(19)
(11)EP 3 501 949 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
24.06.2020 Bulletin 2020/26

(21)Application number: 18202566.8

(22)Date of filing:  25.10.2018
(51)International Patent Classification (IPC): 
B62D 15/02(2006.01)
G01R 27/26(2006.01)
B62D 1/04(2006.01)
B60K 28/06(2006.01)

(54)

STEERING WHEEL GRIP DETECTION SYSTEM AND METHOD FOR AN AUTONOMOUS VEHICLE

GRIFFDETEKTIONSSYSTEM UND -VERFAHREN EINES LENKRADES FÜR EIN AUTONOMES RADFAHRZEUG

SYSTÈME ET PROCÉDÉ DE DÉTECTION DE LAPRÉHENSION D'UN VOLANT DE DIRECTION POUR UN VÉHICULE AUTONOME


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 19.12.2017 KR 20170175051

(43)Date of publication of application:
26.06.2019 Bulletin 2019/26

(73)Proprietors:
  • Hyundai Motor Company
    Seoul 06797 (KR)
  • Kia Motors Corporation
    Seoul 06797 (KR)
  • Omron Automotive Electronics Korea Co., Ltd.
    Anseong-si, Gyeonggi-do 17507 (KR)

(72)Inventors:
  • PARK, Jong Min
    18280 Hwaseong-si, Gyeonggi-do (KR)
  • KONG, Nak Kyoung
    18280 Hwaseong-si, Gyeonggi-do (KR)
  • PARK, Nam-Sook
    18280 Hwaseong-si, Gyeonggi-do (KR)
  • SEO, Young-Sun
    18280 Hwaseong-si, Gyeonggi-do (KR)

(74)Representative: Viering, Jentschura & Partner mbB Patent- und Rechtsanwälte 
Am Brauhaus 8
01099 Dresden
01099 Dresden (DE)


(56)References cited: : 
FR-A1- 3 034 389
US-A1- 2014 339 211
US-A1- 2005 242 965
US-B1- 8 874 301
  
  • ZHAO D L ET AL: "Preparation and microwave absorption properties of carbon nanocoils", MATERIALS LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 62, no. 21-22, 15 August 2008 (2008-08-15), pages 3704-3706, XP022715921, ISSN: 0167-577X, DOI: 10.1016/J.MATLET.2008.04.032 [retrieved on 2008-04-16]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

BACKGROUND OF THE INVENTION


Field of the Invention



[0001] The present invention relates generally to a grip detection system and method of a steering wheel for an autonomous vehicle. More particularly, the present invention relates to a grip detection system and method of a steering wheel for an autonomous vehicle, which can rapidly switch to manual mode in an unexpected situation by periodically checking whether a driver intends to manually drive a vehicle during autonomous driving.

Description of Related Art



[0002] Generally, an autonomous vehicle means a vehicle which autonomously drives to an appointed destination by recognizing a surrounding environment without the intervention of a driver, and controlling the vehicle by the determination of a driving situation. Recently, the autonomous vehicle has received attention as future personal means of transportation, which can increase convenience by reducing traffic accidents, improving traffic efficiency, reducing fuel use, and driving the vehicle in place of persons.

[0003] The autonomous vehicle does not yet perfectly work in comparison to normal human driving, so an unexpected situation may occur. For example, input may not be allowed at some times because the power supply of a camera sensor is unstable, or information may not be obtained because an object, such as a leaf, is attached to the surface of a laser sensor. In case of such unexpected situations, the autonomous vehicle transfers driving control authority to the driver, securing the safety of the driver.

[0004] Accordingly, the autonomous vehicle may periodically check whether the driver grips a steering wheel. In other words, when an unexpected situation occurs, if the driver sleeps or looks back, the driving control authority cannot be rapidly converted. Thus, the autonomous vehicle may periodically check whether the driver grips a steering wheel, and prepare for the quick transfer of the driving control authority to the driver when the unexpected situation occurs.

[0005] A conventional autonomous system usually has a function of inducing the driver to grip the steering wheel after an unexpected situation occurs. However, the driver cannot rapidly respond to the unexpected situation if the driver is asleep, so a traffic accident may be caused. A grip detection system according to the preamble of claim 1 and a grip detection method according to the preamble of claim 7 is known from FR 3 034 389 A1.

[0006] The information disclosed in this Background of the Invention section is only for enhancement of understanding of the general background of the invention and may not be taken as an acknowledgement or any form of suggestion that this information forms the prior art already known to a person skilled in the art.

BRIEF SUMMARY



[0007] Various aspects of the present invention are directed to providing a grip detection system and method of a steering wheel for an autonomous vehicle, which can rapidly switch to manual mode in an unexpected situation by periodically checking whether a driver intends to manually drive a vehicle during autonomous driving.

[0008] These objectives/problems are solved according to the invention by a grip detection system according to claim 1 and by a grip detection method according to claim 7. Preferable embodiments are subject of the dependent claims.

BRIEF DESCRIPTION OF THE DRAWINGS



[0009] 

FIG. 1 is a view illustrating a steering wheel to which a grip detection system of a steering wheel for an autonomous vehicle according to an exemplary embodiment of the present invention is applied.

FIG. 2 is a view schematically illustrating a cross section of a steering wheel to which a conventional contact detector is applied.

FIG. 3 is a view schematically illustrating a cross section of a steering wheel to which a contact detector included in the grip detection system of a steering wheel for an autonomous vehicle according to an exemplary embodiment of the present invention is applied.

FIG. 4 is a view schematically illustrating the contact detector included in the grip detection system of a steering wheel for an autonomous vehicle according to an exemplary embodiment of the present invention.

FIG. 5 is a view schematically illustrating another example of the contact detector included in the grip detection system of a steering wheel for an autonomous vehicle according to an exemplary embodiment of the present invention.

FIG. 6 and FIG. 7 are graphs illustrated for describing a difference in contact sensitivity between the conventional detector and the contact detector included in the grip detection system of a steering wheel for an autonomous vehicle according to an exemplary embodiment of the present invention.

FIG. 8 is a block diagram schematically illustrated for describing the grip detection system of a steering wheel for an autonomous vehicle according to an exemplary embodiment of the present invention.

FIG. 9 is a flow chart schematically illustrated for describing a grip detection method of a steering wheel for an autonomous vehicle according to an exemplary embodiment of the present invention.



[0010] It may be understood that the appended drawings are not necessarily to scale, presenting a somewhat simplified representation of various features illustrative of the basic principles of the invention. The specific design features of the present invention as disclosed herein, including, for example, specific dimensions, orientations, locations, and shapes will be determined in part by the particularly intended application and use environment.

[0011] In the figures, reference numbers refer to the same or equivalent parts of the present invention throughout the several figures of the drawing.

DETAILED DESCRIPTION



[0012] Reference will now be made in detail to various embodiments of the present invention(s), examples of which are illustrated in the accompanying drawings and described below. While the invention(s) will be described in conjunction with exemplary embodiments of the present invention, it will be understood that the present description is not intended to limit the invention(s) to those exemplary embodiments. On the other hand, the invention(s) is/are intended to cover not only the exemplary embodiments of the present invention, but also various alternatives, modifications, equivalents and other embodiments, which may be included within the spirit and scope of the invention as defined by the appended claims.

[0013] Hereinbelow, a grip detection system and method of a steering wheel for an autonomous vehicle according to exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

[0014] FIG. 1 is a view illustrating a steering wheel to which a grip detection system of a steering wheel for an autonomous vehicle according to an exemplary embodiment of the present invention is applied.

