(19)
(11)EP 3 478 460 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 16744308.4

(22)Date of filing:  29.06.2016
(51)International Patent Classification (IPC): 
B25J 9/16(2006.01)
G05B 19/409(2006.01)
(86)International application number:
PCT/EP2016/065108
(87)International publication number:
WO 2018/001472 (04.01.2018 Gazette  2018/01)

(54)

AN INDUSTRIAL ROBOT SYSTEM COMPRISING A DUAL ARM ROBOT

INDUSTRIEROBOTERSYSTEM MIT ZWEIARMIGEM ROBOTER

SYSTÈME DE ROBOT INDUSTRIEL COMPORTANT UN ROBOT À DEUX BRAS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
08.05.2019 Bulletin 2019/19

(73)Proprietor: ABB Schweiz AG
5400 Baden (CH)

(72)Inventors:
  • HENRIKSSON, Adam
    117 28 Stockholm (SE)
  • BLOM, Jonatan
    172 32 Sundbyberg (SE)
  • TIMSJÖ, Susanne
    725 91 Västerås (SE)

(74)Representative: Kransell & Wennborg KB 
P.O. Box 27834
115 93 Stockholm
115 93 Stockholm (SE)


(56)References cited: : 
DE-A1-102004 060 484
DE-A1-102012 021 422
US-A1- 2015 321 351
DE-A1-102007 024 157
US-A1- 2009 204 261
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the invention



    [0001] The present invention relates to an industrial robot system comprising a dual arm robot having two arms independently movable in relation to each other, and a hand-held control device for controlling the arms, provided with a visual display unit and configured to display information about the arms on the display unit.

    Background of the invention



    [0002] In a typical robot factory, the integrator and operator can access the functionality of a robot through a hand-held control device provided with an interface allowing a user to access the functionality of the robot, such as programming and manual operation of the robot. The hand-held control device enables the user to move around the robot throughout the integration and operation processes. Information on the current state of the robot as well as its workflow is displayed on the display unit of the control device. This type of interface works well for a one-armed robot, but displaying information on a more complex system may cause confusion for the operator.

    [0003] For instance, a dual-arm robot is technically two robots that are individually controlled and programmed through a single user interface. The dual arm robot has a body, and two arms movably attached to the body on opposite sides of the body. An arm can be moved independently of the other arm. Since the arms can do different tasks, both arms need individual workflows often referred to as swim lanes. Sometimes, it can be difficult for the user to determine which swim lane belongs to which arm. Furthermore, the relationship between the arms and the swim lanes can also change as the user moves around the robots.

    [0004] US2009204261A1 discloses an industrial robot system according to the preamble of claim 1.

    Object and summary of the invention



    [0005] It is an object of the present invention to at least partly overcome the above problems, and to facilitate controlling and programming of a dual arm robot.

    [0006] This object is achieved by a robot system as defined in claim 1.

    [0007] The industrial robot system comprises a dual arm robot having two arms independently movable in relation to each other, and a hand-held control device for controlling the arms. The control device is provided with a visual display unit for displaying information about the arms, and a first measuring device for measuring the orientation of the control device. The control device is configured to display information about one of the arms in a first area on the display unit and to display information about the other arm in a second area on the display unit, and to change the positions of the first and second areas in dependence on the orientation of the control device in relation to the robot so that the positions of the first and second area on the display unit reflect the orientation of the control device in relation to the positions of the arms.

    [0008] The invention enables the control device to display information about the arms correspondingly to the orientation of the control device in relation to the robot, and accordingly to show information about the arms more intuitively. The invention improves the efficiency of the programming and manual operation of the robot due to the fact that the robot operators do not need to spend time interpreting the orientation of the robot. The robot system becomes easier to use since the robot operators feel that the interface supports their task. Further, the invention increases the safety of the robot system since the operators can make less mistakes due to misunderstanding of the orientation of the arms.

    [0009] According to the invention, the control device is provided with a measuring device for measuring its orientation. Thus, the physical orientation of the control device in relation to the robot, and thus the orientation of the user in relation to the robot, can be determined. The orientation of the control device in relation to the robot can, for example, be determined by carrying out a homing procedure, by using a camera, or by using a second measuring unit located inside the robot for measuring the orientation of the robot. When knowing the orientation of the control device in relation to the robot, the control device can present information about the arms in a physically correct orientation in relation to the robot.

    [0010] With the term "the positions of the first and second area on the display unit reflects the orientation of the control device in relation to the positions of the arms" is, for example, meant that information on the left arm is presented on an area to the left of an area with information on the right arm on the display device and vice versa.

