(19)
(11)EP 3 499 534 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.09.2020 Bulletin 2020/37

(21)Application number: 18185427.4

(22)Date of filing:  25.07.2018
(51)International Patent Classification (IPC): 
H01G 11/84(2013.01)
H01G 11/70(2013.01)
C23F 1/02(2006.01)
C23F 1/20(2006.01)
H01M 4/70(2006.01)
H01G 11/28(2013.01)
H01M 4/80(2006.01)
C23F 1/18(2006.01)
H01M 4/66(2006.01)
H01M 4/72(2006.01)

(54)

METHOD OF MANUFACTURING POROUS CURRENT COLLECTOR

VERFAHREN ZUM HERSTELLEN EINES PORÖSEN STROMKOLLEKTORS

PROCÉDÉ DE FABRICATION D'UN COLLECTEUR DE COURANT POREUX


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 12.12.2017 KR 20170170235

(43)Date of publication of application:
19.06.2019 Bulletin 2019/25

(73)Proprietor: Korea JCC Co., Ltd.
Chungcheongbuk-do 363-922 (KR)

(72)Inventors:
  • SHIN, Jin Sik
    361-839 Cheongju-si, Chungcheongbuk-do (KR)
  • SHIN, Dal Woo
    361-764 Cheongju-si, Chungcheongbuk-do (KR)
  • LEE, Mun Soo
    361-765 Cheongju-si, Chungcheongbuk-do (KR)
  • KIM, Sung Han
    Cheongju-si, Chungcheongbuk-do (KR)
  • OH, Mi Hyun
    Cheongju-si, Chungcheongbuk-do (KR)
  • YUN, Hyun
    Cheongju-si, Chungcheongbuk-do 28334 (KR)
  • PARK, Ji Yoon
    Cheongju-si, Chungcheongbuk-do (KR)
  • LEE, Kyoung Nam
    Cheongju-si, Chungcheongbuk-do (KR)

(74)Representative: Lambacher, Michael et al
V. Füner Ebbinghaus Finck Hano Patentanwälte Mariahilfplatz 3
81541 München
81541 München (DE)


(56)References cited: : 
EP-A1- 2 105 984
GB-A- 1 215 160
WO-A1-2017/037970
US-A- 4 448 637
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    1. Technical Field



    [0001] The present invention relates to a method of manufacturing a porous current collector and, more particularly, to a method of manufacturing a porous current collector, which can fabricate a porous current collector in such a way as to fabricate alcohol-resolvable resin as an etch mask pattern by printing polyhydric alcohol on a surface of the alcohol-resolvable resin in a pattern and to form a plurality of through holes in a metal sheet using the etch mask pattern.

    2. Description of the Related Art



    [0002] A super capacitor or secondary cell, such as an electric double layer capacitor (EDLC), includes a current collector. A porous current collector is used as the current collector in order to prevent a reduction of the capacity or output due to a reduction of binding strength with an electrode material attributable to a change with the passage of time. A plurality of through holes is formed in the porous current collector in order to prevent binding strength of the electrode material from being reduced due to a change with the passage of time. An EDLC to which the porous current collector has been applied is disclosed in Korean Patent Application Publication No. 2015-0130903 (Patent Document 1). EP 2 105 984 A1 discloses a method of manufacturing a porous current collector, comprising the steps of forming a polymer layer used as a mask, etching the metal sheet so that a plurality of through holes is formed in the metal sheet using the mask pattern layer

    [0003] Korean Patent Application Publication No. 2015-0130903 relates to the high-density electrode of an EDLC and a method of manufacturing the same. The high-density electrode of an EDLC includes a porous aluminum sheet, a plurality of first hollow protrusion members, a plurality of second hollow protrusion members, a first active material sheet, and a second active material sheet. The plurality of first hollow protrusion members is formed to be protruded to one side of the porous aluminum sheet, and the plurality of second hollow protrusion members is formed to be protruded to the other side of the porous aluminum sheet. The first active material sheet is attached to one side of the porous aluminum sheet, and the second active material sheet is attached to the other side of the porous aluminum sheet.

    [0004] A porous aluminum sheet, such as that disclosed in Korean Patent Application Publication No. 2015-0130903, that is, a porous current collector, has protruding members because it is fabricated using a physical force (e.g., press) using a mold. In order to solve the problem, the porous current collector is fabricated using a photolithography process. The photolithography process has a complicated manufacturing process because it requires an exposure process using a mask pattern, and thus has a problem in that the productivity of the porous current collector may be deteriorated.

    [Prior Art Document]


    [Patent Document]



    [0005] (Patent Document 1): Korean Patent Application Publication No. 2015-0130903

    SUMMARY OF THE INVENTION



    [0006] Accordingly, the present invention has been made keeping in mind the above problems occurring in the prior art, and an object of the present invention is to provide a method of manufacturing a porous current collector, which can fabricate a porous current collector in such a way as to fabricate alcohol-resolvable resin as an etch mask pattern by printing polyhydric alcohol on a surface of the alcohol-resolvable resin in a pattern and to form a plurality of through holes in a metal sheet using the etch mask pattern.

    [0007] Another object of the present invention is to provide a method of manufacturing a porous current collector, which can reduce a manufacturing cost of a porous current collector and improve productivity because a porous current collector is fabricated in such a way as to fabricate alcohol-resolvable resin as an etch mask pattern by printing polyhydric alcohol in a pattern and to form a plurality of through holes in a metal sheet using the etch mask pattern.