[0015] With reference to FIG. 1, an autonomous driving system 10 for autonomously driving a vehicle periodically checks whether a driver intends to manually drive the vehicle, whereby transfer to manual mode for driving the vehicle in person when an unexpected situation occurs may be rapidly realized. Accordingly, the autonomous driving system 10 in an exemplary embodiment of the present invention includes a contact detector 700 (see FIG. 3) mounted on a steering wheel S of the vehicle; a control portion 900 (see FIG. 8); and an output portion 400 (see FIG. 8). The contact detector 700 is to detect the driver's hands contacting with the steering wheel S of the vehicle using capacitance. With reference to FIG. 2 and FIG. 3, the difference between the contact detector 700 in an exemplary embodiment of the present invention and that of a related art will be described.

[0016] FIG. 2 is a view schematically illustrating a cross section of a steering wheel to which a conventional contact detector is applied, and FIG. 3 is a view schematically illustrating a cross section of a steering wheel to which a contact detector included in the grip detection system of a steering wheel for an autonomous vehicle according to an exemplary embodiment of the present invention is applied.

[0017] First, with reference to FIG. 2, the steering wheel to which the conventional contact detector is applied includes a circular rim S2; a hot wire S4 provided along the circular rim S2; the contact detector S3 using capacitance; and an external material S1 covering the components. The steering wheel S may be separately provided with the hot wire S4 and the contact detector S3, respectively, so there is a problem that the total thickness of the steering wheel is increased.

[0018] Furthermore, with reference to FIGS. 1 and 3, the steering wheel S to which the contact detector 700 in an exemplary embodiment of the present invention is applied includes a circular rim S2; the contact detector 700 using capacitance; and an external material S1 covering the components. In this regard, since the contact detector 700 is configured to both detect a change in capacitance and have the function of a hot wire, a hot wire and the contact detector 700 may not be separately prepared, so that the thickness of the steering wheel S may be reduced.

[0019] FIG. 4 is a view schematically illustrating the contact detector included in the grip detection system of a steering wheel for an autonomous vehicle according to an exemplary embodiment of the present invention.

[0020] With reference to FIG. 4A, the contact detector 700 is provided along an internal circumference of the steering wheel S of the vehicle, and includes an electrode 710 forming capacitance; and a dielectric 720 which is stacked on the electrode 710, and amplifies the capacitance formed by the electrode 710. The electrode 710 includes ordinary anode and cathode signal lines, and the anode signal line is spaced from the cathode signal line to form a capacitor. The dielectric 720 is electrically connected to the electrode 710, and includes a material with dielectric permittivity, e.g., a carbon micro coil (CMC). The dielectric 720 plays a role in amplifying electromotive force generated from the electrode 710, so it can improve the sensitivity of the contact detector 700. Furthermore, the dielectric 720 may be substituted with a carbon nano coil (CNC). Also, since the CMC may be mixed with other materials, the dielectric 720 may be manufactured by mixing silicon with a CMC material to impart a cushiony feeling to the steering wheel S. Accordingly, the contact detector 700 has an elasticity. In the present way, if the dielectric 720 has an elasticity, detecting is available from a specific distance to the extent of pressing the dielectric 720, so it is suitable for a detecting condition of the steering wheel S. Furthermore, according to materials mixed in the dielectric 720, various types of resistance enhancing designs, such as vibration, durability, water tightness, etc., are available. The main function of the contact detector 700 in an exemplary embodiment of the present invention is to detect a change in capacitance. Accordingly, the electrode 710 of the contact detector 700 detects a change in capacitance by receiving a low frequency from the outside. The dielectric 720 amplifies the capacitance formed by the electrode 710 by receiving the low frequency from the electrode 710. In this regard, the low frequency means about 1kHz to 500kHz.

[0021] Meanwhile, with reference to FIG. 4B, according to the contact detector 700 of the present invention, the steering wheel S is configured to radiate heat in cold weather, such as in winter. In this regard, since a CMC material tends to absorb a high frequency, the high frequency instead of a low frequency is applied to the electrode 710 of the contact detector 700. As such, the electrode 710 detects a change in capacitance by receiving the high frequency. The dielectric 720 absorbs the high frequency, and the high frequency is converted to thermal energy and radiated. In this regard, the high frequency means about 100MHz to 10GHz. In the present way, the contact detector 700 in an exemplary embodiment of the present invention both detects the change in capacitance and acts as the function of a hot line.

[0022] Furthermore, with reference to the example not according to the present invention which is illustrated in FIG. 4C, a DC power supply may be applied to the electrode 710 of the contact detector 700 of the present invention. At the instant time, the electrode 710 generates heat according to forms of a voltage and a current applied to the electrode 710, having a hot line effect. Also, the voltage applied to the electrode 710 may be controlled using a pulse width modulation (PWM). In the instant case, the electrode 710 has a resistance ingredient, so it generates heat by the current flowing through the electrode 710. The setting of a resistance value of the electrode 710 may easily be set up using Joule's law, etc. Also, in the instant case, the dielectric 720 may be omitted.

[0023] FIG. 5 is a view schematically illustrating another example of the contact detector included in the grip detection system of a steering wheel for an autonomous vehicle according to an exemplary embodiment of the present invention.

[0024] With reference to FIGS. 5A and 5B, regarding the contact detector 700, an electrode 711 may include a first electrode 712 and a second electrode 714. The reason for this is to prepare a case in which a low frequency and a high frequency cannot be simultaneously applied to one electrode 710 of FIG. 4. Accordingly, the low frequency is applied to the first electrode 712, and the high frequency or a power supply is applied to the second electrode 714. Also, the low frequency applied from the outside thereof is delivered to the first electrode 712 like FIG. 5A, and the high frequency or a power supply applied from the outside thereof is delivered to the second electrode 714 like FIG. 5B.

[0025] FIG. 6 and FIG. 7 are graphs illustrated for describing a difference in contact sensitivity between the conventional detector and the contact detector included in the grip detection system of a steering wheel for an autonomous vehicle according to an exemplary embodiment of the present invention.

[0026] With reference to FIG. 6A, the figure represents a waiting state in which a person's hands do not approach, and the contact detector 700 in an exemplary embodiment of the present invention has the same capacitance value as the conventional detector.

[0027] With reference to FIG. 6B, the figure represents a process of gripping the steering wheel S by approaching a person's hands, and the changed value of capacitance of the contact detector 700 in an exemplary embodiment of the present invention is greater than that of the conventional contact detector.

[0028] With reference to FIG. 7, the figure represents a state of gripping the steering wheel by a person's hands, and the changed value of capacitance of the contact detector 700 in an exemplary embodiment of the present invention is greater than that of the conventional contact detector. Meanwhile, the changed value of capacitance of the contact detector 700 of FIG. 7 is set up as a critical value of the present invention. Also, the control portion 900 (see FIG. 8) which will be described later determines that a driver contacts with the steering wheel S if receiving the changed value of capacitance whose value is greater than the critical value, i.e. receiving a change in capacitance more than the critical value, from the contact detector 700.

[0029] The contact detector 700 in an exemplary embodiment of the present invention further includes the dielectric 720 other than the electrode 710, so that it has higher sensitivity than the conventional contact detector including only the conventional electrode 710. Thus, a driver's hands gripping the steering wheel S can more easily be detected.

[0030] FIG. 8 is a block diagram schematically illustrated for describing the grip detection system of a steering wheel for an autonomous vehicle according to an exemplary embodiment of the present invention.