    [0011] According to an embodiment of the invention, the control device is configured to determine when it is in front of the robot and when it is behind the robot based on the orientation of the control device in relation to the robot, and to change the positions of the first and second areas in dependence on whether the control device is in front of the robot or behind the robot. The control device is configured to change the positions of the first and second area so that information on the arm on a left side of the robot with respect to the control device is presented to the left of the information on the arm on the right side of the robot regardless of whether the control device is in front of the robot or behind the robot. Preferably, the control device is configured to change the positions of the first and second area so that information on the arm on the left side of the robot is presented on a left side of the display unit and information on the arm on the right side of the robot is presented on a right side of the display unit. Thus, information for an arm on a left side of the robot, as seen from the user's point of view, is always presented to the left of the information on an arm on the right side of the robot, regardless of whether the control device is in front of the robot or behind the robot. The positions of the information on the arms on the mobile device will automatically correspond to the positions of the arms of the robot that is standing in front of the user. Thus, the robot operator is not required to interpret a "left" or "right" arm while standing in front and behind the robot. This embodiment avoids that what looks correct standing in front of the robot becomes mirrored standing behind the robot. This will reduce the risk that the user confuses the information on the arms, and accordingly operates or programs the arms incorrectly.

    [0012] According to an embodiment of the invention, the control device is configured to calculate a difference between the orientations of the control device and the orientation of the robot, and to determine whether the control device is in front of the robot or behind the robot based on the calculated difference between the orientations. Suitably, the control device is configured to determine whetherthe control device is in front of the robot or behind the robot based on the calculated difference between the orientations and defined intervals for the difference between the orientations.

    [0013] According to an embodiment of the invention, the control device is configured to determine when it is on a first side of the robot and when it is on a second side of the robot based on the orientation of the control device in relation to the robot, and to change the positions of the first and second area in dependence on whether the control device is determined to be in front of the robot, behind the robot, on the first side of the robot, or on the second side of the robot. This will further reduce the risk that the user confuses the information on the arms, and accordingly operates or programs the arms incorrectly.

    [0014] According to an embodiment of the invention, the first measuring device comprises a magnetometer. Magnetometers are widely used for measuring the Earth's magnetic field and in geophysical surveys to detect magnetic anomalies of various types. A magnetometer is a small, inexpensive, and often battery-powered sensor used to measure the direction of the magnetic field at a point in space. Magnetometers work indoors and require no comprehensive installations, and are thus suitable to use in this application.

    [0015] According to an embodiment of the invention, the first measuring device comprises an accelerometer, and the control device is configured to determine the orientation of the control device based on measurements from the magnetometer and the accelerometer. Measuring data from the accelerometer can be used to compensate for variations in the angle of the control device in relation to the vertical line. This embodiment enables the control device to correctly determine its orientation, and accordingly to display the information in correct relative positions, independent of the angle of the control device with respect to the vertical line, i.e. regardless of whether the control device is kept tilted or is horizontal.

    [0016] The control device is configured to automatically present information related to the arms in a physically correct orientation in relation to the robot based on the current physical orientation of the control device in relation to the current physical orientation of the robot. In order to determine the current orientation of the control device in relation to the robot, it is necessary to know the physical orientation of the robot in relation to the control device. This information can be provided in several ways.

    [0017] According to an embodiment of the invention, the robot is provided with a second measuring device for measuring the orientation of the robot, and the control device is configured to change the positions of the first and second areas in dependence on the difference between the orientation of the control device and the orientation of the robot. The first mentioned measuring device measures the orientation of the control device and the second measuring device measures the orientation of the robot. Thus, it is easy to determine the orientation of the control device in relation to the robot. This embodiments avoids the need of carrying out a homing procedure between the robot and the control device.

    [0018] According to an embodiment of the invention, the first measuring device is configured to measure the orientation of the control device in relation to the earth magnetic field, and the second measuring device is configured to measure the orientation of the robot in relation to the earth magnetic field, and the control device is configured to receive measuring data from the second measuring device, to calculate the difference between the orientation of the control device and the orientation of the robot, and to change the positions of the first and the second areas in dependence on the difference. A simple compass, such as a magnetometer, can be used.

    [0019] According to an embodiment of the invention, the second measuring device comprises a magnetometer. It is proposed that the robot is provided with a magnetometer, which output is compared to the orientation of the control device. Based on a comparison of the measured orientations from the first and second measuring devices, the control device can display the information about the arms in positions that correspond to the physical orientation of the robot. Magnetometers are small, inexpensive, and require no comprehensive installations, and are thus suitable to integrate in the robot.

    [0020] According to an embodiment of the invention, the second measuring device comprises an accelerometer, and the robot is configured to determine the orientation of the robot based on measurements from the magnetometer and the accelerometer. By using an accelerometer it is possible to compensate for variations in the mounting of the robot, for example, if the body of the robot is not aligned with the vertical line.

