(19)
(11)EP 3 505 556 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
15.04.2020 Bulletin 2020/16

(21)Application number: 17863849.0

(22)Date of filing:  27.10.2017
(51)Int. Cl.: 
C08G 73/10  (2006.01)
C08G 73/14  (2006.01)
C08J 5/18  (2006.01)
C08L 79/08  (2006.01)
(86)International application number:
PCT/KR2017/011975
(87)International publication number:
WO 2018/080222 (03.05.2018 Gazette  2018/18)

(54)

POLYIMIDE FILM FORMING COMPOSITION AND POLYIMIDE FILM PRODUCED BY USING SAME

POLYIMIDFILMBILDENDE ZUSAMMENSETZUNG UND UNTER VERWENDUNG DAVON HERGESTELLTER POLYIMIDFILM

COMPOSITION DE FORMATION DE FILM POLYIMIDE ET FILM POLYIMIDE AINSI PRODUIT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 31.10.2016 KR 20160143297

(43)Date of publication of application:
03.07.2019 Bulletin 2019/27

(73)Proprietor: LG Chem, Ltd.
Seoul 07336 (KR)

(72)Inventors:
  • SHIN, Bo Ra
    Daejeon 34122 (KR)
  • YUN, Cheolmin
    Daejeon 34122 (KR)
  • JEONG, Hye Won
    Daejeon 34122 (KR)
  • KIM,Kyungjun
    Daejeon 34122 (KR)

(74)Representative: Goddar, Heinz J. 
Boehmert & Boehmert Anwaltspartnerschaft mbB Pettenkoferstrasse 22
80336 München
80336 München (DE)


(56)References cited: : 
EP-A1- 3 016 087
KR-A- 20130 139 872
US-A1- 2016 251 545
WO-A1-2014/168402
US-A- 5 344 916
  
  • RAGOSTA, G. et al.: "Polyimide/silica Hybrids via the Sol-gel Route: High Performance Materials for the New Technological Challenges", Express Polymer Letters, vol. 3, no. 7, 2009, pages 413-428, XP055557989,
  • DEZERN, J. F. et al.: "Synthesis and Characterization of Polyamide-imides", Polymer Engineering and Science, vol. 31, no. 12, 1991, pages 860-866, XP055557997,
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

[Technical Field]



[0001] The present invention relates a composition for forming a polyimide film, which is to prepare a polyimide film with enhanced laser lift off characteristic, and a polyimide film manufactured by using same.

[Background Art]



[0002] Polyimide (PI) is a polymer having relatively low crystallinity or amorphous structure, and it has advantages such as easy manufacturing process, easy process to make a thin film and no crosslinkable moieties necessary for curing, as well as polymeric properties such as high transparency, excellent flame and chemical resistance, excellent mechanical and electrical properties, and dimensional stability due to its rigid chain structure. The polyimide is now widely used as an electrical and electronical material for the field of car and aerospace, a flexible circuit board, a liquid crystal alignment film for LCD, an adhesive as well as a coating agent.

[0003] However, even though the polyimide is a high performance polymer with excellent thermal stability, mechanical properties, chemical resistance and electrical properties, it does not satisfy the basic requirements for the display area such as colorless transparency, and the thermal expansion coefficient should be further lowered. For example, KAPTON sold by Dupont has a low thermal coefficient of about 30 ppm/°C, but it also does not meet the requirement for the plastic substrate. Therefore, now studies for minimizing change in thermal history and optical properties while maintaining the basic properties of the polyimide are underway.

[0004] In general, an aromatic polyimide has unique color of dark brown. The reason for this is that electrons can be excited due to σ electrons, π electrons, nonbonding unshared electron pairs within the imide structure, and it can be explained by the theory of charge transfer complex (hereinafter, called CT-complex) induced by π electrons of benzene within a main chain of the polyimide.

[0005] In general, the polyimide absorbs light of the wavelength below 400 nm to 500 nm of visible light region, and therefore it shows complementary color of yellow to red. In order to lower the CT-complex that is an disadvantage of the polyimide, a method of introducing an electron-withdrawing functional group having relatively strong electronegativity such as trifluoromethyl ((-CF3), sulfone (-SO2) and ether (-O-) to the main chain of the polyimide is used to lower resonance effect by limiting the movement of π electrons. Also introducing a cyclo-olefin structure instead of benzene to the main chain of the polyimide can reduce π electron density to manufacture a colorless transparent polyimide film.

[0006] Meanwhile, polyamide-imide has been widely used as an industrial material in the electrical, mechanical, electronic and aerospace fields due to its excellent properties such as thermal resistance, mechanical strength and electrical property. Also, in general, the structure of the polyamide-imide is different from that of the polyimide and is known to be soluble in an organic solvent, allowing for the application for an enamel varnish, a coating agent for electrical insulation and paint, which need solution casting.

[0007] However, for the application in the display area, it is still necessary to develop a polymer for the flexible display with lower thermal expansion coefficient, high solubility, transparency as well as thermal stability.

[Disclosure]


[Technical Problem]



[0008] An object of the present invention is to provide a composition for forming a polyimide film to provide a polyimide film with enhanced laser lift off characteristic.

[0009] Another object of the present invention is to provide a polyimide film manufactured from the composition for forming a polyimide film.

[0010] Further another object of the present invention is to provide a method for manufacturing the composition for forming a polyimide film.

[Technical Solution]



[0011] In order to solve the above-mentioned technical problems,
the present invention provides a composition for forming a polyimide film which comprises: a first polyimide including a repeating unit of the following Chemical Formula 1-1 or a first polyamic acid including a repeating unit of the following Chemical Formula 1-2; and
a second polyamic acid having weight average molecular weight of 50,000 g/mol or more,
wherein weight average molecular weight of the first polyimide or the first polyamic acid is 500 g/mol to 40,000 g/mol:



wherein,
R1 and R2 are each independently a substituent selected from a halogen atom selected from the group consisting of -F, -CI, -Br and -I, a hydroxyl group (-OH), a thiol group (-SH), a nitro group (-NO2), a cyano group (-CN), a C1-10 alkyl group, a C1-4 halogenoalkoxyl group, a C1-10 halogenoalkyl group, and a C6-20 aryl group.

[0012] According to one embodiment, the second polyamic acid may include repeating units of the following Chemical Formula 2 and Chemical Formula 3 together:



wherein,
R3 and R4 are each independently a substituent selected from a halogen atom selected from the group consisting of -F, -CI, -Br and -I, a hydroxyl group (-OH), a thiol group (-SH), a nitro group (-NO2), a cyano group (-CN), a C1-10 alkyl group, a C1-4 halogenoalkoxyl group, a C1-10 halogenoalkyl group, and a C6-20 aryl group.

[0013] According to one embodiment, the first polyimide or the first polyamic acid and the second polyamic acid may comprise 3 mol% to 50 mol% of the repeating unit of Chemical Formula 1-1 or Chemical Formula 1-2 based on the total repeating units included in the first polyimide or the first polyamic acid and the second polyamic acid.

[0014] According to one embodiment, the first polyimide or the first polyamic acid may include a terminal group including a structure of the following Chemical Formula 4:



wherein,

R11 is a C1-10 alkylene group, and

R12, R13 and R14 are each independently selected from a C1-10 alkoxyl group, a C6-30 aryloxy group and a heterocyclic group containing 1 to 3 oxygen atoms.



[0015] Further, the present invention provides a polyimide film manufactured from the composition for forming a polyimide film.

[0016] According to one embodiment, the polyimide film is manufactured by a method for manufacturing a polyimide film which comprises the following steps of:

spreading and coating the composition for forming a polyimide film on a carrier substrate to form a polyimide film layer; and

laser lifting off to detach the polyimide film layer from the carrier substrate by using laser having a laser energy density (E/D) of 230 mJ/cm2 or less.



[0017] According to one embodiment, the polyimide film may have a coefficient of thermal expansion (CTE) of 0 ppm/°C to 20 ppm/°C at a heating process after repeating n+1 times (n is an integer equal to or greater than 0) of heating and cooling process in a temperature range of from 100°C to 300°C.

[0018] According to one embodiment, the polyimide film may have Yellow Index (YI) of 15 or less at a thickness of 8 µm to 15 µm, and haze of 2 or less.