[0031] With reference to FIG. 1, FIG. 2, FIG. 3, FIG. 4, FIG. 5, FIG. 6, FIG. 7, and FIG. 8, the grip detection system of a steering wheel S for an autonomous vehicle 10 according to an exemplary embodiment of the present invention includes: an input portion 100; an autonomous driving module 200; a storage portion 300; the output portion 400; a counter 500; a low frequency generation portion 600; a heating guidance portion 610; the contact detector 700; the control portion 900; and a communication portion 800.

[0032] The input portion 100 is mounted on a dashboard of the vehicle, and may include various button parts or touch panels to receive various instructions from a driver. Furthermore, the input portion 100 may receive a heating signal from the driver, and deliver the signal to the control portion 900. Also, the input portion 100 may receive a critical value setup signal from the driver, and deliver the signal to the control portion 900.

[0033] The autonomous driving module 200 includes an autonomous driving portion 210 and a driver monitoring portion 220. The autonomous driving portion 210 is the system 10 for driving the vehicle to a destination without the intervention of the driver. In this regard, various sensors included in the vehicle autonomously decide a driving route by recognizing a surrounding environment, so that the vehicle is independently driven using autonomous power. The driver monitoring portion 220 determines whether the driver can currently drive the vehicle by collecting body information related to the driver. For example, if the detection, position, or direction of pupils is not in a predetermined normal state when receiving images of the driver from a camera mounted on the vehicle, i.e., in case that the driver does not keep eyes facing forward, a body abnormality signal is generated, and the generated body abnormality signal is delivered to the control portion 900. Also, the driver monitoring portion 220 receives the body information related to the driver from a body recognition sensor mounted on the vehicle and measures the current status of the driver, and can generate a body abnormal signal if the status is abnormal and deliver the signal to the control portion 900.

[0034] Under the control of the control portion 900, the communication portion 800 wirelessly transmits the body abnormality signal delivered to the control portion 900 to professional organizations, such as an external designated hospital, a police station, a telecommunication company, etc., to notify the current emergency of the driver. In this regard, wireless communication may be executed using WLAN (Wireless LAN), Wi-Fi(Wireless-Fidelity), DLNA(Digital Living Network Alliance), WiBro(Wireless Broadband), WiMAX(World Interoperability for Microwave Access), HSDPA(High Speed Downlink Packet Access), HSUPA(High Speed Uplink Packet Access), LTE(Long Term Evolution), LTE-A(Long Term Evolution-Advanced), etc.

[0035] The storage portion 300 stores a critical value and a reference value with respect to a change in capacitance. The critical value means the lowest value of the changed value of capacitance, which is the reference of determination, when the control portion 900 determines whether the driver contacts with the steering wheel S, and the reference value means the changed value of capacitance, which is the reference of modification, when a user modifies the critical value.

[0036] The output portion 400 outputs warning sound by receiving a warning signal from the control portion 900, and may include a speaker, a display provided in the vehicle, etc. The warning sound may be a voice or a text message, such as "the driver is not gripping the steering wheel S" or "the vehicle will be stopped because the driver is not gripping the steering wheel S." In a case of the display, the warning signal may be output in various colors.

[0037] The counter 500 periodically counts time, and delivers a driver detection signal to the control portion 900 at every predetermined time, e.g., every ten seconds.

[0038] The low frequency generation portion 600 generates a low frequency, whose range is from 1 kHz to 500kHz, by the control of the control portion 900, and delivers the low frequency to the electrode 710. The heating guidance portion 610 generates a high frequency, whose range is from 100MHz to 10GHz, by the control of the control portion 900, and delivers the high frequency to the electrode 710. Furthermore, in certain situations, the heating guidance portion 610 may be constituted to deliver a DC power supply instead of the high frequency to the electrode 710 by the control of the control portion 900.

[0039] The contact detector 700 is mounted on the steering wheel S, and detects a change in capacitance due to contact between the driver and the steering wheel S, and includes the electrode 710, the dielectric 720, and a wheel temperature sensor 730. Further, when the low frequency generation portion 600 generates a low frequency, the electrode 710 forms capacitance, and the dielectric 720 is constituted to amplify the capacitance. When the heating guidance portion 610 generates a high frequency, the electrode 710 forms capacitance, and the dielectric absorbs the high frequency and releases the high frequency as thermal energy. Furthermore, in certain situations, the heating guidance portion 610 is constituted to deliver the DC power supply instead of the high frequency to the electrode 710. Accordingly, when the heating guidance portion 610 delivers the DC power supply to the electrode 710, the electrode 710 receives the DC power supply and forms capacitance, and simultaneously, absorbs the DC power supply and releases the DC power supply as thermal energy.

[0040] The electrode 710 and the dielectric 720 were described in detail in FIG. 4 and FIG. 5, so that the detailed descriptions thereof are omitted. The wheel temperature sensor 730 is a sensor for measuring the temperature of the dielectric 720, and a normal sensor for measuring a temperature may be used as the wheel temperature sensor 730.

[0041] When the control portion 900 receives a change in capacitance from the contact detector 700, it is determined that the driver contacts with the steering wheel S. On the other hand, when the control portion 900 does not receive the change in capacitance from the contact detector 700, it is determined that the driver does not contact with the steering wheel S, so a warning signal is generated. Furthermore, when a driver observation signal is received from the counter 500, the control portion 900 controls the low frequency generation portion 600 to generate a low frequency. Further, when a heating signal is received from the input portion 100, the control portion 900 controls the heating guidance portion 610 to generate a high frequency.

[0042] Furthermore, when the heating guidance portion 610 delivers the high frequency to the electrode 710, in case that the temperature of the dielectric 720, which is measured by the wheel temperature sensor 730, exceeds a predetermined allowable temperature, the control portion 900 controls the heating guidance portion 610 not to generate the high frequency, and controls the low frequency generation portion 600 to generate the low frequency, lowering the temperature of the dielectric 720. Further, when the heating guidance portion 610 delivers the DC power supply instead of the high frequency to the electrode 710, in case the temperature of the electrode 710, which is measured by the wheel temperature sensor 730, exceeds a predetermined allowable temperature, the control portion 900 controls the heating guidance portion 610 to control a voltage, a current, or a pulse width modulation (PWM) of the DC power supply, which is delivered to the electrode 710, lowering the temperature of the electrode 710.

[0043] Furthermore, the control portion 900 may execute a correction process for correcting a critical value stored in the storage portion 300. In other words, in a case of receiving a critical value setup signal from the input portion 100, the control portion 900 determines whether a change in capacitance is received from the contact detector 700, determines a correction value by comparing a reference value previously stored in the storage portion 300 with the change in capacitance delivered from the contact detector 700, and sets a determined correction value as a critical value to restore the value in the storage portion 300. For example, the control portion 900 receives a touch input five times from the contact detector 700, checks a change in first capacitance with respect to touches, and stores the change in the storage portion 300. As such, the control portion 900 receives input by the gripping of one hand five times from the contact detector 700, checks a change in second capacitance with respect to the gripping of one hand, and stores the change in the storage portion 300. As such, the control portion 900 receives input by the gripping of both hands five times, checks a change in third capacitance with respect to the gripping of both hands, and stores the change in the storage portion 300. After that, the control portion 900 determines a first correction value by comparing a first reference value stored in the storage portion 300 with the change in first capacitance, determines a second correction value by comparing a second reference value stored in the storage portion 300 with the change in second capacitance, and determines a third correction value by comparing a third reference value in the storage portion 300 with the change in third capacitance. After that, the control portion 900 stores the first correction value in the storage portion 300 as the first reference value and the first critical value, stores the second correction value in the storage portion 300 as the second reference value and the second critical value, and stores the third correction value in the storage portion 300 as the third reference value and the third critical value.

