(19)
(11)EP 3 495 611 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 17205756.4

(22)Date of filing:  06.12.2017
(51)International Patent Classification (IPC): 
F01D 5/08(2006.01)
F01D 25/08(2006.01)
F01D 11/00(2006.01)

(54)

APPARATUS FOR CONTROLLED DELIVERY OF COOLING AIR TO TURBINE BLADES IN A GAS TURBINE

VORRICHTUNG ZUR KONTROLLIERTEN ABGABE VON KÜHLLUFT AN TURBINENSCHAUFELN IN EINER GASTURBINE

APPAREIL D'ADMINISTRATION CONTRÔLÉE D'AIR DE REFROIDISSEMENT POUR AUBES DE TURBINE DANS UNE TURBINE À GAZ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
12.06.2019 Bulletin 2019/24

(73)Proprietor: Ansaldo Energia Switzerland AG
5401 Baden (CH)

(72)Inventors:
  • SCHNIEDER, Martin
    5408 ENNETBADEN (CH)
  • VON ARX, Beat
    4632 TRIMBACH (CH)
  • KOENIG, Marcel
    5430 WETTINGEN (CH)
  • ZIERER, Thomas
    5408 ENNETBADEN (CH)
  • GARBUGLIA, Francesco
    5415 NUSSBAUMEN (CH)

(74)Representative: Franzolin, Luigi et al
Studio Torta S.p.A. Via Viotti, 9
10121 Torino
10121 Torino (IT)


(56)References cited: : 
GB-A- 988 541
US-A1- 2010 074 732
US-A- 4 884 950
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    Field of the invention



    [0001] The present invention relates to an apparatus for controlled delivery of cooling air to turbine blades in a turbine section of a gas turbine power plant. In particular, the present invention relates to an apparatus for controlling cooling air delivery to rotor heat shield cavities to protect the rotor material against hot gas.

    Description of prior art



    [0002] As is known, a gas turbine for power plants (in the following, "gas turbine" only) comprises an upstream compressor, a combustor assembly and a downstream turbine. The turbine includes a rotor comprising a compressor section and a turbine section.

    [0003] The terms downstream and upstream as used herein refer to the direction of the main gas flow passing through the gas turbine.

    [0004] In particular, the compressor comprises an inlet supplied with air and a plurality of blades compressing the passing air. The major part of the compressed air flows into a combustor where the compressed air is mixed with at least one fuel. This mixture is combusted in the combustor leading to a significant temperature rise. The resulting hot gas leaves the combustor and is expanded in the turbine, producing mechanical work on the rotor.

    [0005] While the turbine blades are made of a material designed to withstand the hot gas temperatures, and thus costly, the rotor is generally made of a less costly material with a lower resistance to high temperatures. Therefore, a flow of cooling air must be provided in the rotor section, below the hot gas path, to protect the rotor material against the hot gas temperature. Devices called rotor heat shields (RHS) are generally inserted between two adjacent blade rows to form cavities that can be supplied with cooling air.

    [0006] In the turbine section, the hot gas pressure decreases from one blade row to the following. It is known in the art that the pressure of the cooling air supplied to the individual blades rows at the root of the blades should be above the hot gas pressure at that blade row to avoid leakage of hot gas into cooling cavities; however, the cooling air pressure should not be too high in order to avoid excessive flow of cooling air into the hot gas path, which would reduce efficiency.

    [0007] Controlling cooling air delivery is even more complex when air is supplied to two blade rows from a single source.

    [0008] US2010/0074732 discloses a gas turbine sealing apparatus having the features of the preamble of claim 1.

    SUMMARY OF THE INVENTION



    [0009] An object of the present invention is to provide an apparatus for controlled delivery of cooling air to turbine blades in a gas turbine which addresses the above problems.

    [0010] According to a first aspect of the present invention, the apparatus includes:
    • a plurality of rotor heat shield elements disposed in a circumferential row between a first and a second row of turbine blades, each shield element having a root portion contoured so as to fit in a seat of the rotor unit, an intermediate radial portion and a shroud band configured to be axially interposed between platform portions of the turbine blades of the first and second turbine blade row, the rotor heat shield elements configured to define with a rotor unit of the turbine a rotor heat shield passage that is fed with cooling air; and
    • at least a row of lock plates configured to secure axially at least one of said first and second rows of turbine blades to said rotor unit, said lock plates facing said rotor heat shield elements,
    • a first cavity between by the first row of turbine blades and the radial portion of the shield elements and a second cavity between the radial portion of the shield elements and the second row of turbine blades,
    wherein at least one of said radial portion of the rotor shield elements and the lock plates includes at least one opening for controlled flow of cooling air,
    wherein one of said first and second cavity is supplied by a source of cooling air, the other of said first and second cavity being supplied with cooling air through an opening in said radial portion of the shield elements.