    [0008] A method of manufacturing a porous current collector according to an embodiment of the present invention includes the steps of forming an alcohol-resolvable resin layer by coating alcohol-resolvable resin on a surface of a metal sheet, forming an alcohol-resolvable mask pattern layer by printing polyhydric alcohol on a surface of the alcohol-resolvable resin layer after the alcohol-resolvable resin layer is formed, and etching the metal sheet so that a plurality of through holes is formed in the metal sheet using the alcohol-resolvable mask pattern layer as a mask after the alcohol-resolvable mask pattern layer is formed.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0009] The above and/or other aspects of the present invention will become apparent and more readily appreciated from the following description of the exemplary embodiments, taken in conjunction with the accompanying drawings in which:

    FIG. 1 is a process flow showing a method of manufacturing a porous current collector according to an embodiment of the present invention.

    FIG. 2 is a table showing a cross-sectional view according to a first embodiment of the method of manufacturing a porous current collector shown in FIG. 1.

    FIG. 3 is a perspective view showing the state in which polyhydric alcohol has been printed on an alcohol-resolvable resin layer shown in FIG. 2.

    FIG. 4 is a perspective view showing the state in which the alcohol-resolvable mask pattern layer shown in FIG. 2 has been formed.

    FIG. 5 is a perspective view showing the porous current collector shown in FIG. 2.

    FIG. 6 is a table showing a cross-sectional view according to a second embodiment of the method of manufacturing a porous current collector shown in FIG. 1.


    DETAILED DESCRIPTION



    [0010] Reference will now be made in detail to exemplary embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. Exemplary embodiments are described below to explain the present invention by referring to the figures.

    [0011] Hereinafter, methods of manufacturing a porous current collector according to embodiments of the present invention are described in detail with reference to the accompanying drawings.

    [0012] As show in FIGS. 1 and 2, in a method of manufacturing a porous current collector according to an embodiment of the present invention, first, an alcohol-resolvable resin layer 120 is formed by coating alcohol-resolvable resin on a surface of a metal sheet 110 (S10). After the alcohol-resolvable resin layer 120 is formed, an alcohol-resolvable mask pattern layer 120a is formed by printing polyhydric alcohol on a surface of the alcohol-resolvable resin layer 120 (S20). After the alcohol-resolvable mask pattern layer 120a is formed, the metal sheet 110 is etched using the alcohol-resolvable mask pattern layer 120a as a mask so that a plurality of through holes 111 is formed in the metal sheet 110 (S30).

    [0013] The method of manufacturing a porous current collector according to an embodiment of the present invention is described in more detail below.

    [0014] In step S10 of forming the alcohol-resolvable resin layer 120, first, as shown in FIGS. 1 and 2, the metal sheet 110 is prepared (S11). That is, the metal sheet 110 shown in step S11 of FIG. 2 is prepared. The metal sheet 110 shown in step S11 of FIG. 2 is a cross-sectional view taken along line A-A of the metal sheet 110 shown in FIG. 3. One of aluminum (Al), copper (Cu), nickel (Ni) and chrome (Cr) or a mixture of two or more materials of aluminum (Al), copper (Cu), nickel (Ni) and chrome (Cr) is used as the material of the metal sheet 110. In this case, FIG. 2 shows a first embodiment of a method of manufacturing a porous current collector according to an embodiment of the present invention.

    [0015] After the metal sheet 110 is prepared, as shown in FIGS. 1 and 2, the alcohol-resolvable resin layer 120 is formed by coating the alcohol-resolvable resin on a surface of the metal sheet 110 (S12). After the metal sheet 110 is prepared as in step S12 of FIG. 2, the alcohol-resolvable resin layer 120 is formed by coating the alcohol-resolvable resin on a surface of one side of the metal sheet 110 (S1). After the alcohol-resolvable resin layer 120 is formed on a surface of one side of the metal sheet 110, the alcohol-resolvable resin layer 120 is formed by coating alcohol-resolvable resin on a surface of the other side opposite one side of the metal sheet 110 (S2). In this case, the alcohol-resolvable resin layer 120 shown in step S1 and step S2 is a cross-sectional view taken along line A-A of FIG. 3.

    [0016] In steps S1 and S2 of forming the alcohol-resolvable resin layer 120 by coating the alcohol-resolvable resin on the surface of one side or the other side of the metal sheet 110, the alcohol-resolvable resin layer 120 is formed by mixing the alcohol-resolvable resin 5 to 50wt% and a solvent 50 to 95wt%. In this case, one of hydroxy polyester resin, acrylic resin, novolac resin and polyhydroxysterene is used as the alcohol-resolvable resin, and propylene glycol monomethyl ether acetate (PGMEA) is used as the solvent.

