(19)
(11)EP 3 507 678 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.09.2020 Bulletin 2020/37

(21)Application number: 17761981.4

(22)Date of filing:  23.08.2017
(51)International Patent Classification (IPC): 
G06F 3/01(2006.01)
(86)International application number:
PCT/US2017/048099
(87)International publication number:
WO 2018/044634 (08.03.2018 Gazette  2018/10)

(54)

3D HAPTICS FOR INTERACTIVE COMPUTER SYSTEMS

3D-HAPTIK FÜR INTERAKTIVE COMPUTERSYSTEME

HAPTIQUE 3D POUR SYSTÈMES INFORMATIQUES INTERACTIFS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 02.09.2016 US 201615255866

(43)Date of publication of application:
10.07.2019 Bulletin 2019/28

(73)Proprietor: Microsoft Technology Licensing LLC
Redmond, Washington 98052-6399 (US)

(72)Inventors:
  • SINCLAIR, Michael Jack
    Redmond Washington 98052-6399 (US)
  • OFEK, Eyal
    Redmond Washington 98052-6399 (US)
  • BENKO, Hrvoje
    Redmond Washington 98052-6399 (US)
  • HOLZ, Christian
    Redmond Washington 98052-6399 (US)

(74)Representative: CMS Cameron McKenna Nabarro Olswang LLP 
Cannon Place 78 Cannon Street
London EC4N 6AF
London EC4N 6AF (GB)


(56)References cited: : 
US-A1- 2010 245 237
US-B1- 9 142 105
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD



    [0001] The present disclosure relates to providing haptic feedback to a user of a controller device.

    BACKGROUND



    [0002] The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent the work is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.

    [0003] Interactive computer systems implementing a virtual environment may include, but are not limited to, virtual reality (VR) systems, augmented reality systems, gaming systems, etc. For example only, VR systems provide a visual and audio representation of a three dimensional (3D) VR environment to a user. In some examples, the VR environment corresponds to a gaming environment. A VR system may provide the visual representation of the VR environment using a display, a headset incorporating a display, etc.

    [0004] The user may interact with the VR environment or other type of interactive computer system using a one or more controller devices. Controller devices include, but are not limited to, handheld (i.e., remote) controllers, gloves or other wearable devices, etc. configured to communicate with the VR system. For example, the controller devices may provide indications of respective positions (e.g., 6 degree-of-freedom, or 6-DOF, positions) of the controller devices to the VR system. The position indications may further indicate positions, orientations, movements, etc. of the respective hands holding the controller devices. In some examples, the VR system implements optical tracking to determine positions and movements of the controller devices. In this manner, the user is able to interact with (e.g., provide inputs to) the VR environment. The controller devices may also include other input mechanisms, such as buttons, touchpads, trackpads, etc. for receiving user inputs and causing further interaction with the VR environment.
    US 2010/245237 A1 discloses a virtual reality environment generating apparatus including a non-base type interface configured to allow a user to haptically touch virtual objects and game characters.
    US 9142105 B1 discloses a haptic device operated alone or interacts with other physical or virtual devices of similar design that enable users to remotely image, analyze, or manipulate objects, either manually and or with the assistance of computer programs.

    SUMMARY



    [0005] According to aspects of the present invention there is provided a device and a method as defined in the accompanying claims.

    [0006] A controller device for a virtual environment includes a handle and a contact device having a substantially planar surface. A position of the contact device relative to the handle is adjustable. An actuator module is arranged to adjust the position of the contact device relative to the handle. A control module in communication with the virtual environment selectively controls the actuator module to adjust the position of the contact device in response to data received from the virtual environment. The data includes an indication of an interaction between a user and an object represented within the virtual environment.

    [0007] A method for operating a controller device for a virtual environment includes displaying an object within the virtual environment, generating data including an indication of interaction between a user and a surface of the object, providing the data to an actuator of the controller device, and using the actuator adjusting a position of a contact device relative to a handle of the controller device based on the data.

    [0008] Further areas of applicability of the present disclosure will become apparent from the detailed description, the claims and the drawings. The detailed description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the disclosure.

    BRIEF DESCRIPTION OF DRAWINGS



    [0009] 

    FIG. 1 is an example virtual reality system according to the principles of the present disclosure.

    FIG. 2 is a simplified virtual reality system including a controller device shown in more detail according to the principles of the present disclosure.

    FIG. 3A is a side view of a first example controller device according to the principles of the present disclosure.

    FIG. 3B is a plan view of the first example controller device according to the principles of the present disclosure.

    FIGS. 4A and 4B are a first example contact device and actuator module according to the principles of the present disclosure.

    FIGS. 5A and 5B illustrate example operation of the first example controller device according to the principles of the present disclosure.