    [0011] According to the invention, pressure drop along the different portions of the rotor heat shield passage can be controlled so as to ensure optimum local balance with the pressure of the hot gas.

    [0012] According to an embodiment, two portions or cavities of the rotor heat shield passage communicate through the aperture in the radial portion of the rotor heat shield elements, which allows to control pressure in the two portions even though only one of them is supplied with cooling air.

    [0013] In an embodiment, the rotor shield elements include at least one feature configured to cooperate with an axial finger extending from the platform portion of the blades of at least one row in order to lock said rotor shield elements circumferentially; the opening is facing the features of the rotor shield elements, so that it can be used to receive the finger of a respective blade.

    [0014] Advantageously, lock plates are provided with hooks for coupling with said rotor unit; this makes assembly easy and quick.

    [0015] According to a preferred embodiment, the apparatus includes at least one, and preferable all, of:

    a circumferential wire seal between the root portions of the said rotor heat shield elements and said rotor unit,

    a circumferential wire seal between said lock plates and said rotor unit,

    circumferential seals between the shroud bands the said blades, and

    axial seals between each pair of adjacent shroud bands.



    [0016] This allows to reduce, and preferably eliminate, any undesired leaking paths for the cooling air.

    [0017] According to another aspect, the invention relates to a gas turbine including:
    • a rotor unit;
    • at least a first plurality of turbine blades disposed in a first circumferential row around the rotor unit and secured thereto,
    • at least a second plurality of turbine blades disposed in a second circumferential row around the rotor unit and secured thereto,
    • the first row and the second row being axially spaced with respect to one another, and
    • an apparatus for controlled delivery of cooling air to turbine blades as defined above.
    According to a preferred embodiment of the gas turbine, the lock plates include an opening for controlled flow of cooling air between at least a first portion of said heat shield passage upstream of the lock plates and a second portion of said heat shield passage downstream of the lock plates.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0018] For a better comprehension of the present invention, a preferred embodiment thereof will be described hereafter, by way of a non-limiting example and referring to the attached drawings, where:

    Figure 1 is a partial axial cross section of an apparatus for controlled delivery of cooling air to turbine blades according to the present invention;

    Figure 2 is an enlarged view of a portion of figure 1;

    Figure 3 is a detailed view of another portion of figure 1;

    Figure 4 is a side view, partly sectioned, of a turbine blade of a gas turbine including the apparatus;

    figure 5 is an axial view from one side of a detail of figure 4;

    Figure 6 is ax axial view from an opposite side of a detail of figure 4;

    Figure 7 is a perspective view of a component of the apparatus of the invention; and

    Figure 8 is partial cross-section taken along line VIII-VIII in figure 1.


    DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT



    [0019] Referring now to figure 1, a gas turbine 1 (only partially shown) includes a rotor 2 rotatable about a rotor axis (not shown) and a stator 3.

    [0020] As is well known in the art, rotor 2 includes a rotor unit 4 and a plurality of turbine blades 5 secured to the rotor unit 4 and disposed in a plurality of circumferential blade rows 6, 7, 8. Three blade rows are shown in figure 1, but the number of blade rows is typically larger than three. Stator 3 is provided with a plurality of turbine vanes 9 disposed in a plurality of circumferential vane rows 10, 11, 12 that precede the respective blade rows 5, 6, 7 in the axial direction of the hot gas flow, indicated by arrow H. Three vane rows are shown in figure 1, but the number of vane rows is typically larger than three. The inner tip of the vane 9 is integrally connected to an inner vane platform 14 that extends circumferentially until the adjacent vane platforms; the gaps between two adjacent vane platforms 14 is sealed with a seal.

    [0021] Blades 5 have, each, a firtree shaped shank portion 15 that is inserted in a firtree seat 16 of rotor unit 4 (fig. 6), a platform portion 17 and an airfoil 18.

    [0022] Blade rows 6, 7, 8 are axially spaced with respect to one another, and rotor unit 4 has annular recesses 19, 20 in between each pair of rows (5,6; 6,7).