    [0017] After the alcohol-resolvable resin layer 120 is formed on the metal sheet 110, the alcohol-resolvable resin layer 120 is dried by thermal treatment (S13) as shown in FIG. 1. In step S13 of drying the alcohol-resolvable resin layer 120 by thermal treatment, the alcohol-resolvable resin layer 120 is dried in order to make volatile the solvent through the thermal treatment, and thermal treatment conditions are performed at a temperature of 50 to 200°C for 10 to 60 seconds. That is, the alcohol-resolvable resin layer 120 is formed by mixing the alcohol-resolvable resin 5 to 50wt% and the solvent 50 to 95wt%. Accordingly, in order to make volatile the solvent by drying the alcohol-resolvable resin layer 120, the thermal treatment is performed on the alcohol-resolvable resin layer 120 at a temperature of 50 to 200°C for 10 to 60 seconds.

    [0018] After the alcohol-resolvable resin layer 120 is dried, as shown in FIGS. 1 and 2, step S20 of forming the alcohol-resolvable mask pattern layer 120a is performed. In step S20 of forming the alcohol-resolvable mask pattern layer 120a, a plurality of through holes 121 is formed in the alcohol-resolvable mask pattern layer 120a. The plurality of through holes 121 is formed to penetrate the alcohol-resolvable resin layer 120 so that a surface of the metal sheet 110 is exposed.

    [0019] In order to form the alcohol-resolvable mask pattern layer 120a in which the plurality of through holes 121 has been formed, first, after the alcohol-resolvable resin layer 120 is formed as in step S21 of FIGS. 1 and 2, a polyhydric alcohol pattern layer 130 is formed by printing polyhydric alcohol on a surface of the alcohol-resolvable resin layer 120 (S21). As in step S21 of FIG. 2 or FIG. 3, the polyhydric alcohol pattern layer 130 is formed on one of the surfaces of the alcohol-resolvable resin layers 120 formed on the surfaces of one side and the other side of the metal sheet 110. For example, if the polyhydric alcohol pattern layer 130 is formed on a surface of the alcohol-resolvable resin layer 120 formed on a surface of one side of the metal sheet 110, the alcohol-resolvable resin layer 120 formed on a surface of the other side of the metal sheet 110 is used to protect the surface of the other side of the metal sheet 110 when the metal sheet 110 is etched. In this case, a plurality of cylindrical patterns 131 of the polyhydric alcohol pattern layer 130 is spaced apart and formed on the surface of the alcohol-resolvable resin layer 120. Only one of glycerin (or glycerine) and ethylene glycol is used as polyhydric alcohol. Glycerin or ethylene glycol has viscosity of 800 to 1500 centi Poise (cps), and polyvinyl alcohol (PVA) is added to ethylene glycol so that ethylene glycol has viscosity of 800 to 1500 cps, thereby being capable of forming the plurality of cylindrical patterns 131 using printing. The polyhydric alcohol pattern layer 130 shown in step S21 of FIG. 2 is a cross-sectional view taken along line A-A of FIG. 3.

    [0020] After the polyhydric alcohol pattern layer 130 is formed, as in step S22 of FIGS. 1 and 2, the alcohol-resolvable resin layer 120 is etched by performing thermal treatment on the polyhydric alcohol pattern layer 130, thereby forming the alcohol-resolvable mask pattern layer 120a (S22). The plurality of cylindrical patterns 131 indicated by alternate long and short dash lines in step S22 of FIG. 2 shows the state in which polyhydric alcohol has reacted to one of glycerin and ethylene glycol and the alcohol-resolvable resin by thermal treatment. That is, the plurality of cylindrical patterns 131 of the polyhydric alcohol pattern layer 130 reacts to the alcohol-resolvable resin of the alcohol-resolvable resin layer 120 by the thermal treatment and etches the alcohol-resolvable resin located in accordance with a region in which the cylindrical pattern 131 has been located. Accordingly, the alcohol-resolvable mask pattern layer 120a having the plurality of through holes 121 is formed. In this case, the thermal treatment is performed at a temperature of 50 to 200°C for 10 to 60 seconds.

    [0021] After the alcohol-resolvable mask pattern layer 120a is formed, the alcohol-resolvable mask pattern layer 120a is washed using pure water as in FIGS. 1 and 2 (S23). For example, after the alcohol-resolvable mask pattern layer 120a is formed, polyvinyl alcohol (PVA) used for viscosity of glycerin or ethylene glycol used as polyhydric alcohol is removed by washing. Accordingly, the polyhydric alcohol pattern layer 130 indicated by alternate long and short dash lines in step S22 of FIG. 2 is removed so that only the metal sheet 110 and the alcohol-resolvable mask pattern layer 120a remain as in step S23 of FIG. 2. In this case, the resolvable mask pattern layer 120a shown in step S23 of FIG. 2 is a cross-sectional view taken along line A-A of FIG. 4.

    [0022] In step S30 of performing etching so that the plurality of through holes 111 is formed in the metal sheet 110, as in FIGS. 1, 2 and 3, first, after the alcohol-resolvable mask pattern layer 120a is formed, the metal sheet 110 is etched by an etching solution so that the metal sheet 110 is penetrated using the alcohol-resolvable mask pattern layer 120a as a mask (S31). In this case, one of hydrogen chloride (HCI), nitric acid (HNO3) and ferric chloride (FeCl2) is used as the etching solution. After the metal sheet 110 is penetrated, the alcohol-resolvable mask pattern layer 120a is removed by etching (S32). The alcohol-resolvable mask pattern layer 120a is fabricated as shown in step S32 of FIG. 2 by removing the alcohol-resolvable mask pattern layer 120a using caustic soda (NaOH) or an alkaline solution. In this case, the metal sheet 110 shown in step S32 of FIG. 2 is a cross-sectional view taken along line A-A of the metal sheet 110 in which the plurality of through holes 111 shown in FIG. 5 has been formed.

