(19)
(11)EP 3 498 447 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
10.02.2021 Bulletin 2021/06

(21)Application number: 17211091.8

(22)Date of filing:  29.12.2017
(51)International Patent Classification (IPC): 
B29B 15/12(2006.01)
B29K 101/12(2006.01)

(54)

ALTERNATING PRESSURE MELT IMPREGNATION DEVICE AND MELT IMPREGNATION METHOD

ALTERNIERENDE DRUCKSCHMELZIMPRÄGNIERUNGSVORRICHTUNG UND SCHMELZIMPRÄGNIERUNGSVERFAHREN

DISPOSITIF D'IMPRÉGNATION PAR FUSION SOUS PRESSION ALTERNÉE ET PROCÉDÉ D'IMPRÉGNATION PAR FUSION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 18.12.2017 CN 201711367963

(43)Date of publication of application:
19.06.2019 Bulletin 2019/25

(73)Proprietor: Kingfa Sci. & Tech. Co., Ltd.
Guangzhou, Guangdong 510663 (CN)

(72)Inventors:
  • HUANG, Xianbo
    Guangzhou, Guangdong 510663 (CN)
  • XIN, Wei
    Guangzhou, Guangdong 510663 (CN)
  • LI, Yonghua
    Guangzhou, Guangdong 510663 (CN)
  • CHEN, Chunhua
    Guangzhou, Guangdong 510663 (CN)
  • CHEN, Dahua
    Guangzhou, Guangdong 510663 (CN)

(74)Representative: Haseltine Lake Kempner LLP 
138 Cheapside
London EC2V 6BJ
London EC2V 6BJ (GB)


(56)References cited: : 
EP-A2- 0 364 829
WO-A1-2014/157575
WO-A1-92/21493
WO-A2-2013/092738
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to an alternating pressure melt impregnation device and a melt impregnation method, and specifically relates to a melt impregnation device and a melt impregnation method for a continuous fiber-reinforced thermoplastic resin composite material.

    BACKGROUND



    [0002] Continuous fiber-reinforced thermoplastic resin composite material is a composite material using an impregnation device to impregnate and reinforce a continuous fiber with a molten resin. Compared with a short fiber-reinforced thermoplastic resin composite material, the continuous fiber-reinforced thermoplastic resin composite material has advantages such as a high strength, a good impact resistance and a stable dimension, and thus has extensive application in fields such as automobile, aerospace electronics and electrical appliances, mechanical equipment, weaponry industry, construction equipment, furniture, gymnastic apparatus and the like.

    [0003] In a process of melt impregnation, a flow of a resin melt in a fiber bundle takes place both in an axial direction and a radial direction of the fiber, similarly regarding as a fluid flowing in a porous medium, according to the Darcy law:

    wherein, µ is an permeation rate, k is an permeation coefficient, ΔP is a pressure drop that the fluid acts on the porous medium, η is a fluid viscosity, and Δx is a melt flow distance. It can be known that increasing a melt pressure, reducing a thickness of the fiber bundle and decreasing a melt viscosity can increase an impregnation rate.

    [0004] For example, CN106113317A discloses an apparatus for a continuous carbon fiber melt impregnating a thermoplastic polymer. An interval between an upper die and a lower die of the impregnation mold forms a melt pool. Between the upper die and the lower die, curved surfaces matching with each other are provided, and three sets of powered roller pair are also provided. A tension roller is provided between the roller pair. Squeezing a resin melt by the roller pair provides the resin melt with an impregnating pressure. Also CN105058817A discloses an apparatus for a continuous long fiber reinforcing a thermoplastic resin sheet material. Gear sets meshing with each other are provided above and below the fiber bundle, to enhance the flow of the melt on the fiber bundle in each direction. Additionally, CN104827686A discloses an impregnation apparatus for plant fiber and a method thereof. A plurality of compression roller sets of which a tension can be adjusted are used to squeeze the impregnated fiber, in order to provide an impregnating pressure to the impregnation of the resin melt. Above three patent applications can achieve a relatively ideal impregnating effect in the case of a low drawing speed and a low concentration of the resin melt. However, when the continuous fiber goes through these narrow impregnation channels with a curved shape or a wave shape, since a relatively large flow velocity difference exists inside the resin melt, a velocity gradient of the resin melt would form a shearing field. When the impregnation is performed in a condition of high drawing speed, a broken yarn is caused easily. When a viscosity of the resin melt is high, the broken yarn would further be aggravated enormously. Besides, since a relatively large number of rotating rollers or gears present inside the impregnation area, a complicated structure of equipment and difficult cleaning and maintenance are caused. In the case of the broken yarn in the fiber bundle, the fiber bundle is easy to enwind the rotating rollers or gears, aggravating the broken yarn.

    [0005] Document WO92/21493 is an illustration of the well known process of spreading fiber bundles before impregnation with an extruded resin. Said document WO92/21493 does not disclose decompression chambers, a plurality of throttle plates and a plurality of resin melt runners.

    [0006] Documents WO2012/092738 and WO2014/157575 illustrate impregnation devices implying the use of multiple injection runners. Said documents WO2012/092738 and WO2014/157575 do not disclose the spreading of the fiber bundle, decompression chambers and a plurality of throttle plates.

    [0007] Document EP0364829 discloses an impregnation device with a decompression chamber. Said document EP0364829 does not disclose the spreading of the fiber bundle, a plurality of throttle plates and a plurality of resin melt runners.

    SUMMARY OF THE INVENTION



    [0008] The present invention is to provide an alternating pressure melt impregnation device with a simple structure, a good impregnating effect and few broken yarns, and to provide a melt impregnation method with a high impregnation rate and a high production stability.