    [0023] Turbine 1 also includes a plurality of rotor heat shield elements 23 (hereinafter, for brevity sake, RHS elements) disposed in circumferential RHS rows 24, 25. Two rows only of RHS elements are shown, but the number of rows is obviously dependent on the number of blade rows and typically greater than two.

    [0024] Each RHS element 23 (figures 1-3) comprises a mushroom shaped root portion 26 engaged in an undercut mushroom shaped annular seat 27 at the bottom of the respective annular recess 19 or 20, an intermediate radial portion 28 and a circumferential shroud band 29. The shroud bands 29 of the RHS elements 23 in each row are joined to one another by axial seals (not shown) to form a substantially continuous annual band, that is sealed circumferentially to each of the adjacent blade rows by means of circumferential seals 30. Root portions 26 are sealed against the bottom of annular seat 27 by a circumferential wire seal 39.

    [0025] A radial small bore 56 in the rotor unit 4, opening into the undercut portion of seat 27 (fig. 3), allows to insert a control wire (not shown) to check whether the circumferential position of RHS elements is correct, as shown e.g. in US 2008/0181778-A.

    [0026] Shroud bands 29 have preferably a plurality of inclined sealing fins 31, which are alternatingly lower and higher and projecting outwardly to cooperate at a short radial distance with a stepped inner sealing contour 32 of inner ring 14 of the stator. This reduces unwanted hot gas leakage between rotor 2 and stator 3.

    [0027] As shown in figures 2, 3, the RHS elements 23 of rows 24, 25 delimit, with the adjacent blade rows 6,7 and 7,8 respectively, a plurality of rotor heat shield (RHS) cavities 33, 34, 35, 36 that communicate with one another to define a path for cooling air. Specifically, in the example disclosed, cooling air is fed to RHS cavity 33 via a passage 37 in rotor unit 4 which opens into a passage 38 through blade row 6 (fig. 2).

    [0028] Blades 5 are axially blocked by lock plates 40, 41, 42, 43, which are disposed side-by-side in circumferential rows. Lock plates 40-43 have a radially inner edge 44 engaging a corresponding seat 45 on rotor unit 4 and a radially outer edge 46 engaging a corresponding seat 47 in the respective blade 5 (fig. 2).

    [0029] As shown in figure 2 and 3, radial portions 28 of RHS elements 23 and/or lock plates 40-43 may include apertures 48, 49 to allow a controlled air flow therethrough and thereby define a predetermined pressure drop between adjacent cavities 33, 34 and 35, 36. In this manner, the pressure within each of the cavities can be controlled so as to be greater than the pressure of hot gases at the corresponding axial portion of the hot gas path, so as to avoid leakage of hot gas into the RHS cavities, but not too high so as to avoid excessive leakage of cooling air into the hot gas path. Conveniently, pressure in each section of the RHS path is maintained in the range of 100-150% of the corresponding hot gas pressure. More particularly, apertures 48 in radial portion 28 of RHS elements 23 connect cavity 33 to cavity 34 and cavity 35 to cavity 36. Apertures 49 in lock plates 41 control air flow between cavity 34 and passages 38 through blade row 7.

    [0030] RHS elements 23 are locked in a circumferential direction by axial fingers 50 extending from blades 5 and engaging corresponding features 60 of RHS elements 23, as known per se e.g. from US 2008/0181778-A. Such features may include a seat of any kind, e.g. a space between two projections of RHS elements 23.

    [0031] As shown in figures 4 and 5, lock plates 42 have the shape of an annulus sector and are placed side by side in a circumferential row. Preferably, inner edges 44 are sealed with respect to seat 45 by means of a wire seal 61 that is housed within a groove 62 in lock plates 52 and cooperates axially with one side of seat 45 (see enlarged detail in fig. 4).

    [0032] Lock plates 42 are provided with a preferably rectangular aperture 49 which, in addition to controlling the flow of cooling air as described previously, has the function of allowing a corresponding finger 50 to pass through (fig. 3, 4).

    [0033] Lock plates 42 have hooks 51 configured to couple lock plates 42 to rotor unit 4. Preferably, two hooks 51 are arranged at opposite radial edges of the lock plate 42 in the proximity of the outer edge and engage with lugs 52 of the rotor unit located at opposite sides of each firtree seat 16.