[0044] After that, to check whether the corrections are properly processed, the control portion 900 determines three conditions, i.e., the change in first capacitance with respect to the touches is the first critical value or more by receiving the touch input five times from the contact detector 700, the change in second capacitance with respect to the gripping of one hand is the second critical value or more by receiving the input by the gripping of one hand five times from the contact detector 700, and the change in third capacitance with respect to the gripping of both hands is the third critical value or more by receiving the input by the grip of both hands five times from the contact detector 700. After that, if all the three conditions are satisfied, the control portion 900 applies the critical values, and if not, the correction processes are executed again.

[0045] FIG. 9 is a flow chart schematically illustrated for describing a grip detection method of a steering wheel for an autonomous vehicle according to an exemplary embodiment of the present invention.

[0046] With reference to FIGS. 1 to 9, according to the grip detection method of a steering wheel for an autonomous vehicle in accordance with various exemplary embodiments of the present invention, the input portion 100 delivers a signal from the autonomous driving portion 210, so that the control portion 900 determines whether the autonomous driving portion 210 autonomously drives the vehicle at the instant time (S100). After that, the control portion 900 determines whether a heating signal is input from the input portion 100 (S110). When the heating signal is input from the input portion 100, the control portion 900 controls the heating guidance portion 610, and controls the heating guidance portion 610 to apply a high frequency to the contact detector 700 (S112). As such, the electrode 710 of the contact detector 700 receives the high frequency and forms capacitance, and the dielectric 720 of the contact detector 700 absorbs the high frequency and releases the high frequency as thermal energy. After that, when the control portion 900 receives the temperature of the dielectric 720 from the wheel temperature sensor 730 (S114), the control portion 900 determines whether the temperature of the dielectric 720, which is measured by the wheel temperature sensor 730, exceeds a predetermined allowable temperature (S116). In the step of S116, after the determination, in case that the temperature of the dielectric 720, which is measured by the wheel temperature sensor 730, exceeds the predetermined temperature, the control portion 900 controls the heating guidance portion 610 not to apply the high frequency any more. After that, the control portion 900 controls the low frequency generation portion 600 to apply a low frequency to the contact detector 700, and executes the step of S 130 which will be described later (S118). In the step of S116, in case that the temperature of the dielectric, which is measured by the wheel temperature sensor 730, does not exceed the predetermined allowable temperature, the control portion 900 skips the step of S118, and executes the step of S 130 which will be described later.

[0047] In the step of S112, if the heating guidance portion 610 is constituted to apply a DC power supply instead of a high frequency to the contact detector 700, the electrode 710 of the contact detector 700 forms capacitance by receiving the DC power supply, and releases thermal energy due to the resistance caught by the electrode where the current of the DC power supply flows. After that, when the control portion 900 receives the temperature of the electrode 710 from the wheel temperature sensor 730 in the step of S114, the control portion 900 determines whether the temperature of the electrode 710, which is measured by the wheel temperature sensor 730, exceeds the predetermined allowable temperature in the step of S116. After the determination, if the temperature of the electrode 710, which is measured by the wheel temperature sensor 730, exceeds the predetermined allowable temperature in the step of S116, the control portion 900 controls the heating guidance portion 610 to control a voltage, a current, or a pulse width modulation (PWM) of the DC power supply, lowering the temperature of the electrode 710. After that, in the step of S118, the control portion 900 controls the low frequency generation portion 600 to apply a low frequency to the contact detector 700. Consequently, the control portion 900 controls the electrode 710 of the contact detector 700 to form capacitance, and controls the dielectric 720 of the contact detector 700 to amplify the capacitance.

[0048] In the step of S110, if the heating signal is not input, the control portion 900 determines whether a driver detection signal is delivered from the counter 500 (S120). After that, when the driver detection signal is delivered from the counter 500, the control portion 900 controls the low frequency generation portion 600 to apply the low frequency to the contact detector 700 (S122). As such, the electrode 710 of the contact detector 700 receives the low frequency and forms capacitance, and the dielectric of the contact detector 700 amplifies the capacitance. After that, the control portion 900 executes the step of S 130 which will be described later.

[0049] The step of S130 is to determine whether the driver grips the steering wheel S. Accordingly, the control portion 900 determines whether a change in capacitance is received from the contact detector 700 due to contact between the driver and the steering wheel S. After that, if the change in capacitance is received from the contact detector 700, the control portion 900 determines that the driver contacts with the steering wheel S. On the other hand, if the change in capacitance is not received from the contact detector 700, the control portion 900 determines that the driver does not contact with the steering wheel S (S130).

[0050] After that, if it is determined that the driver does not contact with the steering wheel S, the control portion 900 generates a warning signal and delivers the warning signal to the output portion 400, and then controls the output portion 400 to output the warning signal to the outside (S140). The output portion 400 is constituted to output a warning sound or siren sound, such as "the driver is not gripping the steering wheel S" or "the vehicle will be stopped because the driver is not gripping the steering wheel S," to the outside.

[0051] After that, the control portion 900 checks again whether the change in capacitance is received from the contact detector 700 (S150). After that, if the control portion 900 receives the change in capacitance from the contact detector 700, it is determined that the driver contacts with the steering wheel S, terminating a situation. On the other hand, in the step of S150, if the change in capacitance is not received from the contact detector 700, it means that the driver still does not contact with the steering wheel S. Accordingly, the control portion 900 determines whether the body abnormal signal of the driver is received from the driver monitoring portion 220 (S160). In the step of S160, if the control portion 900 does not receive the body abnormal signal from the driver monitoring portion 220, the control portion 900 controls the output portion 400 to output the warning signal to the outside by executing the step of S140 again. On the other hand, in the step of S160, if the control portion 900 receives the body abnormal signal from the driver monitoring portion 220, the control portion 900 executes an emergency mode (S170). In case that the control portion 900 executes the emergency mode, when an unexpected situation occurs where the autonomous driving portion 210 cannot autonomously and safely drive the vehicle, the control portion 900 determines that the driver cannot rapidly and manually drive the vehicle even if driving authority is provided to the driver. Accordingly, the control portion 900 controls the vehicle to park the vehicle on the side of a road, or to stop the vehicle.

[0052] The present invention has an effect of rapidly switching to manual mode in an unexpected situation by periodically checking whether the driver intends to manually drive the vehicle during autonomous driving.

[0053] For convenience in explanation and accurate definition in the appended claims, the terms "upper", "lower", "inner", "outer", "up", "down", "upper", "lower", "upwards", "downwards", "front", "rear", "back", "inside", "outside", "inwardly", "outwardly", "internal", "external", "inner", "outer", "forwards", and "backwards" are used to describe features of the exemplary embodiments with reference to the positions of such features as displayed in the figures.

[0054] The foregoing descriptions of specific exemplary embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teachings. The exemplary embodiments were chosen and described to explain certain principles of the invention and their practical application, to enable others skilled in the art to make and utilize various exemplary embodiments of the present invention, as well as various alternatives and modifications thereof. It is intended that the scope of the invention be defined by the Claims appended hereto and their equivalents.