    [0009] An alternating pressure melt impregnation device according to the present invention includes a fiber pre-dispersion area for heating and dispersing a continuous fiber bundle, and a melt injection area for impregnating the continuous fiber bundle; a plurality of throttle plates are alternately provided at a filament-input end and a filament-output end of the melt injection area respectively, the adjacent throttle plates enclose one decompression chamber, at least one decompression chamber exists, and each throttle plate is provided with a filament-moving hole for the continuous fiber bundle going through; and the melt injection area comprises an upper die and a lower die, an interval exists between the upper die and the lower die, the interval forms an impregnation chamber for a resin melt flowing in, and the upper die and the lower die are each provided with a plurality of resin melt runners connected with the impregnation chamber.

    [0010] A melt impregnation method using the alternating pressure melt impregnation device to impregnate a continuous fiber bundle according to the present invention comprises steps as follows:
    1. 1) introducing a single or multiple continuous fiber bundles to a fiber pre-dispersion area, making the continuous fiber bundle successively wind each tension roller in the fiber pre-dispersion area, and preheating and dispersing the continuous fiber bundle;
    2. 2) injecting a resin melt into each resin melt runner on an upper die and a lower die of a melt injection area, making the resin melt be squirted into an impregnation chamber from each resin melt runner, and in the meantime the resin melt in the impregnation chamber flowing into a decompression chamber from filament-moving holes on throttle plates at both sides of the impregnation chamber;
    3. 3) continuously drawing the continuous fiber bundle, making the fiber bundle enter into the decompression chamber from a filament-moving hole on the first throttle plate at a filament-input end of the melt injection area for a first impregnation, then exit the decompression chamber via a filament-moving hole on the tail throttle plate and enter into the impregnation chamber of the melt injection area, the resin melt runner continuously squirting the resin melt, and making the resin melt be squirted to a surface of the continuous fiber bundle for impregnation; and
    4. 4) then drawing the continuous fiber bundle into the decompression chamber through out of the filament-moving hole on the first throttle plate at the filament-input end of the melt injection area, and the continuous fiber bundle passing through the filament-moving hole on the tail throttle plate to complete the impregnation process.


    [0011] In the alternating pressure melt impregnation device and the melt impregnation method according to the present invention, the resin melt is squirted from each resin melt runner on the upper die and the lower die of the melt injection area, and thus the squirted resin melt is enable to be squirted directly on an upper surface and a lower surface of the continuous fiber bundle which is entering into the impregnation chamber. Impregnation and infiltration for both surfaces of the continuous fiber bundle are primarily completed by a squirted pressure. As the resin melt inside the impregnation chamber flows to the decompression chambers at both sides of the impregnation chamber, perturbation in different directions such as forward, backward, radial and slant is generated, resulting in a varied direction of the resin melt. When the resin melt flows to the throttle plate, a resistance of the throttle plate leads to an increasing pressure of the resin melt inside the impregnation chamber, which prompts the resin melt to break through a surface tension of the continuous fiber bundle and realizes a re-impregnation for the continuous fiber bundle. Then when the resin melt is squirted to the decompression chamber from the filament-moving hole on the throttle plate, the pressure is decreased. After the resin melt enters into the decompression chamber by a relatively small filament-moving hole, a section of the resin melt is enlarged and a radial flow is generated due to the Barus effect, which further strengthens a uniform distribution inside the continuous fiber bundle of the resin melt inside the decompression chamber, and achieves an object of complete cladding and infiltration. Besides, the decompression chamber can provide a space as required when the resin melt expands. Increasing a number of the decompression chamber is advantageous to increase or maintain a pressure of the melt injection area. A drawing process of the continuous fiber bundle always remains a straight and flat state instead of a curved impregnation path, and thus a velocity gradient of the resin melt would not form an overlarge shearing field. When the impregnation is performed in a condition of a high drawing speed, or even in a condition of a high resin melt viscosity, no broken yarn would take place. Through an effect of an alternating pressure, the continuous fiber bundle achieves a balanced impregnating effect, and usage of a rotating roller or a gear to increase an impregnating pressure is avoided, and thus the broken yarn caused by a friction of the continuous fiber bundle is further avoided. Additionally, since the rotating roller or the gear does not exist in the melt injection area, a structure is simpler and the maintenance is more convenience, without accumulation of winding or broken yarns. Besides, due to few broken yarns and good impregnating effect in the high drawing speed, an impregnation rate can be enormously increased and a production stability is high.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0012] 

    FIG. 1 is a structural view of the prior art.

    FIG. 2 is a structural diagram of the present invention.


    DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT



    [0013] An alternating pressure melt impregnation device, shown as FIG. 2, includes a fiber pre-dispersion area 1 for heating and dispersing a continuous fiber bundle, and a melt injection area 2 for impregnating the continuous fiber bundle. A plurality of throttle plates 3 are alternately provided at a filament-input end and a filament-output end of the melt injection area 2, respectively. The adjacent throttle plates 3 enclose one decompression chamber 4. At least one decompression chamber 4 exists, for example one, two, three, four or five, etc. Each throttle plate 3 is provided with a filament-moving hole 5 for the continuous fiber bundle going through. The melt injection area 2 comprises an upper die and a lower die. An interval exists between the upper die and the lower die, and the interval forms an impregnation chamber 6 for a resin melt flowing in. The upper die and the lower die are each provided with a plurality of resin melt runners 7, for example one, two, three, four, five or six, etc., connected with the impregnation chamber 6.

    [0014] The resin melt runner 7 is perpendicular to a moving direction of the continuous fiber bundle, leading to a higher pressure of a squirted resin melt.

    [0015] Each resin melt runner 7 of the upper die and each resin melt runner 7 of the lower die are in a symmetrical arrangement, in such case corresponding to increasing an opportunity of multiple throttling and pressurizing; or each resin melt runner 7 of the upper die and each resin melt runner 7 of the lower die are in a staggered arrangement, and in such case the resin melt flows with an S shape along the continuous fiber bundle, which may enhance a balance of the impregnation.