    [0034] Lock plates 41 (figures 4 and 6) have preferably a substantially trapezoidal shape with a longer base connected to rotor unit 4 and a shorter base connected to a respective blade 5.

    [0035] Lock plates 41 have a central cut-out opening 52 delimiting a flexible tab 53 which is bent axially towards the respective blade 5 so as to exert an elastic force thereon and recover axial play.

    [0036] Lock plates 41 also have an opening 54 close to rotor unit 4 so as to allow cooling air flow at the blade roots.

    [0037] Blades 5 of row 6 have platform portions 17 extending radially outwardly of the shroud bands 29 of RHS elements 23 of RHS row 24. Platform portions 17 include shiplap seal features 55 (fig. 8) configured to cooperate with corresponding features of an adjacent blade so as to avoid gas leakage therebetween.

    [0038] In use, cooling air is fed through passage 37 into passage 38; part of this flow is used to cool blades 5 of row 6 internally, as known per se.

    [0039] The remaining part of cooling air is fed from passage 38 into cavity 33, and hence to cavity 34 through apertures 48 in radial portions 28 of RHS elements 23. Cooling air than flows from cavity 34 through apertures 49 in lock plates into passages 38 through blade row 7; part of the flow cools blades 5 of row 7 internally, as known per se.

    [0040] Finally, cooling air flows through apertures 49 of lock plates 42 into cavity 35, and hence into cavity 36 through apertures 48 of RHS elements 23.

    [0041] The cross section of apertures 48 and 49 is calibrated to obtain a desired pressure drop at each transition, so as to match the pressure in cavities 33, 34, 35, 36 with the pressure of surrounding hot gas and, preferably, be in the range of 100-150% of the pressure of surrounding hot gas. Although the invention has been explained in relation to its preferred embodiment as mentioned above, it is to be understood that modifications and variations can be made without departing from the scope of the appended claims.


    Claims

    1. An apparatus for controlled delivery of cooling air to turbine blades (5) in a gas turbine (1) including a rotor unit (4), at least a first plurality of turbine blades (5) disposed in a first circumferential row (6; 7) around the rotor unit (4) and secured thereto, at least a second plurality of turbine blades (5) disposed in a second circumferential row (7; 8) around the rotor unit (4) and secured thereto, the first row (6; 7) and the second row (7; 8) being axially spaced with respect to one another, the apparatus including:

    - a plurality of rotor heat shield elements (23) disposed in a circumferential row between said first and second rows of turbine blades (5), each heat shield element (23) having a root portion (26) contoured so as to fit in a seat (27) of the rotor unit (4), an intermediate radial portion (28) and a shroud band (29) configured to be axially interposed between the first and second rows (6, 7; 7, 8) of turbine blades (5), the rotor heat shield elements (23) configured to define with said rotor unit (4) a rotor heat shield passage (33, 34, 35, 36) that is fed with cooling air;

    - a plurality of lock plates (40, 41, 42, 43) disposed in a circumferential row and configured to secure axially at least one of said first and second rows (6, 7, 8) of turbine blades (5) to said rotor unit (4), said lock plates (41, 42, 43) facing said heat shield elements (23),

    - a first cavity (33) between by the first row (6) of turbine blades (5) and the radial portion (28) of the shield elements (23) and a second cavity (34) between the radial portion (28) of the shield elements (23) and the second row (7) of turbine blades (5),

    at least one of said radial portion (28) of the rotor shield elements (23) and the lock plates (41, 42, 43) including at least one opening (48, 49; 54) for controlled flow of cooling air,
    characterized in that one of said first and second cavity (33) is supplied by a source of cooling air, the other of said first and second cavity (34) being supplied with cooling air through the opening (48) in said radial portion (28) of the shield elements (23).
     
    2. An apparatus as claimed in claim 1, characterized in that said rotor shield elements (23) include at least one feature (60) configured to cooperate with an axial finger (50) extending from the blades (5) of at least one row (6, 7, 8) in order to lock said rotor shield elements (23) circumferentially.
     
    3. An apparatus as claimed in claim 2, characterized in that said lock plates (42) include an opening (49) facing said features of said rotor shield elements (23), said opening (49) being configured to receive said finger (50) of a respective blade (5).
     
    4. An apparatus as claimed in any of the preceding claims, characterized in that the lock plates (42) are provided with hooks (51) for coupling with said rotor unit (4) .
     
    5. An apparatus as claimed in any preceding claims, characterized by including a circumferential wire seal between the root portions (26) of the said rotor heat shield elements (23) and said rotor unit (4).
     