[0019] In order to solve another object of the present invention,
the present invention provides a method for manufacturing a composition for forming a polyimide film which comprises the following steps of:

polymerizing diamine of the following Chemical Formula 5 and tetracarboxylic dianhydride of the following Chemical Formula 6 in an organic solvent to prepare a first polyamic acid or a first polyimide;

polymerizing one or more of tetracarboxylic dianhydrides and one or more of diamines in an organic solvent to prepare a second polyamic acid; and

mixing the first polyamic acid or the first polyimide and the second polyamic acid, wherein the first polyamic acid or the first polyimide has a weight average molecular weight of 500 g/mol to 40,000 g/mol, and the second polyamic acid has a weight average molecular weight of 50,000 g/mol or more:





wherein,
R1 and R2 are each independently a substituent selected from a halogen atom selected from the group consisting of -F, -CI, -Br and -I, a hydroxyl group (-OH), a thiol group (-SH), a nitro group (-NO2), a cyano group (-CN), a C1-10 alkyl group, a C1-4 halogenoalkoxyl group, a C1-10 halogenoalkyl group, and a C6-20 aryl group.

[0020] According to one embodiment, the second polyamic acid may be prepared by polymerizing diamine of the following Chemical Formula 7 and tetracarboxylic dianhydride of the following Chemical Formula 6 and the following Chemical Formula 8 in an organic solvent:







wherein,
R3 and R4 are each independently a substituent selected from a halogen atom selected from the group consisting of -F, -CI, -Br and -I, a hydroxyl group (-OH), a thiol group (-SH), a nitro group (-NO2), a cyano group (-CN), a C1-10 alkyl group, a C1-4 halogenoalkoxyl group, a C1-10 halogenoalkyl group, and a C6-20 aryl groupR3.

[0021] According to one embodiment, the composition may comprise the diamine of Chemical Formula 5 in an amount of 3 mol% to 50 mol% based on the total amount of the entire diamines used for preparing the first polyimide or the first polyamic acid and the second polyamic acid.



[0022] According to one embodiment, a silane compound of the following Chemical Formula 9 may be further added in the step of preparing the first polyamic acid:



wherein,

Z is an isocyanate group (-N=C=O) or an amine group (-NH2),

R11 is a C1-10 alkylene group, and

R12, R13 and R14 are each independently selected from a C1-10 alkoxyl group, a C6-30 aryloxy group and a heterocyclic group containing 1 to 3 oxygen atoms.



[0023] According to one embodiment, the composition may comprise the silane compound of Chemical Formula 9 in an amount of from 10 parts by mole to 30 parts by mol based on 100 parts by mol of the first polyamic acid or the first polyimide.

[0024] According to one embodiment, the organic solvent may have a positive LogP, and the organic solvent having a positive Log P may be selected from N,N-diethylacetamide (DEAc), N,N-diethylformamide (DEF), N-ethylpyrrolidone (NEP) or a mixture thereof.

[Advantageous Effects]



[0025] The composition for forming a polyimide film according to the present invention comprises an oligomer type or a low molecular type of polyamic acid or polyimide prepared from a diamine having an intramolecular imide group, thereby providing a polyimide film with enhanced heat resistance while maintaining optical properties. Further, the laser energy density (E/D) required for a laser lift off process as well as the amount of ash formed during the ablation process can be significantly reduced by using the polyimide film according to the present invention, and therefore reliability of a device on a process for manufacturing a display can be further enhanced.

[Best Mode Carrying out the Invention]



[0026] Various changes in form and details may be made to the presently disclosed embodiment and thus should not be construed as being limited to the aspects set forth herein. The presently disclosed embodiment is not limited to the aspects described in the present description, and thus it should be understood that the presently disclosed embodiment does not include every kind of variation example or alternative equivalent included in the spirit and scope of the presently disclosed embodiment. Also, while describing the aspects, detailed descriptions about related well-known functions or configurations that may diminish the clarity of the points of the aspects of the presently disclosed embodiment will be omitted.

[0027] Unless particularly stated otherwise herein, all the compounds or organic groups may be substituted or unsubstituted. Herein, the term 'substituted' means that at least one hydrogen atom in such a compound or substituent has been replaced by any one substituent selected from the group consisting of a halogen atom, a C1-10 alkyl group, a halogenated alkyl group, a C3-30 cycloalkyl group, a C6-30 aryl group, a hydroxyl group, a C1-10 alkoxyl group, a carboxyl group, an aldehyde group, an epoxy group, a cyano group, a nitro group, an amino group, a sulfonic acid group and derivatives thereof.

[0028] Further, unless particularly stated otherwise herein, the term 'combination thereof' means that two or more functional groups are bonded by a single bond, a double bond, a triple bond or a linking group such as a C1-10 alkylene group (e.g., methylene group (-CH2), ethylene group (-CH2CH2-), etc.), a C1-10 fluoroalkylene group (e.g., fluoromethylene group (-CF2-), a perfluoroethylene group (-CF2CF2-), etc.), a hetero atom such as N, O, P, S or Si, or a functional group containing thereof (e.g., intramolecular carbonyl group (-C(=O)-), ether group (-O-), ester group (-COO-), heteroalkylene group containing -S-, -NH-, -N=N-, etc.), or two or more functional groups are connected by condensation.

[0029] In general, a flexible display is embodied by applying OLED technique on a plastic substrate replacing a glass substrate.

[0030] In all processes for manufacturing a display, coating/deposition process is conducted on a carrier substrate (for example, glass substrate), and a device formed on the carrier substrate through TFT and module processes is finally detached from the carrier substrate by a laser lift off (LLO) process.

[0031] At this time, the LLO characteristic varies according to laser wavelength and a material type of a plastic substrate, and processability is influenced by the amount of laser energy density (E/D) required for detaching the plastic substrate from a carrier substrate or ash formed during the lift off process. Therefore, in order to be used as a material for a flexible substrate, laser characteristic is also an important fact as well as heat resistance and transmittance.

[0032] For a polyimide film formed on a substrate, the higher absorption rate for laser wavelength used for lift off, the less energy is required for lift off. Further, according to lift off mechanism, as light (laser) energy absorbed in the polyimide film is converted to heat energy, adhesion force is reduced by thermal deterioration of the polyimide film, and necessarily, ash is formed. The ash thus formed is distributed overall on the rear side of the polyimide film, and may cause reduction of film transmittance, stains and result reliability problem of a device.

[0033] Regarding to the laser lift off characteristic, the present invention is to provide a polyimide film with reduced laser energy density (E/D) and ash formation caused by the laser lift off.

[0034] The present invention provides a composition for forming a polyimide film which comprises:

a first polyimide including a repeating unit of the following Chemical Formula 1-1 or a first polyamic acid including a repeating unit of the following Chemical Formula 1-2; and

a second polyamic acid having a weight average molecular weight of 50,000 g/mol or more,

wherein a weight average molecular weight of the first polyimide or the first polyamic acid is 500 g/mol to 40,000 g/mol:







wherein,
R1 and R2 are each independently a substituent selected from a halogen atom selected from the group consisting of -F, -CI, -Br and -I, a hydroxyl group (-OH), a thiol group (-SH), a nitro group (-NO2), a cyano group (-CN), a C1-10 alkyl group, a C1-4 halogenoalkoxyl group, a C1-10 halogenoalkyl group, and a C6-20 aryl group. Preferably, it may be a substituent selected from a halogen atom, a halogenoalkyl, an alkyl group, an aryl group and a cyano group, and the alkyl group may be selected from a methyl group, an ethyl group, a propyl group, an isopropyl group, a t-butyl group, a pentyl group and a hexyl group, and the aryl group may be selected from a phenyl group and a naphthalenyl group. For example, the halogen atom may be fluorine (-F), the halogenoalkyl may be a C1-10 fluoroalkyl containing a fluorine-based atom selected from a fluoromethyl group, a perfluoroethyl group, a trifluoromethyl group and the like. More preferably, the substituent may be a fluorine atom or a substituent containing a fluorine-based atom such as a fluoroalkyl group.