    [0021] According to an embodiment of the invention, the robot has a body, the arms are movably attached to the body, and said second measuring device is mounted in the body. It is convenient to mount the second measuring device in the body of the robot.

    [0022] According to an embodiment of the invention, the information about the arms comprises swim lanes representing workflows for each of the arms. The first area comprises a swim lane for the first arm, and the second area comprises a swim lane for the second arm of the robot.

    [0023] A swim lane is a type of flowchart that differs from other flowcharts in that the processes are grouped visually by placing them in lanes, such as one lane for each arm.

    [0024] According to an embodiment of the invention, the control device is configured to determine when it is in front of the robot and when it is behind the robot based on the orientation of the control device in relation to the robot, and to switch the positions of the swim lanes in dependence on whether the control device is in front of the robot or behind the robot. When the user moves the control device around the robot the positions of the swim lanes are switched, so that the right swim lane always corresponds to the right arm and the left swim lane always corresponds to the left arm, as seen from the user's perspective. Thus, mistakes due to the operator misunderstanding which swim lane belongs to which arm are avoided.

    [0025] According to an embodiment of the invention, the control device is a tablet computer. Suitably, the tablet computer is provided with an Inertial Measuring Unit (IMU). An inertial measurement unit is an electronic device that measures a body's specific force, angular rate, and sometimes the magnetic field surrounding the body, using a combination of accelerometers, gyroscopes, and magnetometers. There exist commercially available tablet computers having an integrated IMU. Using a commercially available tablet computer can save costs.

    Brief description of the drawings



    [0026] The invention will now be explained more closely by the description of different embodiments of the invention and with reference to the appended figures.

    Fig. 1 shows an industrial robot system according to an embodiment of the invention.

    Fig. 2 shows an example of a control device placed in front of a robot.

    Fig. 3 shows the control device placed behind a robot.

    Fig. 4 shows the control device placed on a first side of a robot.

    Fig. 5 shows the control device placed on a second side of a robot.

    Fig. 6 shows a flow chart illustrating an example of an algorithm for determining where to display the information on the arms on a display unit.


    Detailed description of preferred embodiments of the invention



    [0027] Figure 1 shows an industrial robot system according to an embodiment of the invention. The robot system comprises a dual arm robot 1 having a first arm 2 and a second arm 3 independently movable in relation to each other. The robot 1 comprises base 7 and a body 8 arranged rotatable in relation to the base 7. The robot further comprises a control unit 9 configured to control the motions of the robot during operation of the robot. In this embodiment, the control unit 9 is integrated in the body 8 of the robot. The first and second arms 2, 3 are rotatably connected to the body 8 and comprise a plurality of arm parts 10 rotatably arranged in relation to each other about a plurality of joints 12.

    [0028] The robot system further comprises a hand-held control device 5 for manually controlling and programming the robot. The control device 5 is provided with a visual display unit 6. The display unit 6 is, for example, a display screen or a touch screen. The control device 5 is configured to display information about the arms 2, 3 of the robot, such as swim lanes, on the display unit 6. The control device 5 is provided with user means for interacting with the control device, for example, a button 14. The control device 5 is, for example, a tablet computer, a smart phone, or any other portable computer device. The control device 5 is in communication with the control unit 9 of the robot. Suitably, the control device 5 and the control unit 9 have wireless communication with each other. A user, such as an integrator or robot operator, can access the functionality of the robot through the control device 5. The control device 5 is mobile, which enables the user to move around the robot 1 throughout the integration and programming process. Information on the current state of the robot as well as its workflow is displayed on the display unit 6. The control device is configured to display information about one of the arms in a first area 16 on the display unit 6, and to display information about the other arm in a second area 17 on the display unit. The control device 5 may comprise a processor unit, such as a central processing unit (CPU) and memory means, such as ROM and RAM.

    [0029] According to the invention, the control device 5 is provided with a first measuring device 20 for measuring the orientation of the control device. In one embodiment of the invention, the first measuring device 20 comprises a magnetometer configured to measure the orientation of the control device 5 in relation to the earth magnetic field. In another embodiment of the invention, the first measuring device 20 comprises an accelerometer as well as a magnetometer, and the control device is configured to determine the orientation of the control device based on measurement from the magnetometer and the accelerometer. The control device 5 is then configured to compensate for variations in the angle of the control device in relation to the vertical line based on measuring data from the accelerometer. Thus, the control device is able to correctly determine its orientation also when the control device is tilted.

    [0030] In another embodiment, the control device 5 can be provided with an Inertial Measuring Unit (IMU). An inertial measurement unit is an electronic device comprising an accelerometer, a gyroscope, and a magnetometer. There exist commercially available tablet computers having an integrated IMU. The first measuring device 20 can be an IMU integrated in the tablet computer. The IMU can be used for measuring the orientation of the control device 5.