    [0023] Another embodiment, that is, a second embodiment of the method of manufacturing a porous current collector according to an embodiment of the present invention, is shown in FIG. 6.

    [0024] In the method of manufacturing a porous current collector according to the second embodiment shown in FIG. 6, step S10 of forming the alcohol-resolvable resin layer 120 by coating alcohol-resolvable resin on a surface of the metal sheet 110 and step S30 of etching the metal sheet 110 using the alcohol-resolvable mask pattern layer 120a as a mask so that the plurality of through holes 111 is formed in the metal sheet 110 after the alcohol-resolvable mask pattern layer 120a is formed are the same as those of the method of manufacturing a porous current collector according to the first embodiment, and thus a description thereof is omitted.

    [0025] In the method of manufacturing a porous current collector according to an embodiment of the present invention, after the alcohol-resolvable resin layer 120 according to the second embodiment is formed, in step S20 of forming the alcohol-resolvable mask pattern layer 120a by printing polyhydric alcohol on a surface of the alcohol-resolvable resin layer 120, the polyhydric alcohol pattern layers 130 are formed by printing polyhydric alcohol on surfaces of one side and the other side of the alcohol-resolvable resin layers 120 (S21). In the polyhydric alcohol pattern layers 130 formed on the surfaces of one side and the other side of the alcohol-resolvable resin layers 120, the plurality of cylindrical patterns 131 is spaced apart and formed on the surfaces of the alcohol-resolvable resin layers 120. The plurality of cylindrical patterns 131 formed on the surface of one side of the alcohol-resolvable resin layer 120 is formed at locations corresponding to the plurality of cylindrical patterns 131 formed on the surface of the other side of the alcohol-resolvable resin layer 120 as in step S21 of FIG. 6. The alcohol-resolvable resin layer 120 may be formed in a rectangle or polygonal pattern (not shown) in addition to the plurality of cylindrical patterns 131.

    [0026] Only one of glycerin and ethylene glycol is used as polyhydric alcohol used to form the plurality of cylindrical patterns 131. Such glycerin or ethylene glycol has viscosity of 800 to 1500 cps as in the first embodiment of FIG. 2. Polyvinyl alcohol (PVA) is added to ethylene glycol so that ethylene glycol has viscosity of 800 to 1500 cps, thereby being capable of forming the plurality of cylindrical patterns 131 using printing.

    [0027] After the polyhydric alcohol pattern layer 130 is formed, as in step S22 of FIG. 6, the alcohol-resolvable resin layer 120 is etched by performing thermal treatment on the polyhydric alcohol pattern layer 130, thereby forming the alcohol-resolvable mask pattern layers 120a on surfaces of one side and the other side of the metal sheet 110 (S22). In step S22 of FIG. 2, the plurality of cylindrical patterns 131 indicated by alternate long and short dash lines shows the state in which polyhydric alcohol has reacted to one of glycerin and ethylene glycol and alcohol-resolvable resin by the thermal treatment. That is, the plurality of cylindrical patterns 131 of the polyhydric alcohol pattern layer 130 reacts to the alcohol-resolvable resin on the surfaces of the one side and the other sides of the alcohol-resolvable resin layers 120 by the thermal treatment. Accordingly, the alcohol-resolvable resin located in accordance with the region in which the cylindrical pattern 131 has been formed is etched to form the alcohol-resolvable mask pattern layer 120a having the plurality of through holes 121. In this case, conditions in which the thermal treatment is performed the polyhydric alcohol pattern layer 130 are performed at a temperature of 100 to 150°C for 10 to 60 seconds.

    [0028] After the alcohol-resolvable mask pattern layers 120a are formed on the surfaces of one side and the other side of the metal sheet 110, the alcohol-resolvable mask pattern layers 120a are washed using pure water (S23). For example, after the alcohol-resolvable mask pattern layers 120a are formed, PVA used for viscosity of glycerin or ethylene glycol used as polyhydric alcohol is removed by washing. Accordingly, the polyhydric alcohol pattern layer 130 indicated by the alternate long and short dash lines in step S22 of FIG. 2 is removed so that only the metal sheet 110 and the alcohol-resolvable mask pattern layers 120a remain as in step S23 of FIG. 6. Thereafter, step S30 of etching the metal sheet 110 so that the plurality of through holes 111 is formed in the metal sheet 110 is the same as that described above, and a description thereof is omitted.

    [0029] In step S30 of etching the metal sheet 110 so that the plurality of through holes 111 is formed according to the first embodiment and the second embodiment, if the metal sheet 110 is made of an aluminum (Al) material, 6 to 8M (molarity) hydrogen chloride (HCI) is used as an etching solution, so a porous current collector having an opening ratio of 1 to 30% can be fabricated in the metal sheet 110 made of aluminum (Al). If the metal sheet 110 is made of a copper (Cu) material, it is processed for 5 to 20 seconds using nitric acid (HNO3) of a 20 to 40% concentration using an etching solution, thereby being capable of fabricating a porous current collector having an opening ratio of 1 to 30% in the metal sheet 110 made of the copper (Cu) material. In this case, a known method is applied to the calculation of the opening ratio and a description thereof is omitted. As shown in FIG. 5, the porous current collector has the state in which the plurality of through holes 111 has been formed in the metal sheet 110.