[0035] According to one embodiment, the second polyamic acid may include repeating units of the following Chemical Formula 2 and Chemical Formula 3 together:





wherein,
R3 and R4 are each independently a substituent selected from a halogen atom selected from the group consisting of -F, -CI, -Br and -I, a hydroxyl group (-OH), a thiol group (-SH), a nitro group (-NO2), a cyano group (-CN), a C1-10 alkyl group, a C1-4 halogenoalkoxyl group, a C1-10 halogenoalkyl group, and a C6-20 aryl group. Preferably, it may be a substituent selected from a halogen atom, a halogenoalkyl, an alkyl group, an aryl group and a cyano group, and the alkyl group may be selected from a methyl group, an ethyl group, a propyl group, an isopropyl group, a t-butyl group, a pentyl group and a hexyl group, and the aryl group may be selected from a phenyl group and a naphthalenyl group. For example, the halogen atom may be fluorine (-F), the halogenoalkyl may be a C1-10 fluoroalkyl containing a fluorine-based atom selected from a fluoromethyl group, a perfluoroethyl group, a trifluoromethyl group and the like. More preferably, the substituent may be a fluorine atom or a substituent containing a fluorine-based atom such as a fluoroalkyl group.

[0036] According to one embodiment, a weight average molecular weight of the first polyimide or the first polyamic acid may be from 500 g/mol to 40,000 g/mol, preferably 500 g/mol to 30,000 g/mol, more preferably 500 g/mol to 20,000 g/mol.

[0037] If the molecular weight of the first polyamic acid or the first polyimide is high as 50,000 g/mol or more, optical properties of a polyimide film such as haze characteristic may be sharply deteriorated.

[0038] According to one embodiment, a weight average molecular weight of the second polyamic acid may be 50,000 g/mol or more, preferably 80,000 g/mol or more, more preferably 90,000 g/mol or more. Further, the weight average molecular weight of the second polyamic acid may be 180,000 g/mol or less, preferably 150,000 g/mol or less.

[0039] According to one embodiment, the composition for forming a polyimide film may comprise the repeating unit of Chemical Formula 1-1 or Chemical Formula 1-2 in an amount of 3 mol% to 50 mol%, preferably 3 mol% to 30 mol%, for example, 5 mol% to 25 mol% based on the total repeating units of the polyamic acids and polyimides, for example, the total repeating units of the first polyimide or the first polyamic acid repeating unit and the second polyamic acid.

[0040] According to one embodiment, the first polyimide or the first polyamic acid may include a terminal group having a structure of the following Chemical Formula 4:

wherein,

R11 is a C1-10 alkylene group, and

R12, R13 and R14 are each independently selected from a C1-10 alkoxyl group, a C6-30 aryloxy group and a heterocyclic group containing 1 to 3 oxygen atoms.



[0041] For example, in the polyimide or polyamic acid including the terminal group, the polyimide including the repeating unit of Chemical Formula 1-1 may include a structure such as the following Chemical Formula 4-1 or 4-3, and the polyamic acid including the repeating unit of Chemical Formula 1-2 may include a structure such as the following Chemical Formula 4-2 or 4-4. The weight average molecular weight of the following Chemical Formulas 4-1 to 4-4 may be 500 g/mol to 40,000 g/mol:









wherein,

R1, R11, R12, R13 and R14 have the same meanings as defined above,

n is the number of repeating of a repeating unit, and it is an integer equal to or greater than 0.



[0042] The present invention provides a polyimide film manufactured from the composition for forming a polyimide film.

[0043] According to one embodiment, the polyimide film according to the present invention is manufactured by a method for manufacturing a polyimide film which comprises the following steps of:

spreading and coating the composition for forming a polyimide film on a carrier substrate to form a polyimide film layer; and

laser lifting off to detach the polyimide film layer from the carrier substrate by using laser, wherein laser energy density (E/D) during the laser lift off process may be 230 mJ/cm2 or less, preferably 220 mJ/cm2 or less.



[0044] According to one embodiment, the polyimide film may have the coefficient of thermal expansion (CTE) of 0 ppm/°C to 20 ppm/°C, preferably 0 ppm/°C to 15 ppm/°C at a heating process after conducting n+1 times (n is an integer equal to or greater than 0) heating and cooling process in a temperature range of from 100°C to 300°C.

[0045] According to one embodiment, the polyimide film has Yellow Index (YI) of 15 or less at a thickness of 8 µm to 15 µm, and haze of 2 or less.

[0046] Further, the present invention provides a method for manufacturing a composition for forming a polyimide film which comprises the following steps of:

polymerizing a diamine of the following Chemical Formula 5 and a tetracarboxylic dianhydride of the following Chemical Formula 6 in an organic solvent to prepare a first polyamic acid or a first polyimide;

polymerizing one or more of tetracarboxylic dianhydrides and one or more of diamines in an organic solvent to prepare a second polyamic acid having a weight average molecular weight of 50,000g/mol or more; and

mixing the first polyamic acid or the first polyimide and the second polyamic acid, wherein a weight average molecular weight of the first polyamic acid or the first polyimide is 500 g/mol to 40,000 g/mol.



[0047] Preferably, the second polyamic acid may be prepared by polymerizing a diamine of the following Chemical Formula 7 and a tetracarboxylic dianhydride of the following Chemical Formula 6 and Chemical Formula 8 together in an organic solvent:







wherein,
R1, R2, R3 and R4 may be each independently a substituent selected from a halogen atom selected from the group consisting of -F, -CI, -Br and -I, a hydroxyl group (-OH), a thiol group (-SH), a nitro group (-NO2), a cyano group (-CN), a C1-10 alkyl group, a C1-4 halogenoalkoxyl group, a C1-10 halogenoalkyl group, and a C6-20 aryl group.

[0048] According to one embodiment, the composition may comprise the diamine of Chemical Formula 5 in an amount of 3 mol% to 50 mol%, preferably 3 mol% to 30 mol% based on the total amount of the entire diamines.

[0049] According to one embodiment,
a silane compound of the following Chemical Formula 9 may be further added in the step of preparing the first polyamic acid or the first polyimide:

wherein,

Z is an isocyanate group (-N=C=O) or an amine group (-NH2),

R11 is a C1-10 alkylene group, and

R12, R13 and R14 are each independently selected from a C1-10 alkoxyl group, a C6-30 aryloxy group and a heterocyclic group containing 1 to 3 oxygen atoms.



[0050] According to one embodiment, the amount of silane compound of Chemical Formula 9 may be 10 parts by mole to 30 parts by mol based on the first polyamic acid or the first polyimide 100 parts by mol.

[0051] The silane compound of Chemical Formula 9 may act as a sealant by being combined with the terminal group of the first polyamic acid or the first polyimide.

[0052] According to one embodiment, in the first polyimide or the first polyamic acid, the tetracarboxylic dianhydride may be contained in an excess amount to the amount of the diamine, and preferably, the tetracarboxylic dianhydride and the diamine may be reacted at molar ratio of 1:0.75 to 1:0.99, more preferably at a molar ratio of 1:0.8 to 1:0.99. If the tetracarboxylic dianhydride is contained in an excess amount to the diamine, it may be easier to control viscosity or to enhance optical properties of a polyimide precursor, compared to the case that the tetracarboxylic dianhydride is reacted in an equal amount to the diamine or the case that the diamine is reacted in an excess amount to the tetracarboxylic dianhydride.

[0053] The reaction between tetracarboxylic dianhydrides and diamines may be performed according to the conventional polyamic acid polymerization method such as solution polymerization. Specifically, the polyamic acid can be manufactured by dissolving diamines in an organic solvent, adding tetracarboxylic dianhydrides to the mixed solution thus obtained and then polymerizing thereof. The reaction can be performed under inert gas or nitrogen atmosphere, and also can be performed in an anhydrous condition.

[0054] Further, the polymerization reaction can be performed at a temperature of - 20°C to 60°C, preferably 0°C to 45°C. If the reaction temperature is too high, molecular weight may be increased due to increased reactivity, and the viscosity of the polyamic acid solution may be increased. Thus, it may be disadvantageous in the process.

[0055] The polyamic acid solution manufactured by the manufacturing method mentioned above may preferably contain the solid in such an amount that the composition has an appropriate viscosity considering processability such as coatability during a film forming process. According to one embodiment, the amount of the polyamic acid solution may be controlled to have the total amount of the entire solution of 5 wt% to 20 wt%, preferably 8 wt% to 18 wt%, more preferably 8 wt% to 12 wt%.