    6. An apparatus as claimed in any preceding claims, characterized by including a circumferential wire seal between said lock plates (41, 42) and said rotor unit (4).
     
    7. An apparatus as claimed in any preceding claims, characterized by including circumferential seals (30) between said shroud bands (29) and said blades (5), and axial seals between each pair of adjacent shroud bands (29).
     
    8. A gas turbine including:

    - a rotor unit (4);

    - at least a first plurality of turbine blades (5) disposed in a first circumferential row (6, 7) around the rotor unit (4) and secured thereto,

    - at least a second plurality of turbine blades (5) disposed in a second circumferential row (7, 8) around the rotor unit (4) and secured thereto,

    - the first row and the second row (6, 7; 7, 8) being axially spaced with respect to one another, and

    - an apparatus for controlled delivery of cooling air to turbine blades (5) as claimed in any of the preceding claims.


     
    9. A gas turbine as claimed in claim 8, characterized in that said lock plates (42) include an opening (49) for controlled flow of cooling air between at least a first portion of said heat shield passage upstream of the lock plates (42) and a second portion of said heat shield passage downstream of the lock plates (42).
     
    10. A gas turbine as claimed in claim 9, characterized in that the blades (5) of at least one of said first and second rows (6, 7; 7, 8) have axial fingers (50), the rotor heath elements (23) having mating features (60) cooperating with said axial fingers (50) to lock said rotor shield elements (23) circumferentially, said axial fingers (50) of said blades (5) extending through said openings (49) of said locking plates (42).
     
    11. A gas turbine as claimed in claim 9 or 10, characterized in that said lock plates (42) include hooks (51) engaging corresponding seats in the rotor unit (4).
     
    12. A gas turbine as claimed in any of claims 9 to 11, characterized in that at least one of said first and second rows (6, 7; 7, 8) of blades (5) have platform portions (17) extending radially outwardly of said shroud bands (29) of the rotor heat shield elements (23).
     
    13. A gas turbine as claimed in claim 12, characterized in that said platform portions (17) include shiplap seal features configured to cooperate with corresponding features (55) of an adjacent blade (5).
     
    14. A gas turbine as claimed in any of claims 9 to 13, characterized in that the radial portions (28) of the rotor shield elements (23) include at least one opening (48) for controlled flow of cooling air.
     
    15. A gas turbine as claimed in any of claims 9 to 14, characterized in that shroud bands (29) have a plurality of inclined sealing fins (31) to cooperate at a short radial distance with a stepped inner sealing contour (32) of an inner ring (14) of the stator.
     


    Ansprüche

    1. Vorrichtung zur gesteuerten Zufuhr von Kühlluft zu Turbinenschaufeln (5) in einer Gasturbine (1) mit einer Rotoreinheit (4), mindestens einer ersten Vielzahl von Turbinenschaufeln (5), die in einer ersten Umfangsreihe (6; 7) um die Rotoreinheit (4) angeordnet und daran befestigt sind, mindestens einer zweiten Vielzahl von Turbinenschaufeln (5), die in einer zweiten Umfangsreihe (7; 8) um die Rotoreinheit (4) angeordnet und daran befestigt sind, wobei die erste Reihe (6; 7) und die zweite Reihe (7; 8) axial voneinander beabstandet sind, wobei die Vorrichtung aufweist:

    - eine Vielzahl von Rotor-Hitzeschutzelementen (23), die in einer Umfangsreihe zwischen der ersten und der zweiten Reihe von Turbinenschaufeln (5) angeordnet sind, wobei jedes Hitzeschutzelement (23) aufweist einen Fußabschnitt (26), der so konturiert ist, dass er in einen Sitz (27) der Rotoreinheit (4) passt, einen radialen Zwischenabschnitt (28) und ein Deckband (29), das konfiguriert ist, um axial zwischen der ersten und der zweiten Reihe (6, 7, 8) von Turbinenschaufeln (5) eingefügt zu werden, wobei die Rotor-Hitzeschutzelemente (23) konfiguriert sind, um mit der Rotoreinheit (4) einen Rotor-Hitzeschutzdurchgang (33, 34, 35, 36) zu definieren, der mit Kühlluft gespeist wird;