    [0031] The control device is configured to automatically present information related to the arms in a physically correct orientation in relation to the robot based on the current physical orientation of the control device in relation to the current physical orientation of the robot. The control device 5 is configured to change the positions of the first and second areas 16, 17 in dependence on the orientation of the control device 5 in relation to the robot 1 so that the positions of the first and second areas 16, 17 on the display unit 6 reflect the orientation of the control device in relation to the positions of the arms. The orientation of the control device 5 in relation to the robot 1 can be determined in many ways, for example, by carrying out a homing procedure. Homing can be done if the position of the robot is fixed. Homing could be a simple procedure where the user stands directly in front of the robot and confirms the orientation of the robot/control device.

    [0032] In one embodiment of the invention, the robot is provided with a second measuring device 22, as disclosed in figure 1, for measuring the orientation of the robot. It is suitable to arrange the second measuring device 22 in the body 8 of the robot. However, it is also possible to arrange the second measuring device 22 in one of the arms 2, 3, although this will lead to more extensive calculations in order to determine the orientation of the robot. The robot 1 is configured to send information about its current orientation to the control device 5, for example, to send measuring data from the second measuring device 22 to the control device 5. The control device 5 is configured to calculate the difference between the measured orientation of the control device and the measured orientation of the robot 1, and to change the positions of the first and second areas 16, 17 in dependence on the calculated difference between the orientations of the control device 5 and the robot 1.

    [0033] Preferably, the second measuring device 22 comprises a magnetometer configured to measure the orientation of the robot 1 in relation to the earth magnetic field. The robot 1 is configured to send measuring data from the magnetometer to the control device 5. Alternatively, the robot is configured to determine its current orientation based on measurements from the magnetometer and to send its current orientation to the control device 5. In another embodiment of the invention, the second measuring device 22 comprises an accelerometer, and the robot is configured to determine its orientation based on measurements from the magnetometer as well as from the accelerometer. The robot 1 is configured to compensate for variations in the angle of the robot in relation to the vertical line based on measuring data from the accelerometer. Thus, the control device is able to correctly determine its orientation also when the robot, due to its mounting, is not entirely aligned with the vertical line.

    [0034] The control device 5 is configured to determine when it is in front of the robot and when it is behind the robot based on the difference between the orientation of the control device and the orientation of the robot. The control device 5 is configured to change the positions of the first and second areas in dependence on whether the control device is in front of the robot or behind the robot. The control device is configured to change the positions of the first and second areas so that information on the arm on a left side of the robot with respect to the control device is presented to the left of the information on the arm on the right side of the robot regardless of whether the control device is in front of the robot or behind the robot. This is illustrated in figures 2 and 3.

    [0035] Figure 2 shows an example of a view displayed on the control device 5 when the control device is positioned in front of the robot 1 and is facing a front side of the robot. This means that the user is standing in front of the robot, since the user is carrying the control device 5. The difference between the orientations of the control device and the robot is about 180° in this position. The first arm 2 is now on a left side L of the robot and the second arm 3 is on a right side R of the robot, as seen from the user's point of view. A first swim lane 24, representing a work flow of the first arm 2, is displayed in the first area of the display unit 6 of the control device 5. A second swim lane 26, representing a work flow for the second arm 3, is displayed to the right of the first swim lane 24 in a second area of the display unit 6 of the control device 5. Thus, it becomes easy for the user to understand which swim lane belongs to which arm. The control device is configured to switch the positions of the swim lanes in dependence on whether the control device is in front of the robot or behind the robot.

    [0036] Figure 3 shows an example of a view displayed on the control device 5 when the control device is positioned behind the robot 1 and is facing a rear side of the robot. This means that the user is standing behind the robot. The orientations of the control device and the robot is about the same in this position, i. e. the difference between their orientations is about 0°. The first arm 2 is now on a right side of the robot and the second arm 3 is on a left side of the robot, as seen from the user's point of view. The second swim lane 26 representing the workflow for the second arm 3 is now displayed on a left side of the display unit and the first swim lane 24 representing the workflow for the first arm 2 is now displayed on a right side of the display unit 6. Thus, the first and second swim lanes 24, 26 have changed places when the user has moved the control device 5 to the rear side of the robot, which makes it easy for the user to understand which swim lane belongs to which arm.

    [0037] In an alternative embodiment, the control device 5 is configured, in addition to determining when it is in front or behind the robot, to determine when the control device is on a first or a second side of the robot based on the difference between the orientation of the control device and the orientation of the robot. The control device is configured to change the positions of the first and second areas in dependence on whetherthe control device is in front of the robot, behind the robot, on a first side of the robot or on a second side of the robot. This is illustrated in figures 4 and 5.