    [0016] A vertical interval between an outlet plane of the resin melt runner 7 on the upper die and an outlet plane of the resin melt runner 7 on the lower die is 2 mm-50 mm, for example 2 mm, 3 mm, 4 mm, 5 mm, 7 mm, 9 mm, 13 mm, 15 mm, 18 mm, 20 mm, 21 mm, 25 mm, 30 mm, 36 mm, 38 mm, 40 mm, 43 mm, 45 mm or 50 mm, etc., preferably 3 mm-20 mm.

    [0017] A number of the resin melt runner 7 on the upper die and a number of the resin melt runner 7 on the lower die are 1-10 respectively, for example one, two, three, four, five, six, seven, eight, nine or ten.

    [0018] A diameter at an outlet of the resin melt runner 7 is 0.5 mm-10 mm, for example 0.5 mm, 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm, 5.5 mm, 6 mm, 6.5 mm, 7 mm, 7.5 mm, 8 mm, 8.5 mm, 9 mm, 9.5 mm or 10 mm, etc., preferably 1 mm-8 mm. The outlet of the resin melt runner 7 in the above range of diameter enables a faster melt-squirted speed and a stronger impact effect on the continuous fiber bundle, which are advantageous to enhance an impregnating effect.

    [0019] An outlet end of the resin melt runner 7 is a flared outlet, a round outlet or an inverted cone outlet.

    [0020] A number of the decompression chamber 4 at the filament-input end of the melt injection area 2 is 1-5, for example one, two, three, four or five. A number of the decompression chamber 4 at the filament-output end of the melt injection area 2 is 1-10, for example one, two, three, four, five, six, seven, eight, nine or ten. In the premise of effectively maintaining or increasing a pressure of the melt injection area 2, the melt impregnation device is simplified.

    [0021] The throttle plate 3 has a thickness of 2 mm-10 mm, for example 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm, 5.5 mm, 6 mm, 6.5 mm, 7 mm, 7.5 mm, 8 mm, 8.5 mm, 9 mm, 9.5 mm or 10 mm, etc., preferably 3 mm-8 mm. The throttle plate 3 in this range of thickness enables a larger pressure drop and a higher impregnating pressure when the resin melt goes through, which are advantageous to enhance the impregnating effect.

    [0022] The filament-moving hole 5 on the throttle plate 3 is round, oval or rectangle, etc.

    [0023] When the filament-moving hole 5 is round, a hole diameter is 2 mm-10 mm, for example 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm, 5.5 mm, 6 mm, 6.5 mm, 7 mm, 7.5 mm, 8 mm, 8.5 mm, 9 mm, 9.5 mm or 10 mm, etc., preferably 3 mm-8 mm. The filament-moving hole 5 in this range of diameter enables a more obvious throttling effect and a higher impregnating pressure, which are advantageous to enhance the impregnating effect.

    [0024] The fiber pre-dispersion area 1 comprises at least two tension roller sets arranged front and rear, each tension roller set consists of two tension rollers 8 arranged front and rear, and an electromagnetic heating apparatus is provided on each tension roller 8. The continuous fiber bundle successively winds the tension roller 8, and the continuous fiber bundle is dispersed and preheated by a tension effect of the tension roller 8 and a heating effect of the electromagnetic heating apparatus, guaranteeing a more balanced and more sufficient impregnating effect subsequent.

    [0025] A diameter of the tension roller 8 is 5 mm-150 mm, for example 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, 30 mm, 35 mm, 40 mm, 45 mm, 50 mm, 55 mm, 60 mm, 65 mm, 70 mm, 75 mm, 80mm, 85 mm, 90 mm, 95 mm, 100 mm, 105 mm, 110 mm, 115 mm, 120 mm, 125 mm, 130 mm, 135 mm, 140 mm, 145 mm or 150 mm, etc. A distance between shafts of the adjacent tension rollers 8 is 10 mm-500 mm, for example 10 mm, 30 mm, 50 mm, 70 mm, 90 mm, 110 mm, 130 mm, 150 mm, 180 mm, 200 mm, 220 mm, 250 mm, 280 mm, 310 mm, 350 mm, 390 mm, 430 mm, 450 mm, 480 mm or 500 mm, etc.

    [0026] A tail of the decompression chamber 4 at the filament-output end of the melt injection area 2 is further connected with at least one calendar roller set, for example one, two, three, four or five, etc. Each calendar roller set comprises two rotating rollers arranged longitudinally and symmetrically. When the continuous fiber bundle passes by the calendar roller set, the two rotating rollers arranged longitudinally and symmetrically would adjust an amount of a molten resin on the continuous fiber bundle.

    [0027] A melt impregnation method using the alternating pressure melt impregnation device to impregnate a continuous fiber bundle, comprises steps as follows: (1) introducing a single or multiple continuous fiber bundles to a fiber pre-dispersion area 1, making the continuous fiber bundle successively wind each tension roller 8 in the fiber pre-dispersion area 1, and preheating and dispersing the continuous fiber bundle; (2) injecting a resin melt into each resin melt runner 7 on an upper die and a lower die of a melt injection area 2, making the resin melt be squirted into an impregnation chamber 6 from each resin melt runner 7, and in the meantime the resin melt in the impregnation chamber 6 flowing into a decompression chamber 4 from filament-moving holes 5 on throttle plates 3 at both sides of the impregnation chamber 6; (3) continuously drawing the continuous fiber bundle, making the fiber bundle enter into the decompression chamber 4 from a filament-moving hole 5 on the first throttle plate 3 at a filament-input end of the melt injection area 2 for a first impregnation, then exit the decompression chamber 4 via a filament-moving hole 5 on the tail throttle plate 3 and enter into the impregnation chamber 6 of the melt injection area 2, the resin melt runner 7 continuously squirting the resin melt, and making the resin melt be squirted to a surface of the continuous fiber bundle for impregnation; and (4) then drawing the continuous fiber bundle into the decompression chamber 4 through out of the filament-moving hole 5 on the first throttle plate 3 at the filament-input end of the melt injection area 2, and the continuous fiber bundle passing through the filament-moving hole 5 on the tail throttle plate 3 to complete the impregnation process.