    - mehrere Verriegelungsplatten (40, 41, 42, 43), die in einer Umfangsreihe angeordnet und konfiguriert sind, um mindestens eine von der ersten oder der zweiten Reihe (6, 7, 8) von Turbinenschaufeln (5) axial an der Rotoreinheit (4) zu befestigen, wobei die Verriegelungsplatten (41, 42, 43) den Hitzeschutzelementen (23) zugewandt sind,

    - einen ersten Hohlraum (33) zwischen der ersten Reihe (6) von Turbinenschaufeln (5) und dem radialen Abschnitt (28) der Hitzeschutzelemente (23) und einen zweiten Hohlraum (34) zwischen dem radialen Abschnitt (28) der Hitzeschutzelemente (23) und der zweiten Reihe (7) von Turbinenschaufeln (5),

    wobei mindestens einer der radialen Abschnitte (28) der Rotor-Hitzeschutzelemente (23) oder der Verriegelungsplatten (41, 42, 43) mindestens eine Öffnung (48, 49; 54) für einen kontrollierten Kühlluftstrom aufweist,
    dadurch gekennzeichnet, dass einer von dem ersten oder dem zweiten Hohlraum (33) von einer Kühlluftquelle versorgt wird, während der andere von dem ersten oder dem zweiten Hohlraum (34) durch die Öffnung (48) in dem radialen Abschnitt (28) der Hitzeschutzelemente (23) mit Kühlluft versorgt wird.
     
    2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Rotor-Hitzeschutzelemente (23) mindestens ein Merkmal (60) aufweisen, das so konfiguriert ist, dass es mit einem axialen Finger (50) zusammenwirkt, der sich von den Schaufeln (5) mindestens einer Reihe (6, 7, 8) erstreckt, um das Rotor-Hitzeschutzelement (23) in Umfangsrichtung zu verriegeln.
     
    3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Verriegelungsplatten (42) eine Öffnung (49) aufweisen, die den Merkmalen der Rotor-Hitzeschutzelemente (23) zugewandt ist, wobei die Öffnung (49) konfiguriert ist, um den Finger (50) einer jeweiligen Schaufel (5) aufzunehmen.
     
    4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verriegelungsplatten (42) mit Haken (51) zur Kopplung mit der Rotoreinheit (4) versehen sind.
     
    5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie eine umlaufende Drahtdichtung zwischen den Fußabschnitten (26) der Rotor-Hitzeschutzelemente (23) und der Rotoreinheit (4) aufweist.
     
    6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie eine umlaufende Drahtdichtung zwischen den Verriegelungsplatten (41, 42) und der Rotoreinheit (4) aufweist.
     
    7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie Umfangsdichtungen (30) zwischen den Deckbändern (29) und den Schaufeln (5) und axiale Dichtungen zwischen jedem Paar benachbarter Deckbänder (29) enthält.
     
    8. Eine Gasturbine umfassend:

    - eine Rotoreinheit (4);

    - mindestens eine erste Vielzahl von Turbinenschaufeln (5), die in einer ersten Umfangsreihe (6, 7) um die Rotoreinheit (4) herum angeordnet und daran befestigt sind,

    - mindestens eine zweite Vielzahl von Turbinenschaufeln (5), die in einer zweiten Umfangsreihe (7, 8) um die Rotoreinheit (4) herum angeordnet und daran befestigt sind,

    - wobei die erste Reihe und die zweite Reihe (6, 7; 7, 8) axial zueinander beabstandet sind, und

    - eine Vorrichtung zur kontrollierten Zufuhr von Kühlluft zu Turbinenschaufeln (5), wie in einem der vorstehenden Ansprüche beansprucht.


     
    9. Eine Gasturbine nach Anspruch 8, dadurch gekennzeichnet, dass die Verriegelungsplatten (42) eine Öffnung (49) für eine kontrollierte Kühlluftströmung zwischen mindestens einem ersten Abschnitt des Hitzeschutzdurchgangs stromaufwärts der Verriegelungsplatten (42) und einem zweiten Abschnitt des Hitzeschutzdurchgangs stromabwärts der Verriegelungsplatten (42) aufweisen.
     
    10. Eine Gasturbine nach Anspruch 9, dadurch gekennzeichnet, dass die Schaufeln (5) von mindestens einer von der ersten und zweiten Reihe (6, 7; 7, 8) axiale Finger (50) haben, wobei die Rotor-Hitzeschutzelemente (23) zusammenpassende Merkmale (60) aufweisen, die mit den axialen Fingern (50) zusammenwirken, um die Rotor-Hitzeschutzelemente (23) in Umfangsrichtung zu verriegeln, wobei sich die axialen Finger (50) der Schaufeln (5) durch die Öffnungen (49) der Verriegelungsplatten (42) erstrecken.
     