Claims

1. A grip detection system of a steering wheel (S) for a vehicle, the system comprising:

an autonomous driving portion (210) which autonomously drives the vehicle;

a contact detector (700) which is mounted on the steering wheel of the vehicle, and detects a change in capacitance caused by contact between a driver and the steering wheel;

a controller which is connected to the autonomous driving portion and the contact detector and determines that the driver contacts with the steering wheel when the change in the capacitance is received from the contact detector, and generates a warning signal when determining that the driver does not contact with the steering wheel when the change in the capacitance is not received from the contact detector; and

an output portion (400) which is connected to the controller, receives the warning signal from the controller, and outputs warning to outside of the output portion

wherein the contact detector includes:

an electrode (710) which is provided along an internal circumference of the steering wheel of the vehicle, and forms the capacitance; and

a dielectric (720) which is stacked on the electrode, and amplifies the capacitance formed by the electrode,

wherein the grip detection system further includes:
a low frequency generation portion (600) which is connected to the controller and configured to generate a low frequency and deliver the low frequency to the electrode according to the controller; and characterized in that the grip detection system includes:

a heating guidance portion (610) which is connected to the controller and is configured to generate a high frequency which is higher than the low frequency and deliver the high frequency to the electrode according to the controller;

a counter (500) which periodically counts time, and delivers a driver detection signal to the controller at a predetermined time interval; and

an input portion (100) which is connected to the controller and receives a heating signal from the driver and delivers the heating signal to the controller,

wherein the controller controls the low frequency generation portion to generate the low frequency while receiving the driver detection signal, and controls the high frequency generation portion to generate the high frequency while receiving the heating signal,

wherein, when the low frequency generation portion generates the low frequency, the electrode forms the capacitance, and the dielectric amplifies the capacitance, and

wherein, when the heating guidance portion generates the high frequency, the high frequency is applied to the electrode, and the dielectric absorbs the high frequency and releases the high frequency as thermal energy.


 
2. The grip detection system of claim 1, wherein the dielectric includes a carbon micro coil (CMC) or a carbon nano coil (CNC), wherein the dielectric is formed to have elastic force.
 
3. The grip detection system of claim 1, further including:

a temperature sensor for measuring a temperature of the dielectric,

wherein, in a state that the heating guidance portion generates the high frequency, when the temperature of the dielectric, which is measured by the temperature sensor, exceeds a predetermined allowable temperature, the controller is configured to control the heating guidance portion not to generate the high frequency, and controls the low frequency generation portion to generate the low frequency.


 
4. The grip detection system of claim 1 or 3, wherein the electrode includes:

a first electrode receiving the low frequency from the low frequency generation portion; and

a second electrode receiving the high frequency from the heating guidance portion.


 
5. The grip detection system of any one of claims 1 to 4, further including:

a driver monitoring portion connected to the controller and configured for monitoring a body abnormality signal of the driver,

wherein, while generating the warning signal, the controller is configured to determine when the body abnormality signal of the driver is received from the driver monitoring portion, and the warning signal is output to the output portion by the controller when the body abnormality signal of the driver is not received from the driver monitoring portion, and an emergency mode is executed by the controller when the body abnormality signal of the driver is received by the controller from the driver monitoring portion,

wherein while executing the emergency mode, the controller is configured to control the autonomous driving portion to park the vehicle on an edge portion of a road, or to stop the vehicle.


 
6. The grip detection system of any one of claims 1 to 5, further including:

a storage portion connected to the controller, wherein a first predetermined value and a reference value with respect to the change in the capacitance are stored in the storage portion; and

an input portion which is connected to the controller and configured to input a predetermined value setup signal to the controller,

wherein, when the change in the capacitance is received by the controller from the contact detector after the predetermined value setup signal is received from the input portion, the controller is configured to determine a correction value by comparing the change in the capacitance with the reference value, and stores a determined correction value in the storage portion by setting up the determined correction value as a second predetermined value.


 
7. A grip detection method of a steering wheel for a vehicle, the method comprising:

a reception process of receiving, by a controller, a change in capacitance caused by contact between a driver and the steering wheel, from a contact detector mounted on the steering wheel of the vehicle;

a determination process of determining (S 130), by the controller, that the driver contacts with the steering wheel when the controller receives the change in the capacitance from the contact detector, and of determining, by the controller, that the driver does not contact with the steering wheel when the change in the capacitance is not received by the controller from the contact detector;

a generation process of generating a warning signal when the controller determines that the driver does not contact with the steering wheel; and

an output process of outputting (S 140), by an output portion connected to the controller to output warning to an outside of the output portion by the controller delivering the warning signal to the output portion,

characterized in that

the grip detection method further includes before the reception process,

an input process (S110), wherein a heating signal is received by the controller from an input portion connected to the controller; and

a process of applying a high frequency (S112), wherein, while receiving the heating signal, a heating guidance portion connected to the controller applies a high frequency higher than a predetermined frequency to the contact detector, so that an electrode of the contact detector forms the high frequency, and a dielectric of the contact detector absorbs the high frequency and releases the high frequency as thermal energy,

wherein the grip detection method further includes:

after the process of applying the high frequency,

a reception step (S114), wherein a temperature of the dielectric is received by the controller from a temperature sensor; and

a control step (S116), wherein, when the temperature of the dielectric, which is measured by the temperature sensor, does not exceed a predetermined allowable temperature, the heating guidance portion is controlled by the controller not to apply the high frequency,

wherein the reception step includes:

a control process (S118), wherein, when the heating guidance portion does not apply the high frequency, a low frequency generation portion applies a low frequency to the contact detector, controlling the electrode of the contact detector configured to form the capacitance, and the dielectric of the contact detector configured to amplify the capacitance; and

a reception process (S 150), wherein a change in the capacitance amplified by the dielectric the due to contact between the driver and the steering wheel is received by the controller.


 
8. The grip detection method of claim 7, further including:

before the reception process, a detection process of receiving, by the controller, a driver detection signal from a counter which periodically counts time,

wherein the reception process includes:

a control step, wherein, while receiving the driver detection signal, a low frequency generation portion connected to the controller applies a low frequency lower than a predetermined frequency to the contact detector, controlling an electrode of the contact detector configured to form the capacitance, and a dielectric of the contact detector configured to amplify the capacitance; and

a reception step of receiving, by the controller, a change in the capacitance amplified by the dielectric, the capacitance caused by the contact between the driver and the steering wheel.


 
9. The grip detection method of any one of claims 7 to 8, further including:

after the input process,

a process of determining abnormality when a body abnormality signal of the driver is received by the controller from a driver monitoring portion which is connected to the controller and monitors the body abnormality signal of the driver; and

a process of executing an emergency mode, wherein, when the body abnormality signal is not received from the driver monitoring portion, the input process is executed by the controller, and when the body abnormality signal of the driver is received from the driver monitoring portion, the emergency mode is executed by the controller,

wherein in the process of executing the emergency mode, while executing the emergency mode, the controller is configured to control the vehicle to park on an edge portion of a road, or to stop the vehicle.