    [0038] Figure 4 shows an example of a view displayed on the control device 5 when the control device is positioned on a first side of the robot 1. The first arm 2 is now closer to the control device than the second arm 3, as seen from the user's point of view. The first swim lane 24 representing the first arm 2 is displayed above the second swim lane 26 representing the second arm 3 on the display unit 6. The control device 5 is configured to switch the positions of the swim lanes in dependence on whether the control device is positioned on the first or the second side of the robot.

    [0039] Figure 5 shows an example of a view displayed on the control device 5 when the control device is positioned on a second side of the robot 1 opposite the first side. The second arm 3 is now closer to the control device than the first arm 2, as seen from the user's point of view. The first swim lane 24 representing the first arm 2 is now displayed below the second swim lane 26 representing the second arm 3 on the display unit 6. Thus, the first and second swim lanes 24, 26 have changed places when the user has moved the control device 5 to the opposite side of the robot, which makes it easy for the user to understand which swim lane belongs to which arm.

    [0040] The control device 5 can be provided with a software module for determining the positions of the first and second areas 16, 17.

    [0041] Figure 6 illustrates a flow chart of an example of an algorithm for determining where to display the information on the arms on the display unit 6. It will be understood that each block 30 - 37 of the flow chart can be implemented by computer program instructions.The control device 5 receives the orientation of the robot from the control unit 9, block 30. Measuring data representing the orientation of the control device 5 is received from the first measuring device 20, block 32. The difference between the orientation of the control device and the robot is calculated, block 34. The position of the control device 5 in relation to the robot 1 is determined based on the calculated difference in orientation, block 36. The position of the control device 5 in relation to the robot 1 can be any of "in front of the robot" and "behind the robot". This means that it is determined whether the control device is in front of the robot, or behind the robot. This can, for example, be done by determining whether the calculated difference of orientation ΔO is within defined intervals for behind and in front of the robot.

    [0042] In an alternative embodiment of the invention, the position of the control device 5 in relation to the robot 1 can be any of "in front of the robot", "behind the robot", "a first side of the robot", and "a second side of the robot". This can mean that it is determined whether the control device is in front of the robot, behind the robot, on a first side, or on a second side of the robot. In an embodiment of the invention, this is done by determining whether the calculated difference of orientation ΔO is within defined intervals for the relative positions "in front of the robot", "behind the robot", "a first side of the robot", and "a second side of the robot".

    [0043] For example, the control device is behind the robot if: 0° < ΔO < 45° or 315° < ΔO < 360°
    The control device is in front of the robot if: 135° < ΔO < 225°
    The control device is on a first side of the robot if: 45° < ΔO < 135°
    The control device is on a second side of the robot if: 225° < ΔO < 315°

    [0044] For each of the defined positions of the control device 5 in relation to the robot, there is a predetermined location specifying where the first and second area are to be displayed on the display unit 6, for example, as shown in figures 2 - 5. The direction of the swim lanes can also be specified for each of the defined positions of the control device in relation to the robot. For example, the direction of the swim lanes are top-down for the relative positions "in front of the robot" and "behind the robot" as shown in figures 2 and 3, and the direction of the swim lanes are from left to right for the relative positions "first side" and " second side" as shown in figures 4 and 5.

    [0045] In a next step, the information on the first and second arm, for example the swim lanes 24, 26, is displayed on the display unit in dependence on the determined position of the control device 5 in relation to the robot, block 37. Thus, if the relative position between the control device and the robot has been changed, the positions of the first and second areas are changed based on the new relative position between the control device and the robot. The steps 30 - 37 are repeated as long as the user commands the control device to display information about the two arms.

    [0046] The present invention is not limited to the embodiments disclosed but may be varied and modified within the scope of the following claims. For example, other types of information about the arms can be displayed on the first and second area. The orientation of the robot can be measured by other methods and with other measuring devices.


    Claims

    1. An industrial robot system comprising a dual arm robot (1) having two arms (2, 3) independently movable in relation to each other, a hand-held control device (5) for controlling the robot and provided with a visual display unit (6) for displaying information about the arms, and a first measuring device (20) for measuring the orientation of the control device, characterized in that the control device (5) is configured to display information about one of the arms in a first area (16) on the display unit and to display information about the other arm in a second area (17) on the display unit, and to change the positions of the first and second areas in dependence on the orientation of the control device (5) in relation to the robot (1) so that the positions of the first and second areas on the display unit reflect the orientation of the control device in relation to the positions of the arms.
     
    2. The robot system according to claim 1, wherein the control device (5) is configured to determine when it is in front of the robot (1) and when it is behind the robot based on the orientation of the control device (5) in relation to the robot (1), and to change the positions of the first and second areas (16, 17) in dependence on whether the control device is in front of the robot or behind the robot so that information on the arm on a left side of the robot with respect to the control device is presented to the left of the information on the arm on the right side of the robot regardless of whether the control device is in front of the robot or behind the robot.
     