    11. Eine Gasturbine nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Verriegelungsplatten (42) Haken (51) aufweisen, die in entsprechende Sitze in der Rotoreinheit (4) eingreifen.
     
    12. Eine Gasturbine nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass mindestens eine der ersten und zweiten Reihen (6, 7; 7, 8) von Schaufeln (5) Plattformabschnitte (17) aufweist, die sich radial außerhalb der Deckbänder (29) der Rotor-Hitzeschutzelemente (23) erstrecken.
     
    13. eine Gasturbine nach Anspruch 12, dadurch gekennzeichnet, dass die Plattformabschnitte (17) Schiffchenverschluss-Dichtungsmerkmale aufweisen, die so konfiguriert sind, dass sie mit entsprechenden Merkmalen (55) einer benachbarten Schaufel (5) zusammenwirken.
     
    14. Eine Gasturbine nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass die radialen Abschnitte (28) der Rotor-Hitzeschutzelemente (23) mindestens eine Öffnung (48) für einen kontrollierten Kühlluftstrom aufweisen.
     
    15. Eine Gasturbine nach einem der Ansprüche 9 bis 14, dadurch gekennzeichnet, dass Deckbänder (29) eine Vielzahl von geneigten Dichtungsrippen (31) aufweisen, um in einem kurzen radialen Abstand mit einer abgestuften inneren Dichtungskontur (32) eines Innenrings (14) des Stators zusammenzuwirken.
     


    Revendications

    1. Appareil d'administration contrôlée d'air de refroidissement à des aubes de turbine (5) dans une turbine à gaz (1) incluant une unité de rotor (4), au moins une première pluralité d'aubes de turbine (5) disposées dans une première rangée circonférentielle (6 ; 7) autour de l'unité de rotor (4) et fixées à celle-ci, au moins une seconde pluralité d'aubes de turbine (5) disposées dans une seconde rangée circonférentielle (7 ; 8) autour de l'unité de rotor (4) et fixées à celle-ci, la première rangée (6 ; 7) et la seconde rangée (7 ; 8) étant espacées axialement l'une par rapport à l'autre, l'appareil incluant :

    - une pluralité d'éléments de protection thermique de rotor (23) disposés dans une rangée circonférentielle entre lesdites première et seconde rangées d'aubes de turbine (5), chaque élément de protection thermique (23) ayant une partie d'emplanture (26) profilée de sorte à s'adapter dans un siège (27) de l'unité de rotor (4), une partie radiale intermédiaire (28) et un bandage (29) configurés pour être interposés axialement entre les première et seconde rangées (6, 7 ; 7, 8) d'aubes de turbine (5), les éléments de protection thermique de rotor (23) étant configurés pour définir avec ladite unité de rotor (4) un passage de protection thermique de rotor (33, 34, 35, 36) qui est alimenté en air de refroidissement ;

    - une pluralité de plaques de verrouillage (40, 41, 42, 43) disposées dans une rangée circonférentielle et configurées pour fixer axialement au moins une desdites première et seconde rangées (6, 7, 8) d'aubes de turbine (5) à ladite unité de rotor (4), lesdites plaques de verrouillage (41, 42, 43) faisant face auxdits éléments de protection thermique (23),

    - une première cavité (33) entre la première rangée (6) d'aubes de turbine et la partie radiale (28) des éléments de protection (23) et une seconde cavité (34) entre la partie radiale (28) des éléments de protection (23) et la seconde rangée (7) d'aubes de turbine (5),

    au moins une parmi ladite partie radiale (28) des éléments de protection de rotor (23) et les plaques de verrouillage (41, 42, 43) incluant au moins une ouverture (48, 49 ; 54) pour l'écoulement contrôlé d'air de refroidissement,
    caractérisé en ce qu'une desdites première et seconde cavités (33) est alimentée par une source d'air de refroidissement, l'autre desdits première et seconde cavités (34) étant alimentée en air de refroidissement à travers l'ouverture (48) dans ladite partie radiale (28) des éléments de protection (23).
     