    [0028] In step (1), a temperature for preheating the continuous fiber bundle is 50°C-350°C, for example 50°C, 60°C, 70°C, 80°C, 90°C, 100°C, 110°C, 120°C, 130°C, 140°C, 150°C, 160°C, 170°C, 180°C, 190°C, 200°C, 210°C, 220°C, 230°C, 240°C, 250°C, 260°C, 270°C, 280°C, 290°C, 300°C, 310°C, 320°C, 330°C, 340°C or 350°C, etc.

    [0029] Directional indications related in the present invention are only used to explain a relative position relationship among each component when the melt impregnation device is in a condition as FIG.2. If a specific condition changes, the directional indication changes correspondingly.

    [0030] The present invention will be further described below by specific implementations. Following embodiments are preferred implementations of the present invention, but the implementation of the present invention is not limited by following embodiments.

    Embodiment 1



    [0031] The above-described alternating pressure melt impregnation device was used to impregnate the continuous fiber bundle by the above-described melt impregnation method. Particularly, the fiber pre-dispersion area 1 comprised two tension roller sets arranged front and rear. A diameter of the tension roller 8 in each tension roller set was 50 mm, a distance between shafts of two tension rollers 8 in each tension roller set was 200 mm, and a temperature for preheating was 200°C. The upper die was provided with two resin melt runners 7, and the lower die was provided with three resin melt runners 7. Each resin melt runner 7 of the upper die and each resin melt runner 7 of the lower die were in a staggered arrangement. A vertical interval between an outlet plane of the resin melt runner 7 on the upper die and an outlet plane of the resin melt runner 7 on the lower die was 50 mm, and a diameter at an outlet of the resin melt runner 7 was 10 mm. An outlet end of the resin melt runner 7 was an inverted cone outlet. There was one decompression chamber 4 at the filament-input end of the melt injection area 2, and there were two decompression chambers 4 at the filament-output end of the melt injection area 2. The throttle plate 3 has a thickness of 2 mm, and the filament-moving hole 5 on the throttle plate 3 was round, with a hole diameter of 10 mm. The tail of the decompression chamber 4 at the filament-output end of the melt injection area 2 was connected with one calendar roller set.

    [0032] A drawing speed under a circumstance without a broken yarn was tested as 60 m/min via a tachometer.

    Comparative Example 1



    [0033] As shown in FIG. 1, a continuous fiber was introduced from a continuous fiber roller on a creel and unfolded. After successively passing by a tension adjusting device, an electrostatic eliminating device, a preheating device and a tension adjusting device, a preheated continuous fiber band was obtained. The preheated continuous fiber band was directed into a stagger double-extrusion die set that can open and close for pre-impregnation. The pre-impregnated continuous fiber band was directed into an impregnating calendar roller set for impregnation, followed by being cooled and sized through a cooling roll-in device, and finally was directed into a drawing windup device for winding and formation. A continuous fiber-reinforced thermoplastic composite material prepreg tape was obtained. The preheated continuous fiber band was directed into the stagger double-extrusion die set that can open and close. The stagger double-extrusion die set that can open and close included an extrusion die 101, an extrusion die 102 and a track motion device. The continuous fiber band was in contact with the extrusion die 101 and generated an infiltration pressure that was perpendicular to a fiber band plane, making a molten thermoplastic resin pre-impregnate a side of the continuous fiber band. The other side of the continuous fiber band was in contact with the extrusion die 102 and generated the same infiltration pressure, making the molten thermoplastic resin re-impregnate the other side of the continuous fiber band.

    [0034] The drawing speed under the circumstance without the broken yarn was tested as 20 m/min via the tachometer.

    [0035] It can be seen from the comparison among Embodiment 1 and Comparative Example 1 that under the circumstance without the broken yarn, the drawing speed of the melt impregnation device of the present invention was faster, leading to a high production stability and a high efficiency.

    Embodiment 2



    [0036] The vertical interval between the outlet plane of the resin melt runner 7 on the upper die and the outlet plane of the resin melt runner 7 on the lower die was changed to 2 mm. Other details were the same as Embodiment 1. The drawing speed under the circumstance without the broken yarn was tested as 65 m/min via the tachometer.

    Embodiment 3



    [0037] The vertical interval between the outlet plane of the resin melt runner 7 on the upper die and the outlet plane of the resin melt runner 7 on the lower die was changed to 20 mm, and the diameter at the outlet of each resin melt runner 7 was 5 mm. Other details were the same as Embodiment 1. The drawing speed under the circumstance without the broken yarn was tested as 67 m/min via the tachometer.

    Embodiment 4



    [0038] The vertical interval between the outlet plane of the resin melt runner 7 on the upper die and the outlet plane of the resin melt runner 7 on the lower die was changed to 12 mm, the diameter at the outlet of each resin melt runner 7 was 0.5 mm, and the thickness of the throttle plate 3 was 10 mm. Other details were the same as Embodiment 1. The drawing speed under the circumstance without the broken yarn was tested as 69 m/min via the tachometer.

    Embodiment 5



    [0039] The vertical interval between the outlet plane of the resin melt runner 7 on the upper die and the outlet plane of the resin melt runner 7 on the lower die was changed to 3 mm, the diameter at the outlet of each resin melt runner 7 was 0.5 mm, the thickness of the throttle plate 3 was 3 mm, and the hole diameter of the filament-moving hole 5 on the throttle plate 3 was 2 mm. Other details were the same as Embodiment 1. The drawing speed under the circumstance without the broken yarn was tested as 72 m/min via the tachometer.