 


Ansprüche

1. Griffdetektionssystem eines Lenkrads (S) für ein Fahrzeug, wobei das System aufweist:

einen autonomes-Fahren-Abschnitt (210), der das Fahrzeug autonom fährt,

einen Kontaktdetektor (700), der am Lenkrad des Fahrzeugs montiert ist und eine Kapazitätsänderung detektiert, die durch Kontakt zwischen einem Fahrer und dem Lenkrad verursacht wird,

eine Steuereinrichtung, die mit dem autonomes-Fahren-Abschnitt und dem Kontaktdetektor verbunden ist und ermittelt, dass der Fahrer das Lenkrad kontaktiert, wenn die Kapazitätsänderung vom Kontaktdetektor empfangen wird, und ein Warnsignal erzeugt, wenn ermittelt wird, dass der Fahrer das Lenkrad nicht kontaktiert, wenn die Kapazitätsänderung vom Kontaktdetektor nicht empfangen wird, und

einen Ausgangsabschnitt (400), der mit der Steuereinrichtung verbunden ist, das Warnsignal von der Steuereinrichtung empfängt und eine Warnung nach außerhalb des Ausgangsabschnitts ausgibt,

wobei der Kontaktdetektor aufweist:

eine Elektrode (710), die entlang eines Innenumfangs des Lenkrads des Fahrzeugs vorgesehen ist und die Kapazität bildet, und

ein Dielektrikum (720), das auf die Elektrode gestapelt ist und die durch die Elektrode gebildete Kapazität verstärkt,

wobei das Griffdetektionssystem ferner aufweist:
einen Niederfrequenz-Erzeugungsabschnitt (600), der mit der Steuereinrichtung verbunden ist und konfiguriert ist, um eine Niederfrequenz zu erzeugen und die Niederfrequenz gemäß der Steuereinrichtung an die Elektrode bereitzustellen, und dadurch gekennzeichnet, dass das Griffdetektionssystem aufweist:

einen Heizführungsabschnitt (610), der mit der Steuereinrichtung verbunden ist und konfiguriert ist, um eine Hochfrequenz zu erzeugen, die höher als die Niederfrequenz ist, und die Hochfrequenz gemäß der Steuereinrichtung an die Elektrode bereitzustellen,

einen Zähler (500), der periodisch die Zeit zählt und ein Fahrerdetektionssignal in einem vorbestimmten Zeitintervall an die Steuereinrichtung bereitstellt, und

einen Eingangsabschnitt (100), der mit der Steuereinrichtung verbunden ist und ein Heizsignal vom Fahrer empfängt und das Heizsignal an die Steuereinrichtung bereitstellt,

wobei die Steuereinrichtung den Niederfrequenz-Erzeugungsabschnitt steuert, um die Niederfrequenz zu erzeugen, während sie das Fahrerdetektionssignal empfängt, und den Hochfrequenz-Erzeugungsabschnitt steuert, um die Hochfrequenz zu erzeugen, während sie das Heizsignal empfängt,

wobei, wenn der Niederfrequenz-Erzeugungsabschnitt die Niederfrequenz erzeugt, die Elektrode die Kapazität bildet und das Dielektrikum die Kapazität verstärkt, und

wobei, wenn der Heizführungsabschnitt die Hochfrequenz erzeugt, die Hochfrequenz an die Elektrode angelegt wird und das Dielektrikum die Hochfrequenz absorbiert und die Hochfrequenz als Wärmeenergie abgibt.


 
2. Griffdetektionssystem gemäß Anspruch 1, wobei das Dielektrikum eine Kohlenstoff-Mikrospule (CMC) oder eine Kohlenstoff-Nanospule (CNC) aufweist, wobei das Dielektrikum ausgebildet ist, um Federkraft zu haben.
 
3. Griffdetektionssystem gemäß Anspruch 1, ferner aufweisend:

einen Temperatursensor zum Messen einer Temperatur des Dielektrikums,

wobei in einem Zustand, in dem der Heizführungsabschnitt die Hochfrequenz erzeugt, wenn die Temperatur des Dielektrikums, die durch den Temperatursensor gemessen wird, eine vorbestimmte zulässige Temperatur überschreitet, die Steuereinrichtung konfiguriert ist, um den Heizführungsabschnitt zu steuern, um die Hochfrequenz nicht zu erzeugen, und den Niederfrequenz-Erzeugungsabschnitt steuert, um die Niederfrequenz zu erzeugen.


 
4. Griffdetektionssystem gemäß Anspruch 1 oder 3, wobei die Elektrode aufweist:

eine erste Elektrode, die die Niederfrequenz von dem Niederfrequenz-Erzeugungsabschnitt empfängt, und

eine zweite Elektrode, die die Hochfrequenz von dem Heizführungsabschnitt empfängt.


 
5. Griffdetektionssystem gemäß irgendeinem der Ansprüche 1 bis 4, ferner aufweisend:

einen Fahrerüberwachungsabschnitt, der mit der Steuereinrichtung verbunden ist und zum Überwachen eines Körperauffälligkeitssignals des Fahrers konfiguriert ist,

wobei die Steuereinrichtung während des Erzeugens des Warnsignals konfiguriert ist, um zu ermitteln, wenn das Körperauffälligkeitssignal des Fahrers von dem Fahrerüberwachungsabschnitt empfangen wird, und das Warnsignal von der Steuereinrichtung an den Ausgangsabschnitt ausgegeben wird, wenn das Körperauffälligkeitssignal des Fahrers von dem Fahrerüberwachungsabschnitt nicht empfangen wird, und ein Notfallmodus von der Steuereinrichtung ausgeführt wird, wenn das Körperauffälligkeitssignal des Fahrers durch die Steuereinrichtung von dem Fahrerüberwachungsabschnitt empfangen wird,

wobei während des Ausführens des Notfallmodus die Steuereinrichtung konfiguriert ist, um den autonomes-Fahren-Abschnitt zu steuern, um das Fahrzeug an einem Randabschnitt einer Straße zu parken oder das Fahrzeug anzuhalten.


 
6. Griffdetektionssystem gemäß irgendeinem der Ansprüche 1 bis 5, ferner aufweisend:

einen Speicherabschnitt, der mit der Steuereinrichtung verbunden ist, wobei ein erster vorbestimmter Wert und ein Referenzwert in Bezug auf die Änderung der Kapazität in dem Speicherabschnitt gespeichert sind, und

einen Eingangsabschnitt, der mit der Steuereinrichtung verbunden ist und konfiguriert ist, um ein vorbestimmter-Wert-Einrichtungssignal in die Steuereinrichtung einzugeben,

wobei, wenn die Änderung der Kapazität durch die Steuereinrichtung von dem Kontaktdetektor empfangen wird, nachdem das vorbestimmter-Wert-Einrichtungssignal von dem Eingangsabschnitt empfangen wurde, die Steuereinrichtung konfiguriert ist, um einen Korrekturwert durch Vergleichen der Änderung der Kapazität mit dem Referenzwert zu ermitteln, und einen ermittelten Korrekturwert in dem Speicherabschnitt speichert, durch Einrichten des ermittelten Korrekturwerts als einen zweiten vorbestimmten Wert.


 
7. Griffdetektionsverfahren eines Lenkrads für ein Fahrzeug, wobei das Verfahren aufweist:

einen Empfangsvorgang des Empfangens, durch eine Steuereinrichtung, einer durch Kontakt zwischen einem Fahrer und dem Lenkrad verursachten Kapazitätsänderung von einem Kontaktdetektor, der am Lenkrad des Fahrzeugs montiert ist,

einen Ermittlungsvorgang des Ermittelns (S130) durch die Steuereinrichtung, dass der Fahrer das Lenkrad kontaktiert, wenn die Steuereinrichtung die Änderung der Kapazität von dem Kontaktdetektor empfängt, und des Ermittelns durch die Steuereinrichtung, dass der Fahrer das Lenkrad nicht kontaktiert, wenn die Kapazitätsänderung vom Kontaktdetektor durch die Steuereinrichtung nicht empfangen wird,

einen Erzeugungsvorgang des Erzeugens eines Warnsignals, wenn die Steuereinrichtung ermittelt, dass der Fahrer das Lenkrad nicht kontaktiert, und

einen Ausgabevorgang des Ausgebens (S140) durch einen Ausgangsabschnitt, der mit der Steuereinrichtung verbunden ist, um eine Warnung an ein Äußeres des Ausgangsabschnitts auszugeben, indem die Steuereinrichtung das Warnsignal an den Ausgangsabschnitt bereitstellt,

dadurch gekennzeichnet, dass

das Griffdetektionsverfahren ferner, vor dem Empfangsvorgang, aufweist:

einen Eingabevorgang (S110), wobei ein Heizsignal durch die Steuereinrichtung von einem mit der Steuereinrichtung verbundenen Eingangsabschnitt empfangen wird, und

einen Vorgang des Anlegens einer Hochfrequenz (S112), wobei, während das Heizsignal empfangen wird, ein mit der Steuereinrichtung verbundener Heizführungsabschnitt eine Hochfrequenz, die höher als eine vorbestimmte Frequenz ist, an den Kontaktdetektor anlegt, so dass eine Elektrode des Kontaktdetektors die Hochfrequenz bildet, und ein Dielektrikum des Kontaktdetektors die Hochfrequenz absorbiert und die Hochfrequenz als Wärmeenergie abgibt,

wobei das Griffdetektionsverfahren ferner aufweist:

nach dem Vorgang des Anlegens der Hochfrequenz

einen Empfangsschritt (S114), wobei eine Temperatur des Dielektrikums durch die Steuereinrichtung von einem Temperatursensor empfangen wird, und

einen Steuerschritt (S116), wobei, wenn die Temperatur des Dielektrikums, die durch den Temperatursensor gemessen wird, eine vorbestimmte zulässige Temperatur nicht überschreitet, der Heizführungsabschnitt durch die Steuereinrichtung gesteuert wird, um die Hochfrequenz nicht anzulegen,

wobei der Empfangsschritt aufweist:

einen Steuervorgang (S118), wobei, wenn der Heizführungsabschnitt die Hochfrequenz nicht anlegt, ein Niederfrequenz-Erzeugungsabschnitt eine Niederfrequenz an den Kontaktdetektor anlegt, wobei die Elektrode des Kontaktdetektors, die konfiguriert ist, um die Kapazität zu bilden, und das Dielektrikum des Kontaktdetektors, das konfiguriert ist, um die Kapazität zu verstärken, gesteuert werden, und

einen Empfangsvorgang (S150), wobei eine Änderung der durch das Dielektrikum verstärkten Kapazität aufgrund des Kontakts zwischen dem Fahrer und dem Lenkrad von der Steuereinrichtung empfangen wird.


 
8. Griffdetektionsverfahren gemäß Anspruch 7, ferner aufweisend:

vor dem Empfangsvorgang einen Detektionsvorgang des Empfangens, durch die Steuereinrichtung, eines Fahrerdetektionssignals von einem Zähler, der die Zeit periodisch zählt,

wobei der Empfangsvorgang aufweist:

einen Steuerschritt, wobei während des Empfangens des Fahrerdetektionssignals ein mit der Steuereinrichtung verbundener Niederfrequenz-Erzeugungsabschnitt eine Niederfrequenz, die niedriger als eine vorbestimmte Frequenz ist, an den Kontaktdetektor anlegt, wobei eine Elektrode des Kontaktdetektors, die konfiguriert ist, um die Kapazität zu bilden, und ein Dielektrikum des Kontaktdetektors, das konfiguriert ist, um die Kapazität zu verstärken, gesteuert werden, und

einen Empfangsschritt des Empfangens, durch die Steuereinrichtung, einer Änderung der durch das Dielektrikum verstärkten Kapazität, wobei die Kapazität durch den Kontakt zwischen dem Fahrer und dem Lenkrad verursacht wird.


 
9. Griffdetektionsverfahren gemäß irgendeinem der Ansprüche 7 bis 8, ferner aufweisend:

nach dem Eingabevorgang

einen Vorgang des Ermittelns einer Auffälligkeit, wenn ein Körperauffälligkeitssignal des Fahrers durch die Steuereinrichtung von einem Fahrerüberwachungsabschnitt empfangen wird, der mit der Steuereinrichtung verbunden ist und das Körperauffälligkeitssignal des Fahrers überwacht, und

einen Vorgang des Ausführens eines Notfallmodus, wobei, wenn das Körperauffälligkeitssignal von dem Fahrerüberwachungsabschnitt nicht empfangen wird, der Eingabevorgang von der Steuereinrichtung ausgeführt wird, und wenn das Körperauffälligkeitssignal des Fahrers von dem Fahrerüberwachungsabschnitt empfangen wird, der Notfallmodus von der Steuereinrichtung ausgeführt wird,

wobei bei dem Vorgang des Ausführens des Notfallmodus während des Ausführens des Notfallmodus die Steuereinrichtung konfiguriert ist, um das Fahrzeug zu steuern, um an einem Randabschnitt einer Straße zu parken oder das Fahrzeug anzuhalten.


 


Revendications

1. Système de détection de préhension d'un volant de direction (S) pour un véhicule, dans lequel le système comprend :

une partie de conduite autonome (210) qui conduit le véhicule de manière autonome ;

un détecteur de contact (700) qui est monté sur le volant de direction du véhicule, et qui détecte une modification de capacité occasionnée par un contact entre un conducteur et le volant de direction ;

un contrôleur qui est connecté à la partie de conduite autonome et au détecteur de contact, et qui détermine que le conducteur entre en contact avec le volant de direction lorsque la modification de la capacité est reçue en provenance du détecteur de contact, et qui génère un signal d'avertissement lorsqu'il est déterminé que le conducteur n'entre pas en contact avec le volant de direction lorsque la modification de la capacité n'est pas reçue en provenance du détecteur de contact ; et

une partie de sortie (400) qui est connectée au contrôleur, qui reçoit le signal d'avertissement en provenance du contrôleur et qui fournit en sortie un avertissement vers l'extérieur de la partie de sortie ; dans lequel :
le détecteur de contact inclut :

une électrode (710) qui est fournie le long d'une circonférence interne du volant de direction du véhicule, et qui forme la capacité ; et

un diélectrique (720) qui est empilé sur l'électrode, et qui amplifie la capacité formée par l'électrode ;

dans lequel le système de détection de préhension inclut en outre :
une partie de génération de basse fréquence (600) qui est connectée au contrôleur et qui est configurée pour générer une basse fréquence et délivrer la basse fréquence à l'électrode selon le contrôleur ; et caractérisé en ce que le système de détection de préhension inclut :

une partie de guidage de chauffage (610) qui est connectée au contrôleur et qui est configurée pour générer une haute fréquence, qui est supérieure à la basse fréquence, et à délivrer la haute fréquence à l'électrode selon le contrôleur ;

un compteur (500) qui compte périodiquement le temps, et qui délivre un signal de détection de conducteur au contrôleur à un intervalle de temps prédéterminé ; et

une partie d'entrée (100) qui est connectée au contrôleur et qui reçoit un signal de chauffage en provenance du conducteur, et qui délivre le signal de chauffage au contrôleur ;

dans lequel le contrôleur commande à la partie de génération de basse fréquence de générer la basse fréquence lors de la réception du signal de détection de conducteur, et commande à la partie de génération de haute fréquence de générer la haute fréquence lors de la réception du signal de chauffage ;

dans lequel, lorsque la partie de génération de basse fréquence génère la basse fréquence, l'électrode forme la capacité, et le diélectrique amplifie la capacité ; et

dans lequel, lorsque la partie de guidage de chauffage génère la haute fréquence, la haute fréquence est appliquée à l'électrode, et le diélectrique absorbe la haute fréquence et libère la haute fréquence sous la forme d'énergie thermique.


 
2. Système de détection de préhension selon la revendication 1, dans lequel le diélectrique comprend une microbobine de carbone (CMC) ou une nanobobine de carbone (CNC), dans lequel le diélectrique est formé de manière à présenter une force élastique.
 