[0056] Further, the amount of the polyamic acid solution may be controlled such that the polyamic acid solution has a viscosity of 2,000 cP or more or 3,000 cP or more, and the viscosity of the polyamic acid solution may be controlled to 10,000 cP or less, preferably 9,000 cP or less, more preferably 8,000 cP or less. If the viscosity of the polyamic acid solution is more than 10,000 cP, process efficiency may be deteriorated due to reduced defoamation efficiency when processing the polyimide film, and also electrical, optical and mechanical properties of the manufactured film may be deteriorated due to bad surface profile caused by bubble formation.

[0057] Further, the organic solvent, which can be used in the polyamic acid polymerization reaction and the composition for forming a polyimide film, may be a solvent having a positive partition coefficient (LogP value) at 25°C, and more specifically the solvent may have the partition coefficient (LogP value) of 0.01 to 3, 0.01 to 2, or 0.01 to 1. The partition coefficient may be calculated by using an ACD/LogP module of ACD/Percepta platform (ACD/Labs), and the ACD/LogP module uses algorithm based on Quantitative Structure-Property Relationship (QSPR) methodology which uses a 2D structure of a molecule.

[0058] The positive partition coefficient means the polarity of the solvent is hydrophobic. According to the study of the present inventors, it can be found that when coating the polyamic acid solution of the composition for forming a polyimide film on a substrate, the dewetting characteristic of the solution may be improved by polymerizing the polyamic acid and manufacturing the composition for forming a polyimide film by using a specific solvent with a positive partition coefficient value. Further, the present invention can control the dewetting phenomenon of the solution by using a solvent having a positive Log P value, without using additives such as a leveling agent, which adjusts the surface tension of a material and the smoothness of a film. Without using additional additives, problems on product quality and process, for example, a low molecular weight material contained in the final product can be solved, and a polyimide film having more uniform characteristics can be obtained.

[0059] For example, in the process of coating the composition for forming a polyimide film on a glass substrate, the dewetting phenomenon may occur due to shrinkage of the coated layer when curing or storing the coating solution coated on the substrate under a humidity condition. This dewetting phenomenon of the coating solution may cause variation in thickness of a film, and therefore, due to lack of flexibility of the film, the film may be cut or edges may be broken when cutting, resulting in poor working performance and reduced yield. Further, when fine polar foreign materials are introduced into the coating solution coated on a substrate, in the coating solution containing a polar solvent having a negative Log P value, sporadic cracks and thickness change of the coating may be formed around the position of the foreign material due to the polarity of the foreign material, but in the case of using a hydrophobic solvent having a positive Log P value, the thickness change caused by the cracks of the coating may be reduced or inhibited even in the case that the fine polar foreign materials are introduced.

[0060] Specifically, the composition for forming a polyimide film comprising the solvent having LogP as a positive value may have a dewetting rate of 0% to 0.1% as defined by the following Formula 1:

wherein,
  1. A: The area of the coating solution in the state that the coating solution was completely coated on the substrate (100 mm X 100 mm);
  2. B: The area of the coating solution or the polyimide (PI) film after the coating solution or the polyimide film is rolled up from the end of the coated substrate.


[0061] Such dewetting phenomenon of the coating solution and the film may occur within 30 min after coating the coating solution, and particularly, because the dewetting is started from the edge, the thickness of the edge may increase.

[0062] For example, after coating the composition for forming a polyimide film according to the present invention on a substrate and then storing thereof for 10 min or longer, for example, 10 min or longer, for example, 40 min or longer under a humidity condition, the dewetting rate of the coated solution may be 0.1% or less. For example, even after storing at a temperature of 20°C to 30°C and under a humidity condition of 40% or more, more specifically, under a humidity condition of a range from 40% to 80%, i.e., 40%, 50%, 60%, 70% and 80%, respectively, for example, 50%, for 10 min to 50 min, the dewetting rate may be very low as 0.1% or less, preferably 0.05%, more preferably near 0%.

[0063] The composition for forming a polyimide film according to the present invention can solve this dewetting phenomenon caused by the shrinkage of the coated layer, thus more improving the yield of a manufacturing process by obtaining a polyimide film with more uniform characteristics.

[0064] Further, the density of the solvent according to the present invention may be measured by a standard measuring method of ASTM D1475, and it may be 1 g/cm3 or less. If the density is more than 1 g/cm3, the relative viscosity may be increased and therefore the process efficiency may be reduced.

[0065] The solvent which can be used in the present invention may be selected from N,N-diethylacetamide (DEAc), N,N-diethylformamide (DEF), N-ethylpyrrolidone (NEP) or a mixture thereof.

[0066] Then, the polyamic acid thus obtained from the above polymerization reaction can be imidized to polyimide by a chemical imidization method or a thermal imidization method.

[0067] For example, the polyimide can be obtained by a imidization method using chemical reaction in which a dehydrating agent and an imidization catalyst is added to the polymerized polyamic acid solution and then the resulting solution is heated at a temperature of 50°C to 100°C, or by a chemical imidization method in which alcohol is removed while refluxing the above solution.

[0068] In the chemical imidization method, the imidization catalyst may be pyridine, triethylamine, picoline or quinoline and the like, and in addition, it may be substituted or unsubstituted nitrogen-containing heterocyclic compounds, N-oxide compounds of a nitrogen-containing heterocyclic compound, substituted or unsubstituted amino acid compounds, aromatic hydrocarbon compounds having a hydroxyl group or aromatic heterocyclic compounds. In particular, the catalyst may be imidazole derivatives such as lower alkylimidazoles, for example, 1,2-dimethylimidazole, N-methylimidazole, N-benzyl-2-methylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 5-methylbenzimidazole and the like; substituted pyridines, for example, isoquinoline, 3,5-dimethylpyridine, 3,4-dimethylpyridine, 2,5-dimethylpyridine, 2,4-dimethylpyridine, 4-n-propylpyridine and the like; p-toluene sulfonic acid and the like.

[0069] The dehydrating agent may be an acid anhydride such as acetic anhydride.

[0070] Alternatively, the imidization may be performed by coating the composition solution for forming a polyimide film comprising polyamic acid on a substrate and then heat-treating thereof.

[0071] The polyamic acid solution may be in the form of a solution dissolved in an organic solvent, and in this case, for example, when the polyamic acid is synthesized in the organic solvent, the solution may be the reaction solution thus obtained itself or a solution obtained by diluting the reaction solution with another solvent. Further, when the polyamic acid is obtained as solid powder, the solution may be a solution obtained by dissolving the powder in an organic solvent.

[0072] The present invention provides a method for manufacturing a polyimide film comprising the following steps of:

coating the composition for forming a polyimide film comprising the polyamic acid solution or the polyimide solution on a substrate; and

heat-treating the coated composition for forming a polyimide film on the substrate.



[0073] After coating the polyimide precursor solution on a substrate, the solution can be heat-treated in an IR oven or a hot air oven, or on a hot plate, and the heat-treatment may be performed at a temperature ranging from 300°C to 500°C, preferably 320°C to 480°C, and also may be performed by multi-step heating within the above temperature range. The heat-treating process may be performed for 20 min to 70 min, preferably 20 min to 60 min.

[0074] The organic solvent contained in the composition for forming a polyimide film of the present invention may be the same organic solvent used for the above synthesis reaction.

[0075] In a range that does not have an influence upon the effect of the present invention a silane coupling agent, a crosslinkable compound, an imidization catalyst for effectively proceeding imidization and the like can be added.

[Mode for Invention]



[0076] The present invention will be explained in detail with reference to the following examples, including test examples. However, these examples are provided for illustrative purposes only and are not intended to limit the scope of the invention.

DEAc: Diethylacetamide (N,N-diethylacetamide)

TFMB: 2,2'-Bis(trifluoromethyl)-4,4'-biphenyl diamine

DABA: 4,4'-Diaminobenzanilide

PMDA: Pyromellitic dianhydride

BPDA: 3,3',4,4'-Biphenyltetracarboxylic dianhydride

APTEOS: (3-Aminopropyl)triethoxysilane


Example


<Preparative Example 1> PAA 1 (PMDA:BPDA:TFMB=0.5:0.5:1)



[0077] DEAc 50 g was filled in an agitator under nitrogen atmosphere, and then TFMB 10.15 g was dissolved while maintaining the temperature of the reactor to 25°C. PMDA 3.5 g, BPDA 4.72 g and DEAc 50 g were added to the TFMB solution, and dissolved with stirring for a predetermined period of time while maintaining the temperature to 40°C. DEAc was added to the polyamic acid solution prepared from the above reaction to make the solid concentration 10 wt%, so as to prepare a PAA 1 polyamic acid composition. Weight average molecular weight of the PAA 1 polyamic acid prepared above was 101,000 g/mol.