    Embodiment 6



    [0040] The vertical interval between the outlet plane of the resin melt runner 7 on the upper die and the outlet plane of the resin melt runner 7 on the lower die was changed to 3 mm, the diameter at the outlet of each resin melt runner 7 was 0.5 mm, the thickness of the throttle plate 3 was 5 mm, and the hole diameter of the filament-moving hole 5 on the throttle plate 3 was 8 mm. Other details were the same as Embodiment 1. The drawing speed under the circumstance without the broken yarn was tested as 75 m/min via the tachometer.

    Embodiment 7



    [0041] The vertical interval between the outlet plane of the resin melt runner 7 on the upper die and the outlet plane of the resin melt runner 7 on the lower die was changed to 3 mm, the diameter at the outlet of each resin melt runner 7 was 0.5 mm, the thickness of the throttle plate 3 was 8 mm, and the hole diameter of the filament-moving hole 5 on the throttle plate 3 was 5 mm. Other details were the same as Embodiment 1. The drawing speed under the circumstance without the broken yarn was tested as 77 m/min via the tachometer.

    Embodiment 8



    [0042] The vertical interval between the outlet plane of the resin melt runner 7 on the upper die and the outlet plane of the resin melt runner 7 on the lower die was changed to 3 mm, the diameter at the outlet of each resin melt runner 7 was 0.5 mm, the thickness of the throttle plate 3 was 8 mm, and the hole diameter of the filament-moving hole 5 on the throttle plate 3 was 3 mm. Other details were the same as Embodiment 1. The drawing speed under the circumstance without the broken yarn was tested as 80 m/min via the tachometer.


    Claims

    1. An alternating pressure melt impregnation device, including a fiber pre-dispersion area (1) for heating and dispersing a continuous fiber bundle, and a melt injection area (2) for impregnating the continuous fiber bundle, characterized in that, a plurality of throttle plates (3) are alternately provided at a filament-input end and a filament-output end of the melt injection area (2) respectively, the adjacent throttle plates (3) enclose one decompression chamber (4), at least one decompression chamber (4) exists, and each throttle plate (3) is provided with a filament-moving hole (5) for the continuous fiber bundle going through; and the melt injection area (2) comprises an upper die and a lower die, an interval exists between the upper die and the lower die, the interval forms an impregnation chamber (6) for a resin melt flowing in, and the upper die and the lower die are each provided with a plurality of resin melt runners (7) connected with the impregnation chamber (6).
     
    2. The alternating pressure melt impregnation device according to claim 1, wherein the resin melt runner (7) is perpendicular to a moving direction of the continuous fiber bundle.
     
    3. The alternating pressure melt impregnation device according to claim 2, wherein each resin melt runner (7) of the upper die and each resin melt runner (7) of the lower die are in a symmetrical arrangement, or each resin melt runner (7) of the upper die and each resin melt runner (7) of the lower die are in a staggered arrangement.
     
    4. The alternating pressure melt impregnation device according to claim 3, wherein a vertical interval between an outlet plane of the resin melt runner (7) on the upper die and an outlet plane of the resin melt runner (7) on the lower die is 2 mm-50 mm, preferably 3 mm-20 mm.
     
    5. The alternating pressure melt impregnation device according to claim 1, wherein a number of the resin melt runner (7) on the upper die and a number of the resin melt runner (7) on the lower die are 1-10, respectively.
     
    6. The alternating pressure melt impregnation device according to any one of claims 1-5, wherein a diameter at an outlet of the resin melt runner (7) is 0.5 mm-10 mm, preferably 1 mm-8 mm.
     
    7. The alternating pressure melt impregnation device according to claim 6, wherein an outlet end of the resin melt runner (7) is a flared outlet, a round outlet or an inverted cone outlet.
     
    8. The alternating pressure melt impregnation device according to claim 1, wherein a number of the decompression chamber at the filament-input end of the melt injection area (2) is 1-5, and a number of the decompression chamber at the filament-output end of the melt injection area (2) is 1-10.
     
    9. The alternating pressure melt impregnation device according to claim 8, wherein the throttle plate (3) has a thickness of 2 mm-10 mm, preferably 3 mm-8 mm.
     
    10. The alternating pressure melt impregnation device according to claim 9, wherein the filament-moving hole on the throttle plate (3) is round, oval or rectangle.
     
    11. The alternating pressure melt impregnation device according to claim 10, wherein when the filament-moving hole (5) is round, a hole diameter is 2 mm-10 mm, preferably 3 mm-8 mm.
     
    12. The alternating pressure melt impregnation device according to claim 1, wherein the fiber pre-dispersion area (1) comprises at least two tension roller sets arranged front and rear, each tension roller set consists of two tension rollers (8) arranged front and rear, and an electromagnetic heating apparatus is provided on each tension roller (8).
     
    13. The alternating pressure melt impregnation device according to claim 12, wherein a diameter of the tension roller (8) is 5 mm-150 mm.
     
    14. The alternating pressure melt impregnation device according to claim 12, a distance between shafts of the adjacent tension rollers (8) is 10 mm-500 mm.
     
    15. The alternating pressure melt impregnation device according to claim 1, wherein a tail of the decompression chamber (4) at the filament-output end of the melt injection area (2) is further connected with at least one calendar roller set, and each calendar roller set comprises two rotating rollers arranged longitudinally and symmetrically.
     