    [0030] As described above, in the method of manufacturing a porous current collector according to an embodiment of the present invention, the alcohol-resolvable mask pattern layer 120a is printed on a surface of the alcohol-resolvable resin layer 120 formed using alcohol-resolvable resin in a pattern using polyhydric alcohol. After the alcohol-resolvable resin layer 120 is fabricated to have an etch mask pattern, the plurality of through holes is formed in the metal sheet using the etch mask pattern, thereby fabricating the porous current collector. Accordingly, a manufacturing cost of the porous current collector can be reduced and productivity can be improved.

    [0031] The method of manufacturing a porous current collector according to an embodiment of the present invention may be applied to the industrial fields for manufacturing a super capacitor and secondary cell, such as an EDLC.

    [0032] In the method of manufacturing a porous current collector according to an embodiment of the present invention, after the alcohol-resolvable resin is fabricated in an etch mask pattern by printing polyhydric alcohol on a surface of the alcohol-resolvable resin, the plurality of through holes is formed in the metal sheet using the etch mask pattern, thereby fabricating the porous current collector. Accordingly, a manufacturing cost of the porous current collector can be reduced and productivity can be improved.


    Claims

    1. A method of manufacturing a porous current collector, comprising steps of:

    forming an alcohol-resolvable resin layer by coating alcohol-resolvable resin on a surface of a metal sheet;

    forming an alcohol-resolvable mask pattern layer by printing polyhydric alcohol on a surface of the alcohol-resolvable resin layer after the alcohol-resolvable resin layer is formed; and

    etching the metal sheet so that a plurality of through holes is formed in the metal sheet using the alcohol-resolvable mask pattern layer as a mask after the alcohol-resolvable mask pattern layer is formed.


     
    2. The method of claim 1, wherein the step of forming the alcohol-resolvable resin layer comprises steps of:

    preparing the metal sheet;

    forming the alcohol-resolvable resin layer by coating the alcohol-resolvable resin on the surface of the metal sheet after the metal sheet is prepared; and

    drying the alcohol-resolvable resin layer by thermal treatment after the alcohol-resolvable resin layer is formed on the surface of the metal sheet.


     
    3. The method of claim 2, wherein in the step of preparing the metal sheet, one of aluminum (Al), copper (Cu), nickel (Ni) and chrome (Cr) or a mixture of two or more materials of aluminum (Al), copper (Cu), nickel (Ni) and chrome (Cr) is used as a material of the metal sheet.
     
    4. The method of claim 2, wherein the step of forming the alcohol-resolvable resin layer comprises steps of:

    forming an alcohol-resolvable resin layer by coating the alcohol-resolvable resin on a surface of one side of the metal sheet after the metal sheet is prepared; and

    forming an alcohol-resolvable resin layer by coating the alcohol-resolvable resin on a surface of the other side of the metal sheet opposite one side of the metal sheet after the alcohol-resolvable resin layer is formed on the surface of one side of the metal sheet.


     
    5. The method of claim 4, wherein in the step of forming the alcohol-resolvable resin layer by coating the alcohol-resolvable resin on the surface of one side or the other side of the metal sheet, the alcohol-resolvable resin layer is formed by mixing the alcohol-resolvable resin 5 to 50wt% and a solvent 50 to 95wt%, one of hydroxy polyester resin, acrylic resin, novolac resin and polyhydroxysterene is used as the alcohol-resolvable resin, and propylene glycol monomethyl ether acetate (PGMEA) is used as the solvent.
     
    6. The method of claim 4, wherein in the step of drying the alcohol-resolvable resin layer through the thermal treatment, the thermal treatment is performed to dry the alcohol-resolvable resin layer in order to make the solvent volatile, and conditions for the thermal treatment are performed at a temperature of 50 to 200°C for 10 to 60 seconds.
     
    7. The method of claim 1, wherein in the step of forming the alcohol-resolvable mask pattern layer, a plurality of through holes is formed in the alcohol-resolvable mask pattern layer, and the plurality of through holes is formed to penetrate the alcohol-resolvable resin layer so that the surface of the metal sheet is exposed.
     
    8. The method of claim 1, wherein the step of forming the alcohol-resolvable mask pattern layer comprises steps of:

    forming a polyhydric alcohol pattern layer by printing polyhydric alcohol on a surface of the alcohol-resolvable resin layer after the alcohol-resolvable resin layer is formed; and

    forming the alcohol-resolvable mask pattern layer by etching the alcohol-resolvable resin layer by performing thermal treatment on the polyhydric alcohol pattern layer after the polyhydric alcohol pattern layer is formed; and

    washing the alcohol-resolvable mask pattern layer using pure water after the alcohol-resolvable mask pattern layer is formed.


     
    9. The method of claim 8, wherein in the step of forming the polyhydric alcohol pattern layer by printing the polyhydric alcohol, a plurality of cylindrical patterns of the polyhydric alcohol pattern layer is spaced apart and formed in a surface of the alcohol-resolvable resin layer.
     