<Preparative Example 2> PAA 2(BPDA/DABA=1:1)



[0078] DEAc 100 g was filled in an agitator under nitrogen atmosphere, DABA 8.005 g and BPDA 10.5 g were added while maintaining the temperature of the reactor to 25°C, and then dissolved with stirring for a predetermined period of time while maintaining the temperature to 40°C. DEAc was added to the polyamic acid solution prepared from the above reaction to make the solid concentration 10 wt%, so as to prepare a PAA 2 polyamic acid composition. Weight average molecular weight of the PAA 2 polyamic acid prepared above was 121,000 g/mol.

<Preparative Example 3> PAA 3(BPDA/DABA=1:0.8)



[0079] DEAc 180 g was filled in an agitator under nitrogen atmosphere, DABA 16.69 g and BPDA 27 g were added while maintaining the temperature of the reactor to 25°C, and then dissolved with stirring for a predetermined period of time while maintaining the temperature to 40°C. DEAc was added to the polyamic acid solution prepared from the above reaction to make the solid concentration 20 wt%, so as to prepare a PAA 3 polyamic acid composition. Weight average molecular weight of the PAA 3 polyamic acid prepared above was 10,800 g/mol.

<Preparative Example 4> PAA 4(BPDA/DABA=1:0.9)



[0080] DEAc 180 g was filled in an agitator under nitrogen atmosphere, DABA 18.77 g and BPDA 27 g were added while maintaining the temperature of the reactor to 25°C, and then dissolved with stirring for a predetermined period of time while maintaining the temperature to 40°C. DEAc was added to the polyamic acid solution prepared from the above reaction to make the solid concentration 20 wt%, so as to prepare a PAA 4 polyamic acid composition. Weight average molecular weight of the PAA 4 polyamic acid prepared above was 18,600 g/mol.

<Preparative Example 5> PAA 5(BPDA/DABA=1:0.9)_APTEOS 0.2



[0081] DEAc 180 g was filled in an agitator under nitrogen atmosphere, DABA 18.77 g and BPDA 27 g were added while maintaining the temperature of the reactor to 25°C, and then dissolved with stirring for a predetermined period of time while maintaining the temperature to 40°C. APTEOS 4.06 g was added to the polyamic acid solution prepared from the above reaction, and then DEAc was added to the polyamic acid solution prepared from the above reaction to make the solid concentration 20 wt%, so as to prepare a PAA 5 polyamic acid composition. Weight average molecular weight of the PAA 5 polyamic acid prepared above was 19,200 g/mol.

<Preparative Example 6> PI 1



[0082] DEAc 70 g, toluene 30 g, DABA 10.81 g and BPDA 7.00 g were filled together in an agitator under nitrogen atmosphere, and stirred at 165°C for 5 hours. Pyridine and acetic anhydride were added to the polyamic acid solution prepared from the above reaction, and then fully stirred at 180°C. Then precipitates were formed with a mixture solution of methanol and water and then dried. The dried polyimide powder was dissolved in DEAc to make the solid concentration of 20 wt%, so as to prepare a PI 1 polyimide composition. Weight average molecular weight of the PI 1 polyimide was 15,600 g/mol.

<Preparative Example 7> PI 2



[0083] DEAc 70 g, toluene 30 g, 4-aminobenzoic acid 12.12 g and BPDA 13.00 g were filled together in an agitator under nitrogen atmosphere, and stirred at 165°C for 5 hours. Pyridine and acetic anhydride were added to the polyamic acid solution prepared from the above reaction, and then fully stirred at 180°C. Then precipitates were formed with a mixture solution of methanol and water and then dried. The dried polyimide powder was dissolved in DEAc to make the solid concentration of 20 wt%. 3-(triethoxysilyl)propyl isocyanate 10.93 g was added to the polyimide solution 63 g prepared from the above reaction and stirred for a predetermined time to prepare a PI 2 polyimide composition. Weight average molecular weight of the PI 2 polyimide was 1,200 g/mol.

<Comparative Example 1>



[0084] PAA 1 polyamic acid solution was used.

<Comparative Example 2>



[0085] PAA 1 polyamic acid composition and PAA 2 polyamic acid composition were mixed to meet the composition of diamine and acid dianhydride listed in Table 1 to prepare a composition for forming a polyimide film.

<Comparative Example 3> PMDA:BPDA:TFMB:DABA=0.45:0.55:0.9:0.1



[0086] DEAc 50 g was filled in an agitator under nitrogen atmosphere, and then TFMB 9.79 g and DABA 0.772 g were dissolved while maintaining the temperature of the reactor to 25°C. PMDA 3.34 g and BPDA 5.50 g were added to the TFMB solution together with DEAc 60 g, and dissolved with stirring for a predetermined period of time while maintaining the temperature to 40°C. DEAc was added to the polyamic acid solution prepared from the above reaction to make the solid concentration 10 wt%, so as to prepare a composition for forming a polyimide film.

<Comparative Example 4> PMDA:BPDA:TFMB:DABA=0.35:0.65:0.7:0.3



[0087] DEAc 50 g was filled in an agitator under nitrogen atmosphere, and then TFMB 7.52 g and DABA 2.29 g were dissolved while maintaining the temperature of the reactor to 25°C. PMDA 2.60 g and BPDA 6.50 g were added to the TFMB solution together with DEAc 60 g, and dissolved with stirring for a predetermined period of time while maintaining the temperature to 40°C. DEAc was added to the polyamic acid solution prepared from the above reaction to make the solid concentration 10 wt%, so as to prepare a composition for forming a polyimide film.

<Comparative Example 5> PMDA:BPDA:TFMB:DABA=0.25:0.75:0.5:0.5



[0088] DEAc 50 g was filled in an agitator under nitrogen atmosphere, and then TFMB 5.37 g and DABA 3.81 g were dissolved while maintaining the temperature of the reactor to 25°C. PMDA 1.85 g and BPDA 7.50 g were added to the TFMB solution together with DEAc 55 g, and dissolved with stirring for a predetermined period of time while maintaining the temperature to 40°C. DEAc was added to the polyamic acid solution prepared from the above reaction to make the solid concentration 10 wt%, so as to prepare a composition for forming a polyimide film.

<Examples 1∼7>



[0089] The polyamic acid or polyimide compositions prepared in Preparative Examples 1 to 7 were mixed to meet the composition listed in Table 2, so as to prepare compositions for forming a polyimide film.

<Preparation of polyimide film>



[0090] The composition for forming a polyimide film prepared in Comparative Examples 1 to 5 and Examples 1 to 7 was spin coated on a glass substrate. The glass substrate coated with the composition for forming a polyimide film was put into an oven and heated at a rate of about 5°C/min, and heat-treated at 430°C for a curing process. After completing the curing process, laser of wavelength of 308 nm was irradiated on the polyimide film formed on the glass substrate for laser lift off of the polyimide film.

<Test Example 1>



[0091] The film manufactured by the above film manufacturing method was prepared as a sample in thickness of 8 µm to 12 µm and size of 5 x 20 mm, and the sample was loaded using an accessory. The length of the films measured actually was the same as 16 mm, and the force pulling the film was set to 0.02 N. The thermal expansion change pattern, when the 1st heating process and cooling process were performed within the temperature ranging from 100°C to 300°C at a heating rate of 5°C/min and then the 2nd heating process was performed within the temperature ranging from 300°C to 100°C at a cooling rate of 4°C/min, was measured with TMA (Q400, TA Instruments). At this time, an inflection point shown in a temperature rising section during the 1st heating process was regarded as Tg.

[0092] Haze was measured by the method according to ASTM D1003 using Haze Meter HM-.

[0093] Yellowness Index (YI) was measured by using a color-difference meter (Color Eye 7000A).