3. Système de détection de préhension selon la revendication 1, incluant en outre :

un capteur de température destiné à mesurer une température du diélectrique ;

dans lequel, dans un état où la partie de guidage de chauffage génère la haute fréquence, lorsque la température du diélectrique, qui est mesurée par le capteur de température, dépasse une température admissible prédéterminée, le contrôleur est configuré de manière à commander, à la partie de guidage de chauffage, de ne pas générer la haute fréquence, et commande, à la partie de génération de basse fréquence, de générer la basse fréquence.


 
4. Système de détection de préhension selon la revendication 1 ou 3, dans lequel l'électrode inclut :

une première électrode recevant la basse fréquence en provenance de la partie de génération de basse fréquence ; et

une seconde électrode recevant la haute fréquence en provenance de la partie de guidage de chauffage.


 
5. Système de détection de préhension selon l'une quelconque des revendications 1 à 4, incluant en outre :

une partie de surveillance de conducteur connectée au contrôleur et configurée pour surveiller un signal d'anomalie corporelle du conducteur ;

dans lequel, dans le cadre de la génération du signal d'avertissement, le contrôleur est configuré pour déterminer à quel moment le signal d'anomalie corporelle du conducteur est reçu en provenance de la partie de surveillance de conducteur, et le signal d'avertissement est fourni en sortie à la partie de sortie par le contrôleur, lorsque le signal d'anomalie corporelle du conducteur n'est pas reçu en provenance de la partie de surveillance de conducteur, et un mode d'urgence est exécuté par le contrôleur, lorsque le signal d'anomalie corporelle du conducteur est reçu par le contrôleur en provenance de la partie de surveillance de conducteur ;

dans lequel, dans le cadre de l'exécution du mode d'urgence, le contrôleur est configuré pour commander à la partie de conduite autonome de stationner le véhicule sur une partie en bordure de route, ou d'arrêter le véhicule.


 
6. Système de détection de préhension selon l'une quelconque des revendications 1 à 5, incluant en outre :

une partie de stockage connectée au contrôleur, dans lequel une première valeur prédéterminée et une valeur de référence par rapport à la modification de la capacité sont stockées dans la partie de stockage ; et

une partie d'entrée qui est connectée au contrôleur et configurée pour appliquer en entrée un signal de configuration de valeur prédéterminée au contrôleur ;

dans lequel, lorsque la modification de la capacité est reçue par le contrôleur en provenance du détecteur de contact après que le signal de configuration de valeur prédéterminée a été reçu en provenance de la partie d'entrée, le contrôleur est configuré pour déterminer une valeur de correction en comparant la modification de la capacité à la valeur de référence, et stocke une valeur de correction déterminée dans la partie de stockage en configurant la valeur de correction déterminée en tant qu'une seconde valeur prédéterminée.


 
7. Procédé de détection de préhension d'un volant de direction pour un véhicule, le procédé comprenant :

un processus de réception consistant à recevoir, par le biais d'un contrôleur, une modification de la capacité occasionnée par un contact entre un conducteur et le volant de direction, en provenance d'un détecteur de contact monté sur le volant de direction du véhicule ;

un processus de détermination consistant à déterminer (S130), par le biais du contrôleur, que le conducteur entre en contact avec le volant de direction, lorsque le contrôleur reçoit la modification de la capacité en provenance du détecteur de contact, et à déterminer, par le biais du contrôleur, que le conducteur n'entre pas en contact avec le volant de direction, lorsque la modification de la capacité n'est pas reçue par le contrôleur en provenance du détecteur de contact ;

un processus de génération consistant à générer un signal d'avertissement lorsque le contrôleur détermine que le conducteur n'entre pas en contact avec le volant de direction ; et

un processus de sortie consistant à fournir en sortie (S140), par le biais d'une partie de sortie connectée au contrôleur, un avertissement vers l'extérieur de la partie de sortie, par le contrôleur délivrant le signal d'avertissement à la partie de sortie,

caractérisé en ce que :

le procédé de détection de préhension inclut en outre, avant le processus de réception,

un processus d'entrée (S110), dans lequel un signal de chauffage est reçu, par le contrôleur, en provenance d'une partie d'entrée connectée au contrôleur ; et

un processus consistant à appliquer une haute fréquence (S112), dans lequel, dans le cadre de la réception du signal de chauffage, une partie de guidage de chauffage connectée au contrôleur applique une haute fréquence, supérieure à une fréquence prédéterminée, au détecteur de contact, de sorte qu'une électrode du détecteur de contact forme la haute fréquence, et qu'un diélectrique du détecteur de contact absorbe la haute fréquence et libère la haute fréquence sous la forme d'énergie thermique ;

dans lequel le procédé de détection de préhension comprend en outre :

après le processus d'application de la haute fréquence,

une étape de réception (S114), dans laquelle une température du diélectrique est reçue par le contrôleur en provenance d'un capteur de température ; et

une étape de commande (S116), dans laquelle, lorsque la température du diélectrique, qui est mesurée par le capteur de température, ne dépasse pas une température admissible prédéterminée, la partie de guidage de chauffage est commandée, par le biais du contrôleur, afin de ne pas appliquer la haute fréquence ;

dans lequel l'étape de réception inclut :

un processus de commande (S118), dans lequel, lorsque la partie de guidage de chauffage n'applique pas la haute fréquence, une partie de génération de basse fréquence applique une basse fréquence au détecteur de contact, commandant l'électrode du détecteur de contact configurée pour former la capacité, et le diélectrique du détecteur de contact configuré pour amplifier la capacité ; et

un processus de réception (S150), dans lequel une modification de la capacité amplifiée par le diélectrique sous l'effet d'un contact entre le conducteur et le volant de direction est reçue par le contrôleur.


 
8. Procédé de détection de préhension selon la revendication 7, incluant en outre :

avant le processus de réception, un processus de détection consistant à recevoir, par le biais du contrôleur, un signal de détection de conducteur provenant d'un compteur qui compte périodiquement le temps ;

dans lequel le processus de réception inclut :

une étape de commande, dans laquelle, lors de la réception du signal de détection de conducteur, une partie de génération de basse fréquence connectée au contrôleur applique une basse fréquence, inférieure à une fréquence prédéterminée, au détecteur de contact, commandant une électrode du détecteur de contact configurée pour former la capacité, et un diélectrique du détecteur de contact configuré pour amplifier la capacité ; et

une étape de réception consistant à recevoir, par le biais du contrôleur, une modification de la capacité amplifiée par le diélectrique, la capacité étant occasionnée par le contact entre le conducteur et le volant de direction.


 
9. Procédé de détection de préhension selon l'une quelconque des revendications 7 à 8, incluant en outre :

après le processus d'entrée,

un processus consistant à déterminer une anomalie lorsqu'un signal d'anomalie corporelle du conducteur est reçu par le contrôleur, en provenance d'une partie de surveillance de conducteur qui est connectée au contrôleur et qui surveille le signal d'anomalie corporelle du conducteur ; et

un processus consistant à exécuter un mode d'urgence, dans lequel, lorsque le signal d'anomalie corporelle n'est pas reçu en provenance de la partie de surveillance de conducteur, le processus d'entrée est exécuté par le contrôleur, et lorsque le signal d'anomalie corporelle du conducteur est reçu en provenance de la partie de surveillance de conducteur, le mode d'urgence est exécuté par le contrôleur ;

dans lequel, au cours du processus consistant à exécuter le mode d'urgence, lors de l'exécution du mode d'urgence, le contrôleur est configuré pour commander au véhicule de se stationner sur une partie en bordure de route, ou d'arrêter le véhicule.


 




Drawing























Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description