    10. The method of claim 7, wherein in the step of forming the polyhydric alcohol pattern layer by printing the polyhydric alcohol, only one of glycerin and ethylene glycol is used as the polyhydric alcohol, glycerin or ethylene glycol having viscosity of 800 to 1500 centi Poise (cps) is used, and the ethylene glycol has viscosity of 800 to 1500 cps by adding polyvinyl alcohol (PVA).
     
    11. The method of claim 7, wherein in the step of forming the alcohol-resolvable mask pattern layer, thermal treatment is performed at a temperature of 100 to 150°C for 10 to 60 seconds.
     
    12. The method of claim 1, wherein the step of etching the metal sheet so that the plurality of through holes is formed in the metal sheet comprises steps of:

    etching the metal sheet so that the metal sheet is penetrated by an etching solution using the alcohol-resolvable mask pattern layer as a mask after the alcohol-resolvable mask pattern layer is formed; and

    removing the alcohol-resolvable mask pattern layer by etching after the metal sheet is penetrated by etching.


     
    13. The method of claim 12, wherein in the step of etching the metal sheet so that the plurality of through holes is formed in the metal sheet, one of hydrogen chloride (HCI), nitric acid (HNO3) and ferric chloride (FeCl2) is used as the etching solution.
     
    14. The method of claim 12, wherein in the step of removing the alcohol-resolvable mask pattern layer by etching, the alcohol-resolvable mask pattern layer is removed using caustic soda (NaOH) or an alkaline solution.
     


    Ansprüche

    1. Verfahren zur Herstellung eines porösen Stromkollektors, umfassend die Schritte:

    Ausbilden einer alkohollöslichen Harzschicht durch Auftragen von alkohollöslichem Harz auf eine Oberfläche eines Metallblechs;

    Ausbilden einer alkohollöslichen Maskierungsmusterschicht durch Drucken von mehrwertigem Alkohol auf eine Oberfläche der alkohollöslichen Harzschicht, nachdem die alkohollösliche Harzschicht ausgebildet wurde; und

    Ätzen des Metallblechs derart, dass eine Vielzahl von Durchgangslöchern in dem Metallblech ausgebildet wird, wobei die alkohollösliche Maskierungsmusterschicht als eine Maskierung verwendet wird, nachdem die alkohollösliche Maskierungsmusterschicht ausgebildet wurde.


     
    2. Verfahren nach Anspruch 1, wobei der Schritt des Ausbildens der alkohollöslichen Harzschicht die Schritte umfasst:

    Vorbereiten des Metallblechs;

    Ausbilden der alkohollöslichen Harzschicht durch Auftragen des alkohollöslichen Harzes auf die Oberfläche des Metallblechs, nachdem das Metallblech vorbereitet wurde; und

    Trocknen der alkohollöslichen Harzschicht durch Wärmebehandlung, nachdem die alkohollösliche Harzschicht auf der Oberfläche des Metallblechs ausgebildet wurde.


     
    3. Verfahren nach Anspruch 2, wobei bei dem Schritt des Herstellens des Metallblechs eines von Aluminium (Al), Kupfer (Cu), Nickel (Ni) und Chrom (Cr) oder eine Mischung aus zwei oder mehr Materialien von Aluminium (Al), Kupfer (Cu), Nickel (Ni) und Chrom (Cr) als Material des Metallblechs verwendet wird.
     
    4. Verfahren nach Anspruch 2, wobei der Schritt des Ausbildens der alkohollöslichen Harzschicht die Schritte umfasst:

    Ausbilden einer alkohollöslichen Harzschicht durch Auftragen des alkohollöslichen Harzes auf eine Oberfläche einer Seite des Metallblechs, nachdem das Metallblech vorbereitet wurde; und

    Ausbilden einer alkohollöslichen Harzschicht durch Auftragen des alkohollöslichen Harzes auf eine Oberfläche der anderen Seite des Metallblechs gegenüber einer Seite des Metallblechs, nachdem die alkohollösliche Harzschicht auf der Oberfläche einer Seite des Metallblechs ausgebildet wurde.


     
    5. Verfahren nach Anspruch 4, wobei bei dem Schritt des Ausbildens der alkohollöslichen Harzschicht durch Auftragen des alkohollöslichen Harzes auf die Oberfläche einer Seite oder der anderen Seite des Metallblechs die alkohollösliche Harzschicht durch Mischen von 5 bis 50 Gew.-% des alkohollöslichen Harzes und 50 bis 95 Gew.-% eines Lösungsmittels gebildet wird, eines von Hydroxypolyesterharz, Acrylharz, Novolakharz und Polyhydroxystyrol als das alkohollösliche Harz verwendet wird, und Propylenglycolmonomethyletheracetat (PGMEA) als das Lösungsmittel verwendet wird.
     
    6. Verfahren nach Anspruch 4, wobei bei dem Schritt des Trocknens der alkohollöslichen Harzschicht durch die Wärmebehandlung, die Wärmebehandlung durchgeführt wird, um die alkohollösliche Harzschicht zu trocknen, um das Lösungsmittel flüchtig zu machen, und die Bedingungen für die Wärmebehandlung bei einer Temperatur von 50 bis 200°C für 10 bis 60 Sekunden durchgeführt werden.
     