[0094] Energy Density(E/D) of laser applied when detaching the polyimide film was measured using Excimer Laser (308nm, Coherent).
[Table 1]
 Comparative Example 1Comparative Example 2Comparative Example 3Comparative Example 4Comparative Example 5
Solution Polymerization method 1-pot copolymer PAA1 1-pot copolymer 1-pot copolymer 1-pot Copolymer
PAA2
blending
Diamine Composition (mol%) TFMB/DABA 100/0 90/10 90/10 70/30 50/50
Dianhydride Composition (mol%) PMDA/BPDA 50/50 45/55 45/55 35/65 25/75
Solution state Clear Hazy Clear Clear Clear
Thickness 9.3 - 9.9 9.8 10.4
Y.I. 7.1 - 16.8 28.5 36.8
Haze 0.9 - 3.3 3.2 0.7
CTE 2nd Heating (100-300°C) 15.5 - 36.5 22.7 3.6
Tg(°C) 363 - 335 335 345
Laser E/D (mJ/cm2) 250 - 210 190 180
[Table 2]
 Example 1Example 2Example 3Example 4Example 5Example 6Example 7
Solution Polymerization method PAA1 PAA1 PAA1 PAA1 PAA1 PAA1 PAA1
PAA3 PAA3 PAA4 PAA5 PAA4 PI1 PI2
blending blending blending blending blending blending blending
Diamine Composition (mol%) TFMB/DABA 95/5 90/10 90/10 70/30 50/50 90/10 95/5
Dianhydride Composition (mol%) PMDA/BPDA 47.5/52.5 45/55 45/55 45/55 40/60 45/55 47.5/52.5
Solution state Clear Clear Clear Clear Clear Clear Clear
Thickness 10.2 9.9 10.3 9.5 10 10.5 9.5
Y.I. 8.1 10 12.9 12.8 17.5 13.6 12.5
Haze 0.6 0.8 0.9 1.2 1.2 1.1 1.0
CTE 2nd Heating (100-300°C) 13.9 12.5 12.2 5.6 5.0 6.5 8.8
Tg(°C) 360 362 365 353 372 370 360
Laser E/D (mJ/cm2) 220 210 210 210 200 210 210


[0095] As can be seen from Table 1 and Table 2, Example 1 to Example 7, which were manufactured by mixing (blending) the BPDA-DABA polyamic acid or polyimide having low molecular weight to the PAA 1 polyamic acid, could maintain transparency of a polyimide solution. On the contrary, the polyimide solution of Comparative Example 2, which has the same structure but include the BPDA-DABA polyamic acid having a higher molecular weight lost transparency of a polyimide solution.

[0096] It can be found that the polyimide films of Example 1 to Example 7 having low laser E/D value had excellent laser lift off characteristic, also maintained optical properties such as YI and haze, and also had excellent heat resistance due to its low CTE value.

[0097] On the contrary, Comparative Example 1 not including the BPDA-DABA structure has very high E/D value, and Comparative Examples 3 to 5 manufactured by copolymerization method not blending showed low laser E/D value because of including the BPDA-DABA structure, but bad optical properties due to its high YI and haze, and also had bad heat resistance due to its high CTE value.


Claims

1. A composition for forming a polyimide film which comprises:

a first polyimide including a repeating unit of the following Chemical Formula 1-1 or a first polyamic acid including a repeating unit of the following Chemical Formula 1-2; and

a second polyamic acid having a weight average molecular weight of 50,000 g/mol or more,

wherein the first polyimide or the first polyamic acid has a weight average molecular weight of 500 g/mol to 40,000 g/mol:





wherein,
R1 and R2 are each independently hydrogen atom or a substituent selected from a halogen atom, a hydroxyl group (-OH), a thiol group (-SH), a nitro group (-NO2), a cyano group (-CN), a C1-10 alkyl group, a C1-4 halogenoalkoxyl group, a C1-10 halogenoalkyl group, and a C6-20 aryl group.
 
2. The composition for forming a polyimide film according to claim 1, wherein the second polyamic acid includes repeating units of the following Chemical Formula 2 and Chemical Formula 3:





wherein,
R3 and R4 are each independently hydrogen atom or a substituent selected from a halogen atom, a hydroxyl group (-OH), a thiol group (-SH), a nitro group (-NO2), a cyano group (-CN), a C1-10 alkyl group, a C1-4 halogenoalkoxyl group, a C1-10 halogenoalkyl group, and a C6-20 aryl group.
 
3. The composition for forming a polyimide film according to claim 1, wherein the amount of the repeating unit of Chemical Formula 1-1 or Chemical Formula 1-2 is from 3 mol% to 50 mol% based on the total repeating units of the first polyimide or the first polyamic acid and the second polyamic acid.
 
4. The composition for forming a polyimide film according to claim 1, wherein the first polyimide or the first polyamic acid includes a terminal group including a structure of the following Chemical Formula 4:

wherein,

R11 is a C1-10 alkylene group, and

R12, R13 and R14 are each independently selected from a C1-10 alkoxyl group, a C6-30 aryloxy group and a heterocyclic group containing 1 to 3 oxygen atoms.


 
5. A method for manufacturing a polyimide film which comprises the following steps of:

coating the composition for forming a polyimide film according to claim 1 on a carrier substrate;

heat-treating the coated composition to form a polyimide film layer; and

laser lifting off to detach the polyimide film layer from the carrier substrate by using a laser having a laser energy density (E/D) of 230 mJ/cm2 or less during the laser lift off process


 
6. A method for manufacturing a composition for forming a polyimide film which comprises the following steps of:

polymerizing a diamine of the following Chemical Formula 5 and a tetracarboxylic dianhydride of the following Chemical Formula 6 in an organic solvent to prepare a first polyamic acid or a first polyimide;

polymerizing one or more of tetracarboxylic dianhydrides and one or more of diamines in an organic solvent to prepare a second polyamic acid; and

mixing the first polyamic acid or the first polyimide with the second polyamic acid,

wherein the first polyamic acid or the first polyimide has a weight average molecular weight of 500 g/mol to 40,000 g/mol, and the second polyamic acid has a molecular weight of 50,000 g/mol or more:







wherein,
R1 and R2 are each independently hydrogen atom or a substituent selected from a halogen atom, a hydroxyl group (-OH), a thiol group (-SH), a nitro group (-NO2), a cyano group (-CN), a C1-10 alkyl group, a C1-4 halogenoalkoxyl group, a C1-10 halogenoalkyl group, and a C6-20 aryl group.
 
7. The method for manufacturing a composition for forming a polyimide film according to claim 6, wherein the second polyamic acid is prepared by polymerizing a diamine of the following Chemical Formula 7 and tetracarboxylic dianhydrides of the following Chemical Formula 6 and the following Chemical Formula 8 in an organic solvent:







wherein,
R3 and R4 are each independently hydrogen atom or a substituent selected from a halogen atom, a hydroxyl group (-OH), a thiol group (-SH), a nitro group (-NO2), a cyano group (-CN), a C1-10 alkyl group, a C1-4 halogenoalkoxyl group, a C1-10 halogenoalkyl group, and a C6-20 aryl group.
 
8. The method for manufacturing a composition for forming a polyimide film according to claim 6, wherein the amount of the diamine of Chemical Formula 5 is from 3 mol% to 50 mol% based on the total amount of the entire diamines used for preparing the first polyimide or the first polyamic acid and the second polyamic acid.
 
9. The method for manufacturing a composition for forming a polyimide film according to claim 6, wherein a silane compound of the following Chemical Formula 9 is further added in the step of preparing the first polyamic acid:

wherein,

Z is an isocyanate group (-N=C=O) or an amine group (-NH2),

R11 is a C1-10 alkylene group, and

R12, R13 and R14 are each independently selected from a C1-10 alkoxyl group, a C6-30 aryloxy group and a heterocyclic group containing 1 to 3 oxygen atoms.


 
10. The method for manufacturing a composition for forming a polyimide film according to claim 9, wherein the silane compound of Chemical Formula 9 is added in an amount of 10 parts by mole to 30 parts by mol based on 100 parts by mol of the first polyamic acid or the first polyimide.
 
11. The method for manufacturing a composition for forming a polyimide film according to claim 6, wherein the organic solvent has a positive LogP value.
 
12. The method for manufacturing a composition for forming a polyimide film according to claim 11, wherein the organic solvent having a positive LogP value is selected from N,N-diethylacetamide,(DEAc), N,N-diethylformamide (DEF), N-ethylpyrrolidone (NEP) or a mixture thereof.
 