    2. Appareil selon la revendication 1, caractérisé en ce que lesdits éléments de protection de rotor (23) incluent au moins une caractéristique (60) configurée pour coopérer avec un doigt axial (50) s'étendant à partir des aubes (5) d'au moins une rangée (6, 7, 8) afin de verrouiller lesdits éléments de protection de rotor (23) circonférentiellement.
     
    3. Appareil selon la revendication 2, caractérisé en ce que lesdites plaques de verrouillage (42) incluent une ouverture (49) faisant face auxdites caractéristiques desdits éléments de protection de rotor (23), ladite ouverture (49) étant configurée pour recevoir ledit doigt (50) d'une aube (5) respective.
     
    4. Appareil selon l'une quelconque des revendications précédentes, caractérisé en ce que les plaques de verrouillage (42) sont pourvues de crochets (51) pour accouplement avec ladite unité de rotor (4).
     
    5. Appareil selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il inclut un joint de fil circonférentiel entre les parties d'emplanture (26) desdits éléments de protection thermique de rotor (23) et ladite unité de rotor (4).
     
    6. Appareil selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il inclut un joint de fil circonférentiel entre lesdites plaques de verrouillage (41, 42) et ladite unité de rotor (4).
     
    7. Appareil selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend des joints circonférentiels (30) entre lesdits bandages (29) et lesdites aubes (5), et des joints axiaux entre chaque paire de bandages (29) adjacents.
     
    8. Turbine à gaz incluant :

    - une unité de rotor (4) ;

    - au moins une première pluralité d'aubes de turbine (5) disposées dans une première rangée circonférentielle (6, 7) autour de l'unité de rotor (4) et fixées à celle-ci ;

    - au moins une seconde pluralité d'aubes de turbine (5) disposées dans une seconde rangée circonférentielle (7 ; 8) autour de l'unité de rotor (4) et fixées à celle-ci ;

    - la première rangée et la seconde rangée (6, 7 ; 7, 8) étant espacées axialement l'une par rapport à l'autre, et

    - un appareil d'administration contrôlée d'air de refroidissement à des aubes de turbine (5) selon l'une quelconque des revendications précédentes.


     
    9. Turbine à gaz selon la revendication 8, caractérisée en ce que lesdites plaques de verrouillage (42) incluent une ouverture (49) pour l'écoulement contrôlé d'air de refroidissement entre au moins une première partie dudit passage de protection thermique en amont des plaques de verrouillage (42) et une seconde partie dudit passage de protection thermique en aval des plaques de verrouillage (42).
     
    10. Turbine à gaz selon la revendication 9, caractérisée en ce que les aubes (5) d'au moins une desdites première et seconde rangées (6, 7 ; 7, 8) ont des doigts axiaux (50), les éléments de protection thermique de rotor (23) ayant des caractéristiques d'accouplement (60) coopérant avec lesdits doigts axiaux (50) pour verrouiller lesdits éléments de protection de rotor (23) circonférentiellement, lesdits doigts axiaux (50) desdites aubes (5) s'étendant à travers lesdites ouvertures (49) desdites plaques de verrouillage (42).
     
    11. Turbine à gaz selon la revendication 9 ou 10, caractérisée en ce que lesdites plaques de verrouillage (42) incluent des crochets (51) se mettant en prise avec des sièges correspondants dans l'unité de rotor (4).
     
    12. Turbine à gaz selon l'une quelconque des revendications 9 à 11, caractérisée en ce qu'au moins une desdites première et seconde rangées (6, 7 ; 7, 8) d'aubes (5) ont des parties formant plates-formes (17) s'étendant radialement vers l'extérieur desdits bandages (29) des éléments de protection thermique de rotor (23).
     
    13. Turbine à gaz selon la revendication 12, caractérisée en ce que lesdites parties formant plates-formes (17) incluent des caractéristiques d'assemblage à feuillure configurées pour coopérer avec des caractéristiques (55) correspondantes d'une aube (5) adjacente.
     
    14. Turbine à gaz selon l'une quelconque des revendications 9 à 13, caractérisée en ce que les parties radiales (28) des éléments de protection de rotor (23) incluent au moins une ouverture (48) pour l'écoulement contrôlé d'air de refroidissement.
     
    15. Turbine à gaz selon l'une quelconque des revendications 9 à 14, caractérisée en ce que les bandages (29) ont une pluralité d'ailettes d'étanchéité inclinées (31) pour coopérer à une distance radiale courte avec un contour d'étanchéité interne étagé (32) d'un anneau interne (14) du stator.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description