    7. Verfahren nach Anspruch 1, wobei bei dem Schritt des Ausbildens der alkohollöslichen Maskierungsmusterschicht eine Vielzahl von Durchgangslöchern in der alkohollöslichen Maskierungsmusterschicht ausgebildet wird, und die Vielzahl von Durchgangslöchern so ausgebildet wird, dass sie die alkohollösliche Harzschicht derart durchdringt, dass die Oberfläche des Metallblechs freiliegt.
     
    8. Verfahren nach Anspruch 1, wobei der Schritt des Ausbildens der alkohollöslichen Maskierungsmusterschicht die Schritte umfasst:

    Ausbilden einer Musterschicht aus mehrwertigem Alkohol durch Drucken von mehrwertigem Alkohol auf eine Oberfläche der alkohollöslichen Harzschicht, nachdem die alkohollösliche Harzschicht ausgebildet wurde; und

    Ausbilden der alkohollöslichen Maskierungsmusterschicht durch Ätzen der alkohollöslichen Harzschicht durch Durchführen einer Wärmebehandlung an der Musterschicht aus mehrwertigem Alkohol, nachdem die Musterschicht aus mehrwertigem Alkohol ausgebildet wurde; und

    Waschen der alkohollöslichen Maskierungsmusterschicht unter Verwendung von reinem Wasser, nachdem die alkohollösliche Maskierungsmusterschicht ausgebildet wurde.


     
    9. Verfahren nach Anspruch 8, wobei bei dem Schritt des Ausbildens der Musterschicht aus mehrwertigem Alkohol durch Drucken des mehrwertigen Alkohols eine Vielzahl von zylindrischen Mustern der Musterschicht aus mehrwertigem Alkohol voneinander beabstandet und in einer Oberfläche der alkohollöslichen Harzschicht ausgebildet wird.
     
    10. Verfahren nach Anspruch 7, wobei bei dem Schritt des Ausbildens der Musterschicht aus mehrwertigem Alkohol durch Drucken des mehrwertigen Alkohols nur eines von Glycerin und Ethylenglycol als mehrwertiger Alkohol verwendet wird, wobei Glycerin oder Ethylenglycol verwendet wird, die eine Viskosität von 800 bis 1500 Centipoise (cPs) haben, und das Ethylenglycol eine Viskosität von 800 bis 1500 cPs durch Zugabe von Polyvinylalkohol (PVA) aufweist.
     
    11. Verfahren nach Anspruch 7, wobei bei dem Schritt des Ausbildens der alkohollöslichen Maskierungsmusterschicht eine Wärmebehandlung bei einer Temperatur von 100 bis 150°C für 10 bis 60 Sekunden durchgeführt wird.
     
    12. Verfahren nach Anspruch 1, wobei der Schritt des Ätzens des Metallblechs derart, dass die Vielzahl von Durchgangslöchern in dem Metallblech ausgebildet wird, die Schritte umfasst:

    Ätzen des Metallblechs derart, dass das Metallblech von einer Ätzlösung durchdrungen wird, wobei die alkohollösliche Maskierungsmusterschicht als eine Maskierung verwendet wird, nachdem die alkohollösliche Maskierungsmusterschicht ausgebildet wurde; und

    Entfernen der alkohollöslichen Maskierungsmusterschicht durch Ätzen, nachdem das Metallblech durch Ätzen durchdrungen wurde.


     
    13. Verfahren nach Anspruch 12, wobei bei dem Schritt des Ätzens des Metallblechs derart, dass die Vielzahl von Durchgangslöchern in dem Metallblech ausgebildet wird, eines von Chlorwasserstoff (HCl), Salpetersäure (HNO3) und Eisenchlorid (FeCl2) als die Ätzlösung verwendet wird.
     
    14. Verfahren nach Anspruch 12, wobei bei dem Schritt des Entfernens der alkohollöslichen Maskierungsmusterschicht durch Ätzen die alkohollösliche Maskierungsmusterschicht unter Verwendung von kaustischem Soda (NaOH) oder einer alkalischen Lösung entfernt wird.
     


    Revendications

    1. Procédé de fabrication d'un collecteur de courant poreux, comprenant les étapes :

    former une couche de résine dissolvable par un alcool en déposant une résine dissolvable par un alcool sur une surface d'une feuille métallique ;

    former une couche de motif de masque dissolvable par un alcool en appliquant de l'alcool polyhydrique sur une surface de la couche de résine dissolvable par un alcool après la formation de la couche de résine dissolvable par un alcool ; et

    graver la feuille métallique de sorte qu'une pluralité de trous traversants soit formée dans la feuille métallique en utilisant la couche de motif de masque dissolvable par un alcool comme masque après la formation de la couche de motif de masque dissolvable par un alcool.


     
    2. Procédé de la revendication 1, dans lequel l'étape de formation de la couche de résine dissolvable par un alcool comprend les étapes :

    préparer la feuille métallique ;

    former la couche de résine dissolvable par un alcool en déposant la résine dissolvable par un alcool sur la surface de la feuille métallique après la préparation de la feuille métallique ; et

    sécher la couche de résine dissolvable par un alcool par traitement thermique après la formation de la couche de résine dissolvable par un alcool sur la surface de la feuille métallique.


     
    3. Procédé de la revendication 2, dans lequel, dans l'étape de préparation de la feuille métallique, l'un parmi l'aluminium (AI), le cuivre (Cu), le nickel (Ni) et le chrome (Cr) ou un mélange de deux matériaux ou plus d'aluminium (AI), de cuivre (Cu), de nickel (Ni) et de chrome (Cr) est utilisé comme matériau de la feuille métallique.
     