13. A polyimide film comprising a heat-cured composition of claim 1.
 
14. A polyimide film according to claim 13, which shows coefficient of thermal expansion (CTE) of 0 ppm/°C to 20 ppm/°C at a heating process after repeating n+1 times (n is an integer equal to or greater than 0) heating and cooling process in a temperature range of from 100°C to 300°C.
 
15. The polyimide film according to claim 13, wherein a yellow index (YI) of the film is 15 or less at a thickness of 8 µm to 15 µm, and a haze of the film is 2 or less.
 


Ansprüche

1. Zusammensetzung zum Bilden eines Polyimidfilms, die umfasst:

ein erstes Polyimid, das eine Wiederholungseinheit der folgenden chemischen Formel 1-1 einschließt, oder eine erste Polyamidsäure, die eine Wiederholungseinheit der folgenden chemischen Formel 1-2 einschließt; und

eine zweite Polyamidsäure mit einem Gewichtsmittel des Molekulargewichts von 50.000 g/mol oder mehr,

wobei das erste Polyimid oder die erste Polyamidsäure ein Gewichtsmittel des Molekulargewichts von 500 g/mol bis 40.000 g/mol hat:





wobei
R1 und R2 jeweils unabhängig ein Wasserstoffatom oder ein Substituent, ausgewählt aus einem Halogenatom, einer Hydroxylgruppe (-OH), einer Thiolgruppe (-SH), einer Nitrogruppe (-NO2), einer Cyanogruppe (-CN), einer C1-10-Alkylgruppe, einer C1-4-Halogenalkoxylgruppe, einer C1-10-Halogenalkylgruppe und einer C6-20-Arylgruppe, sind.
 
2. Zusammensetzung zum Bilden eines Polyimidfilms nach Anspruch 1, wobei die zweite Polyamidsäure Wiederholungseinheiten der folgenden chemischen Formel 2 und chemischen Formel 3 einschließt:



wobei
R3 und R4 jeweils unabhängig ein Wasserstoffatom oder ein Substituent, ausgewählt aus einem Halogenatom, einer Hydroxylgruppe (-OH), einer Thiolgruppe (-SH), einer Nitrogruppe (-NO2), einer Cyanogruppe (-CN), einer C1-10-Alkylgruppe, einer C1-4-Halogenalkoxylgruppe, einer C1-10-Halogenalkylgruppe und einer C6-20-Arylgruppe, sind.
 
3. Zusammensetzung zum Bilden eines Polyimidfilms nach Anspruch 1, wobei die Menge der Wiederholungseinheit der chemischen Formel 1-1 oder chemischen Formel 1-2 von 3 mol% bis 50 mol% ist, bezogen auf die gesamten Wiederholungseinheiten des ersten Polyimids oder der ersten Polyamidsäure und der zweiten Polyamidsäure.
 
4. Zusammensetzung zum Bilden eines Polyimidfilms nach Anspruch 1, wobei das erste Polyimid oder die erste Polyamidsäure eine terminale Gruppe einschließt, die eine Struktur der folgenden chemischen Formel 4 einschließt:

wobei

R11 eine C1-10-Alkylengruppe ist, und

R12, R13 und R14 jeweils unabhängig ausgewählt sind aus einer C1-10-Alkoxylgruppe, einer C6-30-Aryloxygruppe und einer heterozyklischen Gruppe, die 1 bis 3 Sauerstoffatome enthält, einschließt.


 
5. Verfahren zum Herstellen eines Polyimidfilms, das die folgenden Schritte umfasst:

Beschichten der Zusammensetzung zum Bilden eines Polyimidfilms nach Anspruch 1 auf ein Trägersubstrat;

Wärmebehandeln der beschichteten Zusammensetzung, um eine Polyimidfilmschicht zu bilden; und

Laserabhebung, um die Polyimidfilmschicht von dem Trägersubstrat zu lösen, unter Verwendung eines Lasers mit einer Laserenergiedichte (E/D) von 230 mJ/cm2 oder weniger während des Laserabhebungsverfahrens.


 
6. Verfahren zum Herstellen einer Zusammensetzung zum Bilden eines Polyimidfilms, das die folgenden Schritte umfasst:

Polymerisieren eines Diamins der folgenden chemischen Formel 5 und eines Tetracarboxyldianhydrids der folgenden chemischen Formel 6 in einem organischen Lösungsmittel, um eine erste Polyamidsäure oder ein erstes Polyimid herzustellen;

Polymerisieren eines oder mehrerer Tetracarboxyldianhydride und eines oder mehrerer Diamine in einem organischen Lösungsmittel, um eine zweite Polyamidsäure herzustellen; und

Mischen der ersten Polyamidsäure oder des ersten Polyimids mit der zweiten Polyamidsäure,

wobei die erste Polyamidsäure oder das erste Polyimid ein Gewichtsmittel des Molekulargewichts von 500 g/mol bis 40.000 g/mol hat, und die zweite Polyamidsäure ein Molekulargewicht von 50.000 g/mol oder mehr hat:





wobei
R1 und R2 jeweils unabhängig ein Wasserstoffatom oder ein Substituent, ausgewählt aus einem Halogenatom, einer Hydroxylgruppe (-OH), einer Thiolgruppe (-SH), einer Nitrogruppe (-NO2), einer Cyanogruppe (-CN), einer C1-10-Alkylgruppe, einer C1-4-Halogenalkoxylgruppe, einer C1-10-Halogenalkylgruppe und einer C6-20-Arylgruppe, sind.
 
7. Verfahren zum Herstellen einer Zusammensetzung zum Bilden eines Polyimidfilms nach Anspruch 6, wobei die zweite Polyamidsäure durch Polymerisieren eines Diamins der folgenden chemischen Formel 7 und eines Tetracarboxylsäuredianhydrids der folgenden chemischen Formel 6 und der folgenden chemischen Formel 8 in einem organischen Lösungsmittel hergestellt wird:





wobei
R3 und R4 jeweils unabhängig ein Wasserstoffatom oder ein Substituent, ausgewählt aus einem Halogenatom, einer Hydroxylgruppe (-OH), einer Thiolgruppe (-SH), einer Nitrogruppe (-NO2), einer Cyanogruppe (-CN), einer C1-10-Alkylgruppe, einer C1-4-Halogenalkoxylgruppe, einer C1-10-Halogenalkylgruppe und einer C6-20-Arylgruppe, sind.
 
8. Verfahren zum Herstellen einer Zusammensetzung zum Bilden eines Polyimidfilms nach Anspruch 6, wobei die Menge des Diamins der chemischen Formel 5 von 3 mol% bis 50 mol% ist, bezogen auf die Gesamtmenge der gesamten Diamine, die zum Herstellen des ersten Polyimids oder der ersten Polyamidsäure und der zweiten Polyamidsäure verwendet werden.
 
9. Verfahren zum Herstellen einer Zusammensetzung zum Bilden eines Polyimidfilms nach Anspruch 6, wobei eine Silanverbindung der folgenden chemischen Formel 9 ferner im Schritt des Herstellens der ersten Polyamidsäure zugegeben wird:

wobei

Z eine Isocyanatgruppe (-N=C=O) oder eine Amingruppe (-NH2) ist,

R11 eine C1-10-Alkylengruppe ist, und

R12, R13 und R14 jeweils unabhängig ausgewählt sind aus einer C1-10-Alkoxylgruppe, einer C6-30-Aryloxygruppe und einer heterozyklischen Gruppe, die 1 bis 3 Sauerstoffatome einschließt.


 
10. Verfahren zum Herstellen einer Zusammensetzung zum Bilden eines Polyimidfilms nach Anspruch 9, wobei die Silanverbindung der chemischen Formel 9 in einer Menge von 10 Molteilen bis 30 Molteilen, bezogen auf 100 Molteile der ersten Polyamidsäure oder des ersten Polyimids, zugegeben wird.
 
11. Verfahren zum Herstellen einer Zusammensetzung zum Bilden eines Polyimidfilms nach Anspruch 6, wobei das organische Lösungsmittel einen positiven LogP-Wert hat.
 
12. Verfahren zum Herstellen einer Zusammensetzung zum Bilden eines Polyimidfilms nach Anspruch 11, wobei das organische Lösungsmittel mit einem positiven LogP-Wert aus N,N-Diethylacetamid (DEAc), N,N-Diethylformamid (DEF), N-Ethylpyrrolidon (NEP) oder einem Gemisch davon ausgewählt ist.
 