    3. The robot system according to any of the previous claims, wherein the control device (5) is configured to calculate a difference between the orientations of the control device (5) and the robot (1), and to determine whether the control device is in front of the robot or behind the robot based on the calculated difference between the orientations.
     
    4. The robot system according to any of the previous claims, wherein the control device (5) is configured to determine when it is on a first side of the robot (1) and when it is on a second side of the robot based on the orientation of the control device in relation to the robot, and to change the positions of the first and second areas (16, 17) in dependence on whether the control device is determined to be in front of the robot, behind the robot, on the first side of the robot, or on the second side of the robot.
     
    5. The robot system according to any of the previous claims, wherein said first measuring device (20) comprises a magnetometer.
     
    6. The robot system according to claim 5, wherein said first measuring device (20) comprises an accelerometer, and the control device (5) is configured to determine the orientation of the control device based on measurements from the magnetometer and the accelerometer.
     
    7. The robot system according to any of the previous claims, wherein the robot (1) is provided with a second measuring device (22) for measuring an orientation of the robot, and the control device (5) is configured to change the positions of the first and second areas (16, 17) in dependence on the difference between the orientation of the control device and the orientation of the robot.
     
    8. The robot system according to claim 7, wherein said first measuring device (20) is configured to measure the orientation of the control device (5) in relation to the earth magnetic field, and the second measuring device (22) is configured to measure the orientation of the robot (1) in relation to the earth magnetic field, and the control device (5) is configured to calculate the difference between the orientation of the control device and the orientation of the robot, and to change the positions of first and second areas (16, 17) in dependence on the difference.
     
    9. The robot system according to claim 7 or 8, wherein said second measuring device (22) comprises a magnetometer.
     
    10. The robot system according to claim 9, wherein said second measuring device (22) comprises an accelerometer, and the robot (1) is configured to determine the orientation of the robot based on measurements from the magnetometer and the accelerometer.
     
    11. The robot system according to any of the claims 7 - 10, wherein the robot (1) has a body (8) and the arms (2, 3) are movably connected to the body, and said second measuring device (22) is mounted in the body.
     
    12. The robot system according to any of the previous claims, wherein said information about the arms (2, 3) comprises swim lanes (24, 26) representing work flows for each of the arms.
     
    13. The robot system according to claim 12, wherein the control device (5) is configured to determine when it is in front of the robot (1) and when it is behind the robot based on the orientation of the control device in relation to the robot, and to switch the positions of the swim lanes (24, 26) in dependence on whether the control device is in front of the robot or behind the robot.
     
    14. The robot system according to any of the previous claims, wherein said control device (5) is a tablet computer.
     


    Ansprüche

    1. Industrierobotersystem, umfassend einen zweiarmigen Roboter (1) mit zwei unabhängig voneinander bewegbaren Armen (2, 3), eine handgehaltene Steuervorrichtung (5) zum Steuern des Roboters, die mit einer visuellen Anzeigeeinheit (6) zum Anzeigen von Informationen über die Arme versehen ist, und eine erste Messvorrichtung (20) zum Messen der Ausrichtung der Steuervorrichtung, dadurch gekennzeichnet, dass die Steuervorrichtung (5) dazu ausgelegt ist, Informationen über einen der Arme in einem ersten Bereich (16) auf der Anzeigeeinheit und Informationen über den anderen Arm in einem zweiten Bereich (17) auf der Anzeigeeinheit anzuzeigen und die Positionen des ersten und zweiten Bereichs in Abhängigkeit von der Ausrichtung der Steuervorrichtung (5) in Bezug auf den Roboter (1) zu ändern, sodass die Positionen des ersten und zweiten Bereichs auf der Anzeigeeinheit die Ausrichtung der Steuervorrichtung in Bezug auf die Positionen der Arme widerspiegeln.
     
    2. Robotersystem gemäß Anspruch 1, wobei die Steuervorrichtung (5) dazu ausgelegt ist, basierend auf der Ausrichtung der Steuervorrichtung (5) in Bezug auf den Roboter (1) zu bestimmen, wann sie sich vor dem Roboter (1) und wann sie sich hinter dem Roboter befindet, und die Positionen des ersten und zweiten Bereichs (16, 17) in Abhängigkeit davon zu ändern, ob sich die Steuervorrichtung vor dem Roboter oder hinter dem Roboter befindet, sodass Informationen über den Arm auf einer linken Seite des Roboters in Bezug auf die Steuervorrichtung links von den Informationen über den Arm auf der rechten Seite des Roboters dargestellt werden, unabhängig davon, ob sich die Steuervorrichtung vor dem Roboter oder hinter dem Roboter befindet.
     