    4. Procédé de la revendication 2, dans lequel l'étape de formation de la couche de résine dissolvable par un alcool comprend les étapes :

    former une couche de résine dissolvable par un alcool en déposant la résine dissolvable par un alcool sur une surface d'un premier côté de la feuille métallique après la préparation de la feuille métallique ; et

    former une couche de résine dissolvable par un alcool en déposant la résine dissolvable par un alcool sur une surface de l'autre côté de la feuille métallique opposé au premier côté de la feuille métallique après la formation de la couche de résine dissolvable par un alcool sur la surface du premier côté de la feuille métallique.


     
    5. Procédé de la revendication 4, dans lequel, dans l'étape de formation de la couche de résine dissolvable par un alcool en déposant la résine dissolvable par un alcool sur la surface du premier côté ou de l'autre côté de la feuille métallique, la couche de résine dissolvable par un alcool est formée en mélangeant 5 à 50% en poids de résine dissolvable par un alcool et 50 à 95% en poids d'un solvant, l'un(e) d'une résine d'hydroxy polyester, d'une résine acrylique, d'une résine novolaque et d'un polyhydroxystérène est utilisé(e) comme résine dissolvable par un alcool, et l'acétate d'éther monométhylique de propylène glycol (PGMEA) est utilisé comme solvant.
     
    6. Procédé de la revendication 4, dans lequel, dans l'étape de séchage de la couche de résine dissolvable par un alcool par le traitement thermique, le traitement thermique est effectué pour sécher la couche de résine dissolvable par un alcool afin de rendre le solvant volatil, et les conditions pour le traitement thermique sont effectuées à une température allant de 50 à 200°C pendant 10 à 60 secondes.
     
    7. Procédé de la revendication 1, dans lequel, dans l'étape de formation de la couche de motif de masque dissolvable par un alcool, une pluralité de trous traversants est formée dans la couche de motif de masque dissolvable par un alcool, et la pluralité de trous traversants est formée pour pénétrer dans la couche de résine dissolvable par un alcool de sorte que la surface de la feuille métallique soit exposée.
     
    8. Procédé de la revendication 1, dans lequel l'étape de formation de la couche de motif de masque dissolvable par un alcool comprend les étapes :

    former une couche de motif d'alcool polyhydrique en appliquant de l'alcool polyhydrique sur une surface de la couche de résine dissolvable par un alcool après la formation de la couche de résine dissolvable par un alcool ; et

    former la couche de motif de masque dissolvable par un alcool par gravure de la couche de résine dissolvable par un alcool en effectuant un traitement thermique sur la couche de motif d'alcool polyhydrique après la formation de la couche de motif d'alcool polyhydrique ; et

    laver la couche de motif de masque dissolvable par un alcool en utilisant de l'eau pure après la formation de la couche de motif de masque dissolvable par un alcool.


     
    9. Procédé de la revendication 8, dans lequel, dans l'étape de formation de la couche de motif d'alcool polyhydrique en appliquant l'alcool polyhydrique, une pluralité de motifs cylindriques de la couche de motif d'alcool polyhydrique est espacée et formée dans une surface de la couche de résine dissolvable par un alcool.
     
    10. Procédé de la revendication 7, dans lequel, dans l'étape de formation de la couche de motif d'alcool polyhydrique en appliquant l'alcool polyhydrique, un seul composé parmi la glycérine et l'éthylène glycol est utilisé comme alcool polyhydrique, de la glycérine ou de l'éthylène glycol ayant une viscosité allant de 800 à 1500 centipoises (cps) est utilisé(e), et l'éthylène glycol a une viscosité allant de 800 à 1500 cps en ajoutant de l'alcool polyvinylique (PVA).
     
    11. Procédé de la revendication 7, dans lequel, dans l'étape de formation de la couche de motif de masque dissolvable par un alcool, le traitement thermique est effectué à une température allant de 100 à 150°C pendant 10 à 60 secondes.
     
    12. Procédé de la revendication 1, dans lequel l'étape de gravure de la feuille métallique de sorte que la pluralité de trous traversants soit formée dans la feuille métallique comprend les étapes :

    graver la feuille métallique de sorte qu'une solution de gravure pénètre dans la feuille métallique en utilisant la couche de motif de masque dissolvable par un alcool comme masque après la formation de la couche de motif de masque dissolvable par un alcool ; et

    éliminer la couche de motif de masque dissolvable par un alcool par gravure après que la feuille métallique a été pénétrée par gravure.


     
    13. Procédé de la revendication 12, dans lequel, dans l'étape de gravure de la feuille métallique de sorte que la pluralité de trous traversants soit formée dans la feuille métallique, l'un parmi le chlorure d'hydrogène (HCI), l'acide nitrique (HNO3) et le chlorure ferrique (FeCl2) est utilisé comme solution de gravure.
     
    14. Procédé de la revendication 12, dans lequel, dans l'étape d'élimination de la couche de motif de masque dissolvable par un alcool par gravure, la couche de motif de masque dissolvable par un alcool est éliminée en utilisant de la soude caustique (NaOH) ou une solution alcaline.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description