13. Polyimidfilm, umfassend eine wärmegehärtete Zusammensetzung nach Anspruch 1.
 
14. Polyimidfilm nach Anspruch 13, der einen Koeffizienten der thermischen Expansion (CTE) von o ppm/°C bis 20 ppm/°C bei einem Heizprozess nach n+1-maliger Wiederholung (n ist eine ganze Zahl gleich oder größer als o) eines Heiz- und Abkühlprozesses in einem Temperaturbereich von 100°C bis 300°C aufweist.
 
15. Polyimidfilm nach Anspruch 13, wobei ein Gelb-Index (YI) des Films 15 oder weniger bei einer Dicke von 8 µm bis 15 µm ist, und eine Trübung des Films 2 oder weniger ist.
 


Revendications

1. Composition permettant de former un film polyimide qui comprend :

un premier polyimide incluant une unité de répétition de la Formule chimique 1-1 ci-après ou un premier acide polyamique incluant une unité de répétition de la Formule chimique 1-2 ci-après ; et

un deuxième acide polyamique ayant une masse moléculaire moyenne en poids égale ou supérieure à 50 000 g/mol,

dans laquelle le premier polyimide ou le premier acide polyamique a une masse moléculaire moyenne en poids comprise entre 500 g/mol et 40 000 g/mol :





dans laquelle,
R1 et R2 sont chacun indépendamment un atome d'hydrogène ou un substituant sélectionné parmi un atome d'halogène, un groupe hydroxyle (-OH), un groupe thiol (-SH), un groupe nitro (-NO2), un groupe cyano (-CN), un groupe alkyle en C1-10, un groupe halogénoalkoxyle en C1-4, un groupe halogénoalkyle en C1-10 et un groupe aryle en C6-20.
 
2. Composition permettant de former un film polyimide selon la revendication 1, dans laquelle le deuxième acide polyamique inclut des unités de répétition de la Formule chimique 2 ci-après et de la Formule chimique 3 ci-après :





dans laquelle,
R3 et R4 sont chacun indépendamment un atome d'hydrogène ou un substituant sélectionné parmi un atome d'halogène, un groupe hydroxyle (-OH), un groupe thiol (-SH), un groupe nitro (-NO2), un groupe cyano (-CN), un groupe alkyle en C1-10, un groupe halogénoalkyle en C1-4, un groupe halogénoalkyle en C1-10 et un groupe aryle en C6-20.
 
3. Composition permettant de former un film polyimide selon la revendication 1, dans laquelle la quantité d'unités de répétition de la Formule chimique 1-1 ou de la Formule chimique 1-2 est comprise entre 3 % en moles et 50 % en moles sur la base du total d'unités de répétition du premier polyimide ou du premier acide polyamique et du deuxième acide polyamique.
 
4. Composition permettant de former un film polyimide selon la revendication 1, dans laquelle le premier polyimide ou le premier acide polyamique inclut un groupe terminal incluant une structure de la Formule chimique 4 ci-après :

dans laquelle,

R11 est un groupe alkylène en C1-10, et

R12, R13 et R14 sont chacun indépendamment sélectionnés parmi un groupe alkoxyle en C1-10, un groupe aryloxy en C6-30 et un groupe hétérocyclique contenant 1 à 3 atomes d'oxygène.


 
5. Procédé de préparation d'un film polyimide qui comprend les étapes suivantes consistant à :

enduire la composition permettant de former un film polyimide selon la revendication 1 sur un substrat de support ;

traiter thermiquement la composition enduite pour former une couche de film polyimide ; et

décoller au laser pour détacher la couche de film polyimide du substrat de support en utilisant un laser ayant une densité d'énergie de laser (E/D) égale ou inférieure à 230 mJ/cm2 durant le processus de décollement au laser.


 
6. Procédé de préparation d'une composition permettant de former un film polyimide qui comprend les étapes suivantes consistant à :

polymériser une diamine de la Formule chimique 5 ci-après et un dianhydride tétracarboxylique de la Formule chimique 6 ci-après dans un solvant organique pour préparer un premier acide polyamique ou un premier polyimide ;

polymériser un ou plusieurs des dianhydrides tétracarboxyliques et une ou plusieurs des diamines dans un solvant organique pour préparer un deuxième acide polyamique ; et

mélanger le premier acide polyamique ou le premier polyimide avec le deuxième acide polyamique,

dans lequel le premier acide polyamique ou le premier polyimide a une masse moléculaire moyenne en poids comprise entre 500 g/mol et 40 000 g/mol, et le deuxième acide polyamique a une masse moléculaire égale ou supérieure à 50 000 g/mol :





dans lequel,
R1 et R2 sont chacun indépendamment un atome d'hydrogène ou un substituant sélectionné parmi un atome d'halogène, un groupe hydroxyle (-OH), un groupe thiol (-SH), un groupe nitro (-NO2), un groupe cyano (-CN), un groupe alkyle en C1-10, un groupe halogénoalkyle en C1-4, un groupe halogénoalkyle en C1-10 et un groupe aryle en C6-20.
 
7. Procédé de préparation d'une composition permettant de former un film polyimide selon la revendication 6, dans lequel le deuxième acide polyamique est préparé en polymérisant une diamine de la Formule chimique 7 ci-après et des dianhydrides tétracarboxyliques de la Formule chimique 6 ci-après et de la Formule chimique 8 ci-après dans un solvant organique :







dans lequel,
R3 et R4 sont chacun indépendamment un atome d'hydrogène ou un substituant sélectionné parmi un atome d'halogène, un groupe hydroxyle (-OH), un groupe thiol (-SH), un groupe nitro (-NO2), un groupe cyano (-CN), un groupe alkyle en C1-10, un groupe halogénoalkoxyle en C1-4, un groupe halogénoalkyle en C1-10 et un groupe aryle en C6-20.
 
8. Procédé de préparation d'une composition permettant de former un film polyimide selon la revendication 6, dans lequel la quantité de diamine de la Formule chimique 5 est comprise entre 3 % en moles et 50 % en moles sur la base de la quantité totale de la totalité de diamines utilisées pour préparer le premier polyimide ou le premier acide polyamique et le deuxième acide polyamique.
 
9. Procédé de préparation d'une composition permettant de former un film polyimide selon la revendication 6, dans lequel un composé de silane de la Formule chimique 9 ci-après est ajouté en outre à l'étape consistant à préparer le premier acide polyamique :

dans lequel,

Z est un groupe isocyanate (-N=C=O) ou un groupe amine (-NH2),

R11 est un groupe alkylène en C1-10, et

R12, R13 et R14 sont chacun indépendamment sélectionnés parmi un groupe alkoxyle en C1-10, un groupe aryloxy en C6-30 et un groupe hétérocyclique contenant 1 à 3 atomes d'oxygène.


 
10. Procédé de préparation d'une composition permettant de former un film polyimide selon la revendication 9, dans lequel le composé de silane de la Formule chimique 9 est ajouté dans une quantité comprise entre 10 parties par mole et 30 parties par mole sur la base de 100 parties par mole du premier acide polyamique ou du premier polyimide.
 
11. Procédé de préparation d'une composition permettant de former un film polyimide selon la revendication 6, dans lequel le solvant organique a une valeur LogP positive.
 
12. Procédé de préparation d'une composition permettant de former un film polyimide selon la revendication 11, dans lequel le solvant organique ayant une valeur LogP positive est sélectionné parmi N,N-diméthylacétamide (DEAc), N,N-diéthylformamide (DEF), N-éthylpyrrolidone (NEP) ou un mélange de ces derniers.
 
13. Film polyimide comprenant une composition thermodurcie selon la revendication 1.
 
14. Film polyimide selon la revendication 13, qui présente un coefficient de dilatation thermique (CDT) compris entre 0 ppm/°C et 20 ppm/°C lors d'un processus de chauffage après avoir répété n+1 fois (n est un nombre entier égal ou supérieur à 0) un processus de chauffage et de refroidissement dans une plage de température comprise entre 100°C et 300°C.
 
15. Film polyimide selon la revendication 13, dans lequel un indice de jaune (YI) du film est égal ou supérieur à 15 à une épaisseur comprise entre 8 µm et 15 µm, et un trouble du film est égal ou inférieur à 2.