    3. Robotersystem gemäß einem der vorhergehenden Ansprüche, wobei die Steuervorrichtung (5) dazu ausgelegt ist, eine Differenz zwischen den Ausrichtungen der Steuervorrichtung (5) und des Roboters (1) zu berechnen und basierend auf der berechneten Differenz zwischen den Ausrichtungen zu bestimmen, ob sich die Steuervorrichtung vor dem Roboter oder hinter dem Roboter befindet.
     
    4. Robotersystem gemäß einem der vorhergehenden Ansprüche, wobei die Steuervorrichtung (5) dazu ausgelegt ist, basierend auf der Ausrichtung der Steuervorrichtung in Bezug auf den Roboter zu bestimmen, wann sie sich auf einer ersten Seite des Roboters (1) und wann sie sich auf einer zweiten Seite des Roboters befindet, und die Positionen des ersten und zweiten Bereichs (16, 17) in Abhängigkeit davon zu ändern, ob die Steuervorrichtung bestimmt wird, vor dem Roboter, hinter dem Roboter, auf der ersten Seite des Roboters oder auf der zweiten Seite des Roboters zu sein.
     
    5. Robotersystem gemäß einem der vorhergehenden Ansprüche, wobei die erste Messvorrichtung (20) ein Magnetometer umfasst.
     
    6. Robotersystem gemäß Anspruch 5, wobei die erste Messvorrichtung (20) einen Beschleunigungsmesser umfasst und die Steuervorrichtung (5) dazu ausgelegt ist, die Ausrichtung der Steuervorrichtung basierend auf Messungen aus dem Magnetometer und dem Beschleunigungsmesser zu bestimmen.
     
    7. Robotersystem gemäß einem der vorhergehenden Ansprüche, wobei der Roboter (1) mit einer zweiten Messvorrichtung (22) zum Messen einer Ausrichtung des Roboters versehen ist und die Steuervorrichtung (5) dazu ausgelegt ist, die Positionen des ersten und zweiten Bereichs (16, 17) in Abhängigkeit von der Differenz zwischen der Ausrichtung der Steuervorrichtung und der Ausrichtung des Roboters zu ändern.
     
    8. Robotersystem gemäß Anspruch 7, wobei die erste Messvorrichtung (20) dazu ausgelegt ist, die Ausrichtung der Steuervorrichtung (5) in Bezug auf das Erdmagnetfeld zu messen, und die zweite Messvorrichtung (22) dazu ausgelegt ist, die Ausrichtung des Roboters (1) in Bezug auf das Erdmagnetfeld zu messen, und die Steuervorrichtung (5) dazu ausgelegt ist, die Differenz zwischen der Ausrichtung der Steuervorrichtung und der Ausrichtung des Roboters zu berechnen und die Positionen des ersten und zweiten Bereichs (16, 17) in Abhängigkeit von der Differenz zu ändern.
     
    9. Robotersystem gemäß Anspruch 7 oder 8, wobei die zweite Messvorrichtung (22) ein Magnetometer umfasst.
     
    10. Robotersystem gemäß Anspruch 9, wobei die zweite Messvorrichtung (22) einen Beschleunigungsmesser umfasst und der Roboter (1) dazu ausgelegt ist, die Ausrichtung des Roboters basierend auf Messungen aus dem Magnetometer und dem Beschleunigungsmesser zu bestimmen.
     
    11. Robotersystem gemäß einem der Ansprüche 7 - 10, wobei der Roboter (1) einen Körper (8) aufweist und die Arme (2, 3) bewegbar mit dem Körper verbunden sind und die zweite Messvorrichtung (22) in dem Körper angebracht ist.
     
    12. Robotersystem gemäß einem der vorhergehenden Ansprüche, wobei die Informationen über die Arme (2, 3) Schwimmbahnen (24, 26) umfassen, die Arbeitsflüsse für jeden der Arme darstellen.
     
    13. Robotersystem gemäß Anspruch 12, wobei die Steuervorrichtung (5) dazu ausgelegt ist, basierend auf der Ausrichtung der Steuervorrichtung in Bezug auf den Roboter zu bestimmen, wann sie sich vor dem Roboter (1) und wann sie sich hinter dem Roboter befindet, und die Positionen der Schwimmbahnen (24, 26) in Abhängigkeit davon umzuschalten, ob sich die Steuervorrichtung vor dem Roboter oder hinter dem Roboter befindet.
     