    16. A melt impregnation method using the alternating pressure melt impregnation device of claims 1 to 15 to impregnate a continuous fiber bundle, comprising steps as follows:

    1) introducing a single or multiple continuous fiber bundles to a fiber pre-dispersion area (1), making the continuous fiber bundle successively wind each tension roller (8) in the fiber pre-dispersion area (1), and preheating and dispersing the continuous fiber bundle;

    2) injecting a resin melt into each resin melt runner (7) on an upper die and a lower die of a melt injection area (2), making the resin melt be squirted into an impregnation chamber (6) from each resin melt runner (7), and in the meantime the resin melt in the impregnation chamber (6) flowing into a decompression chamber (4) from filament-moving holes (5) on throttle plates (3) at both sides of the impregnation chamber (6);

    3) continuously drawing the continuous fiber bundle, making the fiber bundle enter into the decompression chamber (4) from a filament-moving hole (5) on the first throttle plate (3) at a filament-input end of the melt injection area (2) for a first impregnation, then exit the decompression chamber (4) via a filament-moving hole (5) on the tail throttle plate (3) of and enter into the impregnation chamber (6) of the melt injection area (2), the resin melt runner (7) continuously squirting the resin melt, and making the resin melt be squirted to a surface of the continuous fiber bundle for impregnation; and

    4) then drawing the continuous fiber bundle into the decompression chamber (4) through out of the filament-moving hole (5) on the first throttle plate (3) at the filament-input end of the melt injection area (2), and the continuous fiber bundle passing through the filament-moving hole (5) on the tail throttle plate (3) to complete the impregnation process.


     
    17. The melt impregnation method according to claim 16, wherein in step 1), a temperature for preheating the continuous fiber bundle is 50°C-350°C.
     


    Ansprüche

    1. Wechseldruck-Schmelzimprägniervorrichtung, die einen Faser-Vordispersionsbereich (1) zum Erwärmen und Dispergieren eines Endlosfaserbündels und einen Schmelzeinspritzbereich (2) zum Imprägnieren des Endlosfaserbündels beinhaltet, dadurch gekennzeichnet, dass eine Vielzahl von Drosselplatten (3) abwechselnd an einem Filament-Eingangsende bzw. einem Filament-Ausgangsende des Schmelzeinspritzbereichs (2) bereitgestellt sind, die benachbarten Drosselplatten (3) eine Dekompressionskammer (4) einschließen, mindestens eine Dekompressionskammer (4) vorhanden ist und jede Drosselplatte (3) mit einer Filament-Bewegungsöffnung (5) für das durchlaufende Endlosfaserbündel versehen ist; und der Schmelzeinspritzbereich (2) eine obere Düse und eine untere Düse umfasst, ein Abstand zwischen der oberen Düse und der unteren Düse vorhanden ist, der Abstand eine Imprägnierkammer (6) für eine einströmende Harzschmelze bildet, und die obere Düse und die untere Düse jeweils mit einer Vielzahl von Harzschmelzkanälen (7) versehen sind, die mit der Imprägnierkammer (6) verbunden sind.
     
    2. Wechseldruck-Schmelzimprägniervorrichtung gemäß Anspruch 1, wobei der Harzschmelz-Angusskanal (7) senkrecht zu einer Bewegungsrichtung des Endlosfaserbündels ist.
     
    3. Wechseldruck-Schmelzimprägniervorrichtung gemäß Anspruch 2, wobei jeder Harzschmelz-Angusskanal (7) der oberen Düse und jeder Harzschmelz-Angusskanal (7) der unteren Düse in einer symmetrischen Anordnung sind, oder jeder Harzschmelz-Angusskanal (7) der oberen Düse und jeder Harzschmelz-Angusskanal (7) der unteren Düse in einer versetzten Anordnung sind.
     
    4. Wechseldruck-Schmelzimprägniervorrichtung gemäß Anspruch 3, wobei ein vertikaler Abstand zwischen einer Auslassebene des Harzschmelz-Angusskanals (7) an der oberen Düse und einer Auslassebene des Harzschmelz-Angusskanals (7) an der unteren Düse 2 mm - 50 mm, vorzugsweise 3 mm - 20 mm, ist.
     
    5. Wechseldruck-Schmelzimprägniervorrichtung gemäß Anspruch 1, wobei eine Anzahl der Harzschmelz-Angusskanäle (7) an der oberen Düse und eine Anzahl der Harzschmelzkanäle (7) an der unteren Düse jeweils 1-10 ist.
     
    6. Wechseldruck-Schmelzimprägniervorrichtung gemäß einem der Ansprüche 1-5, wobei ein Durchmesser an einem Auslass des Harzschmelz-Angusskanals (7) 0,5 mm - 10 mm, vorzugsweise 1 mm - 8 mm, ist.
     
    7. Wechseldruck-Schmelzimprägniervorrichtung gemäß Anspruch 6, wobei ein Auslassende des Harzschmelz-Angusskanals (7) ein aufgeweiteter Auslass, ein runder Auslass oder ein umgekehrter Kegelauslass ist.
     
    8. Wechseldruck-Schmelzeimprägniervorrichtung gemäß Anspruch 1, wobei eine Anzahl der Dekompressionskammer an dem Filament-Eingangsende des Schmelzeinspritzbereichs (2) 1-5 ist und eine Anzahl der Dekompressionskammer an dem Filament-Ausgangsende des Schmelzeinspritzbereichs (2) 1-10 ist.
     
    9. Wechseldruck-Schmelzimprägniervorrichtung gemäß Anspruch 8, wobei die Drosselplatte (3) eine Stärke von 2 mm - 10 mm, vorzugsweise 3 mm - 8 mm, aufweist.
     
    10. Wechseldruck-Schmelzimprägniervorrichtung gemäß Anspruch 9, wobei die Filament-Bewegungsöffnung an der Drosselplatte (3) rund, oval oder rechteckig ist.
     
    11. Wechseldruck-Schmelzimprägniervorrichtung gemäß Anspruch 10, wobei, wenn die Filament-Bewegungsöffnung (5) rund ist, der Lochdurchmesser 2 mm - 10 mm, vorzugsweise 3 mm - 8 mm, ist.
     
