parmi le groupe constitué par des solvants, des agents antimottants, des stabilisants, des antimoussants, des agents de glissement, des humectants, des dispersants, des agents mouillants, des agents épaississants, des émulsifiants, des agents pénétrants, des adjuvants, des agents synergiques, des polymères, des propulseurs et/ou des conservateurs.
 
5. Procédé non thérapeutique de contrôle d'un nuisible comprenant l'application d'un mélange pesticide comprenant une quantité efficace d'alcaloïdes de cébadille et de Bacillus thuringiensis au nuisible ou à l'environnement du nuisible, dans lequel Bacillus thuringiensis est constituée par une sous-espèce choisie parmi le groupe constitué par Bacillus thuringiensis aizawai, Bacillus thuringiensis kurstaki, et des combinaisons de celles-ci, et dans lequel le rapport des alcaloïdes de cébadille à Bacillus thuringiensis est d'environ 1/1 à environ 1/100.
 
6. Procédé selon la revendication 5, dans lequel le nuisible est au moins l'un d'un insecte et d'un acarien.
 
7. Procédé selon la revendication 5, dans lequel le nuisible est choisi parmi le groupe constitué par les pucerons (Homoptera), les aleurodes (Hemiptera), les thrips (Thysanoptera), les punaises des lits (Hemiptera), les puces (Siphonaptera), les chenilles/vers (Lepidoptera), les scarabées (Coleoptera), les cafards (Blattodea), les mouches (Diptera), les fourmis (Hymenoptera), les moustiques (Culicidae) et les acariens (Acari).
 
8. Procédé selon la revendication 5, dans lequel le nuisible est choisi parmi le groupe constitué par les punaises de lit communes (Cimex lectularius), les pucerons verts du pêcher (Myzus persicae), la mouche domestique (Musca domestica), le moustique de la fièvre jaune (Aedes aegypti), le moustique domestique méridional (Culex quinquefasciatus), le moustique du paludisme africain (Anopheles gambiae), le moustique du paludisme commun (Anopheles quadrimaculatus) et le cafard allemand (Blattella germanica).
 
9. Procédé selon la revendication 5, dans lequel les alcaloïdes de cébadille sont appliqués au nuisible ou à l'environnement du nuisible à un taux d'environ 1 à environ 1 000 grammes par hectare, préférablement d'environ 10 à environ 700 grammes par hectare, préférablement d'environ 22 à environ 560 grammes par hectare.
 
10. Procédé selon la revendication 5, dans lequel Bacillus thuringiensis est appliquée au nuisible ou à l'environnement du nuisible à un taux d'environ 1 à environ 5 000 grammes par hectare, préférablement d'environ 100 à environ 3 000 grammes par hectare, préférablement d'environ 560 à environ 2 242 grammes par hectare.
 






Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description