    14. Robotersystem gemäß einem der vorhergehenden Ansprüche, wobei die Steuervorrichtung (5) ein Tablet-Computer ist.
     


    Revendications

    1. Système de robot industriel comprenant un robot à deux bras (1) ayant deux bras (2, 3) mobiles indépendamment l'un de l'autre, un dispositif de commande portatif (5) pour commander le robot et qui est pourvu d'une unité d'affichage visuel (6) pour afficher des informations concernant les bras, et d'un premier dispositif de mesure (20) pour mesurer l'orientation du dispositif de commande, caractérisé en ce que le dispositif de commande (5) est configuré pour afficher des informations concernant l'un des bras dans une première zone (16) sur l'unité d'affichage et pour afficher des informations concernant l'autre bras dans une seconde zone (17) sur l'unité d'affichage, et pour modifier les positions des première et seconde zones en fonction de l'orientation du dispositif de commande (5) par rapport au robot (1) de sorte que les positions des première et seconde zones sur l'unité d'affichage reflètent l'orientation du dispositif de commande par rapport aux positions des bras.
     
    2. Système de robot selon la revendication 1, le dispositif de commande (5) étant configuré pour déterminer lorsqu'il est devant le robot (1) et lorsqu'il est derrière le robot sur la base de l'orientation du dispositif de commande (5) par rapport au robot (1), et pour modifier les positions des première et seconde zones (16, 17) en fonction du fait que le dispositif de commande est devant le robot ou derrière le robot, de sorte que des informations sur le bras d'un côté gauche du robot par rapport au dispositif de commande sont présentées à gauche des informations sur le bras du côté droit du robot, indépendamment du fait que le dispositif de commande est devant le robot ou derrière le robot.
     
    3. Système de robot selon l'une quelconque des revendications précédentes, le dispositif de commande (5) étant configuré pour calculer une différence entre les orientations du dispositif de commande (5) et du robot (1), et pour déterminer si le dispositif de commande est devant le robot ou derrière le robot sur la base de la différence calculée entre les orientations.
     
    4. Système de robot selon l'une quelconque des revendications précédentes, le dispositif de commande (5) étant configuré pour déterminer lorsqu'il est sur un premier côté du robot (1) et lorsqu'il est sur un second côté du robot sur la base de l'orientation du dispositif de commande par rapport au robot, et pour changer les positions des première et seconde zones (16, 17) en fonction du fait qu'il est déterminé que le dispositif de commande est devant le robot, derrière le robot, sur le premier côté du robot ou sur le second côté du robot.
     
    5. Système de robot selon l'une quelconque des revendications précédentes, ledit premier dispositif de mesure (20) comprenant un magnétomètre.
     
    6. Système de robot selon la revendication 5, ledit premier dispositif de mesure (20) comprenant un accéléromètre, et le dispositif de commande (5) étant configuré pour déterminer l'orientation du dispositif de commande sur la base de mesures issues du magnétomètre et de l'accéléromètre.
     
    7. Système de robot selon l'une quelconque des revendications précédentes, le robot (1) étant pourvu d'un second dispositif de mesure (22) pour mesurer une orientation du robot, et le dispositif de commande (5) étant configuré pour modifier les positions des première et seconde zones (16, 17) en fonction de la différence entre l'orientation du dispositif de commande et l'orientation du robot.
     
    8. Système de robot selon la revendication 7, ledit premier dispositif de mesure (20) étant configuré pour mesurer l'orientation du dispositif de commande (5) par rapport au champ magnétique terrestre, et le second dispositif de mesure (22) étant configuré pour mesurer l'orientation du robot (1) par rapport au champ magnétique terrestre, et le dispositif de commande (5) étant configuré pour calculer la différence entre l'orientation du dispositif de commande et l'orientation du robot, et pour modifier les positions des première et seconde zones (16, 17) en fonction de la différence.
     
    9. Système de robot selon la revendication 7 ou 8, ledit second dispositif de mesure (22) comprenant un magnétomètre.
     
    10. Système de robot selon la revendication 9, ledit second dispositif de mesure (22) comprenant un accéléromètre, et le robot (1) étant configuré pour déterminer l'orientation du robot sur la base de mesures issues du magnétomètre et de l'accéléromètre.
     
    11. Système de robot selon l'une quelconque des revendications 7 à 10, le robot (1) ayant un corps (8) et les bras (2, 3) étant reliés de manière mobile au corps, et ledit second dispositif de mesure (22) étant monté dans le corps.
     
    12. Système de robot selon l'une quelconque des revendications précédentes, lesdites informations concernant les bras (2, 3) comprenant des couloirs d'activité (24, 26) représentant des flux de travail pour chacun des bras.
     
    13. Système de robot selon la revendication 12, le dispositif de commande (5) étant configuré pour déterminer lorsqu'il est devant le robot (1) et lorsqu'il est derrière le robot sur la base de l'orientation du dispositif de commande par rapport au robot, et pour changer les positions des couloirs d'activité (24, 26) en fonction du fait que le dispositif de commande est devant le robot ou derrière le robot.
     
    14. Système de robot selon l'une quelconque des revendications précédentes, ledit dispositif de commande (5) étant un ordinateur tablette.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description