    12. Wechseldruck-Schmelzimprägniervorrichtung gemäß Anspruch 1, wobei der Faser-Vordispersionsbereich (1) mindestens zwei vorne und hinten angeordnete Spannrollensätze umfasst, jeder Spannrollensatz aus zwei vorne und hinten angeordneten Spannrollen (8) besteht und an jeder Spannrolle (8) eine elektromagnetische Heizvorrichtung bereitgestellt ist.
     
    13. Wechseldruck-Schmelzimprägniervorrichtung gemäß Anspruch 12, wobei ein Durchmesser der Spannrolle (8) 5 mm - 150 mm ist.
     
    14. Wechseldruck-Schmelzimprägniervorrichtung gemäß Anspruch 12, wobei ein Abstand zwischen Wellen der benachbarten Spannrollen (8) 10 mm - 500 mm ist.
     
    15. Wechseldruck-Schmelzimprägniervorrichtung gemäß Anspruch 1, wobei ein hinteres Ende der Dekompressionskammer (4) an dem Filament-Ausgangsende des Schmelzeinspritzbereichs (2) ferner mit mindestens einem Kalanderwalzensatz verbunden ist und jeder Kalanderwalzensatz zwei in Längsrichtung und symmetrisch angeordnete drehende Walzen umfasst.
     
    16. Schmelzimprägnierverfahren unter Verwendung der Wechseldruck-Schmelzimprägniervorrichtung gemäß den Ansprüchen 1 bis 15 zum Imprägnieren eines Endlosfaserbündels, umfassend Schritte wie folgt:

    1) Einführen eines einzelnen oder vielfacher Endlosfaserbündel in einen Faser-Vordispersionsbereich (1), Veranlassen, dass das Endlosfaserbündel nacheinander auf jede Spannrolle (8) in dem Faser-Vordispersionsbereich (1) aufgewickelt wird, und Vorwärmen und Dispergieren des Endlosfaserbündels;

    2) Einspritzen einer Harzschmelze in jeden Harzschmelz-Angusskanal (7) an einer oberen Düse und einer unteren Düse eines Schmelzeinspritzbereichs (2), Veranlassen, dass die Harzschmelze von jedem Harzschmelz-Angusskanal (7) in eine Imprägnierkammer (6) gespritzt wird, und in der Zwischenzeit Strömenlassen der Harzschmelze in der Imprägnierkammer (6) aus Filament-Bewegungsöffnungen (5) an Drosselplatten (3) an beiden Seiten der Imprägnierkammer (6) in eine Dekompressionskammer (4);

    3) kontinuierliches Ziehen des Endlosfaserbündels, Veranlassen, dass das Faserbündel für eine erste Imprägnierung aus einer Filament-Bewegungsöffnung (5) an der ersten Drosselplatte (3) an einem Filament-Eingangsende des Schmelzeinspritzbereichs (2) in die Dekompressionskammer (4) eintritt, dann über eine Filament-Bewegungsöffnung (5) an der hinteren Drosselplatte (3) aus der Dekompressionskammer (4) austritt und in die Imprägnierkammer (6) des Schmelzeinspritzbereichs (2) eintritt, wobei der Harzschmelz-Angusskanal (7) kontinuierlich die Harzschmelze spritzt, und Veranlassen, dass die Harzschmelze zur Imprägnierung auf eine Oberfläche des Endlosfaserbündels gespritzt wird; und

    4) dann Ziehen des Endlosfaserbündels in die Dekompressionskammer (4) durch die und aus der Filament-Bewegungsöffnung (5) an der ersten Drosselplatte (3) an dem Filament-Eingangsende des Schmelzeinspritzbereichs (2), und wobei das Endlosfaserbündel durch die Filament-Bewegungsöffnung (5) an der hinteren Drosselplatte (3) geführt wird, um den Imprägnierungsvorgang abzuschließen.


     
    17. Schmelzimprägnierverfahren gemäß Anspruch 16, wobei in Schritt 1) eine Temperatur zum Vorwärmen des Endlosfaserbündels 50 °C - 350 °C ist.
     


    Revendications

    1. Un dispositif d'imprégnation par fusion à pression alternée, comprenant une zone de pré-dispersion de fibres (1) pour chauffer et disperser un faisceau de fibres continues, et une zone d'injection par fusion (2) pour imprégner le faisceau de fibres continues, caractérisé en ce que, une pluralité de plaques d'étranglement (3) sont prévues alternativement à une extrémité d'entrée de filament et à une extrémité de sortie de filament de la zone d'injection par fusion (2) respectivement, les plaques d'étranglement (3) adjacentes renferment une chambre de décompression (4), au moins une chambre de décompression (4) existe, et chaque plaque d'étranglement (3) est prévue avec un trou de déplacement de filament (5) pour que le faisceau de fibres continues passe à travers ; et la zone d'injection par fusion (2) comprend une matrice supérieure et une matrice inférieure, un intervalle existe entre la matrice supérieure et la matrice inférieure, l'intervalle forme une chambre d'imprégnation (6) pour une résine fondue qui s'y écoule, et la matrice supérieure et la matrice inférieure sont chacune prévues avec une pluralité de canaux de résine fondue (7) connectés à la chambre d'imprégnation (6).
     
    2. Le dispositif d'imprégnation par fusion à pression alternée selon la revendication 1, dans lequel le canal de résine fondue (7) est perpendiculaire à une direction de déplacement du faisceau de fibres continues.
     
    3. Le dispositif d'imprégnation par fusion à pression alternée selon la revendication 2, dans lequel chaque canal de résine fondue (7) de la matrice supérieure et chaque canal de résine fondue (7) de la matrice inférieure sont dans une disposition symétrique, ou chaque canal de résine fondue (7) de la matrice supérieure et chaque canal de résine fondue (7) de la matrice inférieure sont dans une disposition en quinconce.
     
    4. Le dispositif d'imprégnation par fusion à pression alternée selon la revendication 3, dans lequel un intervalle vertical entre un plan de sortie du canal de résine fondue (7) sur la matrice supérieure et un plan de sortie du canal de résine fondue (7) sur la matrice inférieure est de 2 mm à 50 mm, de préférence de 3 mm à 20 mm.
     
    5. Le dispositif d'imprégnation par fusion à pression alternée selon la revendication 1, dans lequel un nombre de canaux de résine fondue (7) sur la matrice supérieure et un nombre de canaux de résine fondue (7) sur la matrice inférieure sont de 1 à 10, respectivement.
     
    6. Le dispositif d'imprégnation par fusion à pression alternée selon l'une quelconque des revendications 1 à 5, dans lequel un diamètre à une sortie du canal de résine fondue (7) est de 0,5 mm à 10 mm, de préférence de 1 mm à 8 mm.
     
    7. Le dispositif d'imprégnation par fusion à pression alternée selon la revendication 6, dans lequel une extrémité de sortie du canal de résine fondue (7) est une sortie évasée, une sortie arrondie ou une sortie en cône inversé.
     
    8. Le dispositif d'imprégnation par fusion à pression alternée selon la revendication 1, dans lequel un nombre de chambres de décompression à l'extrémité d'entrée de filament de la zone d'injection par fusion (2) est de 1 à 5, et un nombre de chambres de décompression à l'extrémité de sortie de filament de la zone d'injection par fusion (2) est de 1 à 10.
     
    9. Le dispositif d'imprégnation par fusion à pression alternée selon la revendication 8, dans lequel la plaque d'étranglement (3) a une épaisseur de 2 mm à 10 mm, de préférence de 3 mm à 8 mm.
     
    10. Le dispositif d'imprégnation par fusion à pression alternée selon la revendication 9, dans lequel le trou de déplacement de filament sur la plaque d'étranglement (3) est arrondi, ovale ou rectangulaire.
     
    11. Le dispositif d'imprégnation par fusion à pression alternée selon la revendication 10, dans lequel, lorsque le trou de déplacement de filament (5) est arrondi, un diamètre de trou est de 2 mm à 10 mm, de préférence de 3 mm à 8 mm.
     
    12. Le dispositif d'imprégnation par fusion à pression alternée selon la revendication 1, dans lequel la zone de pré-dispersion de fibres (1) comprend au moins deux ensembles de rouleaux de tension disposés à l'avant et à l'arrière, chaque ensemble de rouleaux de tension se compose de deux rouleaux de tension (8) disposés à l'avant et à l'arrière, et un appareil de chauffage électromagnétique est prévu sur chaque rouleau de tension (8).
     
    13. Le dispositif d'imprégnation par fusion à pression alternée selon la revendication 12, dans lequel un diamètre du rouleau de tension (8) est de 5 mm à 150 mm.
     
    14. Le dispositif d'imprégnation par fusion à pression alternée selon la revendication 12, une distance entre les arbres des rouleaux de tension adjacents (8) est de 10 mm à 500 mm.
     
    15. Le dispositif d'imprégnation par fusion à pression alternée selon la revendication 1, dans lequel un arrière de la chambre de décompression (4) à l'extrémité de sortie de filament de la zone d'injection par fusion (2) est en outre connectée à au moins un ensemble de rouleaux de calandre, et chaque ensemble de rouleaux de calandre comprend deux rouleaux rotatifs disposés longitudinalement et symétriquement.
     
    16. Un procédé d'imprégnation par fusion utilisant le dispositif d'imprégnation par fusion à pression alternée selon les revendications 1 à 15 pour imprégner un faisceau de fibres continues, comprenant les étapes suivantes :

    1) introduire un ou plusieurs faisceaux de fibres continues dans une zone de pré-dispersion de fibres (1), faire en sorte que le faisceau de fibres continues enroule successivement chaque rouleau de tension (8) dans la zone de pré-dispersion de fibres (1), et préchauffer et disperser le faisceau de fibres continues ;

    2) injecter une résine fondue dans chaque canal de résine fondue (7) sur une matrice supérieure et une matrice inférieure d'une zone d'injection par fusion (2), en faisant gicler la résine fondue dans une chambre d'imprégnation (6) à partir de chaque canal de résine fondue (7), et pendant ce temps, la résine fondue dans la chambre d'imprégnation (6) s'écoule dans une chambre de décompression (4) à partir des trous de déplacement de filament (5) sur des plaques d'étranglement (3) sur les deux côtés de la chambre d'imprégnation (6) ;

    3) tirer continuellement le faisceau de fibres continues, en faisant entrer le faisceau de fibres dans la chambre de décompression (4) par un trou de déplacement de filament (5) sur la première plaque d'étranglement (3) à une extrémité d'entrée de filament de la zone d'injection par fusion (2) pour une première imprégnation, puis sortir de la chambre de décompression (4) via un trou de déplacement de filament (5) sur la plaque d'étranglement arrière (3) et entrer dans la chambre d'imprégnation (6) de la zone d'injection par fusion (2), le canal de résine fondue (7) qui fait gicler continuellement la résine fondue, et qui fait gicler la résine fondue sur une surface du faisceau de fibres continues pour l'imprégnation ; et

    4) puis tirer le faisceau de fibres continues dans la chambre de décompression (4) à travers le trou de déplacement de filament (5) sur la première plaque d'étranglement (3) à l'extrémité d'entrée de filament de la zone d'injection par fusion (2), et le faisceau de fibres continues passant à travers le trou de déplacement de filament (5) sur la plaque d'étranglement arrière (3) pour compléter le processus d'imprégnation.


     
    17. Le procédé d'imprégnation par fusion selon la revendication 16, dans lequel, à l'étape 1), une température de préchauffage du faisceau de fibres continues est de 50 °C à 350 °C.
     




    Drawing








    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description