    FIG. 6A is a side view of a second example controller device according to the principles of the present disclosure.

    FIG. 6B is a plan view of the second example controller device according to the principles of the present disclosure.

    FIG. 7 is a second example contact device and actuator module according to the principles of the present disclosure.

    FIG. 8 illustrates example operation of the second example controller device according to the principles of the present disclosure.

    FIG. 9 is an example method for providing feedback to a user of a virtual reality system according to the principles of the present disclosure.



    [0010] In the drawings, reference numbers may be reused to identify similar and/or identical elements.

    DESCRIPTION



    [0011] Some controller devices for virtual reality (VR) systems implement one or more mechanisms for providing feedback to the user. The feedback may be indicative of various features of a VR environment (e.g. proximity to objects, such as walls or other structures, the occurrence of an event within a certain range of the user, etc.) and/or responsive to user behavior within the VR environment (e.g., firing a virtual weapon, interacting with an object, etc.).

    [0012] Example feedback includes vibration, audio indicators (e.g., beeps), etc. The feedback provided to users via handheld or wearable controller devices may not accurately represent the interaction of the user with the VR environment. For example, feedback such as vibration may not accurately convey haptic interaction with objects in the VR environment to the user.

    [0013] Systems and methods according to the principles of the present disclosure provide haptic feedback to a user in response to interaction with objects, surfaces, etc. in the VR environment. For example, a controller device according to the principles of the present disclosure includes a contact device (e.g., a platform, pad, etc.) with a contact surface arranged to receive a fingertip of the user. The controller device is configured to adjust the contact surface of the contact device according to interaction between the user and the VR environment to provide haptic feedback (e.g., cutaneous and/or kinesthetic feedback). For example, in some implementations, the controller device adjusts an orientation of the contact surface in response to the user touching an object or surface in the VR environment. In other implementations, the controller device adjusts a texture of the contact surface. Although described with respect to VR systems, the principles of the present disclosure may also be included in other interactive computer systems implementing a virtual environment, including, but not limited to, augmented reality systems and gaming systems using a display such as a pc or laptop monitor, a gaming console using a television, etc. Accordingly, as used herein, the term "virtual reality system" may be used to indicate any interactive computer system implementing a virtual environment.

    [0014] FIG. 1 shows an example VR system 100. The VR system 100 includes a host device (e.g., a computer, gaming console, etc.) 104 and one or more peripheral devices, such as a controller device 108 according to the principles of the present disclosure and a display 112. In some examples, the VR system 100 may include a tracking system 116 (e.g., an optical tracking system) configured to track movements of a user and/or the controller device 108. The VR system 100 may include other inputs 120 (e.g., a keyboard, mouse, wireless inputs, voice input mechanism such as a microphone, etc.) and other outputs 124 (e.g., speakers, secondary displays, wireless outputs, etc.).

    [0015] The host device 104 includes one or more interfaces 128 for communicating with the peripheral devices. For example, the interfaces 128 may include, but are not limited to, input/output (I/O) interfaces and adapters (e.g., universal serial bus, or USB), and wired or wireless communication interfaces (WiFi, Bluetooth, cellular, wired Ethernet, etc.) for communicating with a network 136. The interfaces 128 allow data to be transmitted between the peripheral devices and/or the network 132 and a control module 136.

    [0016] The control module 136 controls processing of data related to operation of the VR system 100. For example, the control module 136 may correspond to one or more processors configured to execute an operating system of the host device 104 and one or more programs stored in disk storage 140, memory 144, a cloud computing system (e.g., via network 132), etc. to implement a VR environment. For example only, the disk storage 140 may correspond to a hard disk drive (HDD), solid state drive (SSD), a removable media drive such as a CD or DVD ROM drive, flash memory, etc. The memory 144 may correspond to system memory and may include, but it is not limited to, volatile and/or non-volatile semiconductor memory.

    [0017] FIG. 2 shows a simplified VR system 200 including only a host device 204, controller device 208, display 212, and tracking system 216. The controller device 208 includes a control module 220, a contact device 224, input sensors 228, and output actuators 232 configured to implement the systems and methods according to the principles of the present disclosure. The controller device 208 includes communication interfaces (e.g., wired and/or wireless communication interfaces) 236 for communicating data between the controller device 208 and the host device 204. The controller device 208 may include other inputs 240 and other outputs 244. For example, the other inputs 240 may include, but are not limited to, a microphone for receive voice inputs, buttons, a touchpad or touchscreen interface (e.g., for providing an indication of a relative position of a fingertip on the contact device 224), etc. The other outputs 244 may include, but are not limited to, audio outputs, an integrated display, LEDs, other feedback mechanisms (e.g., vibration), etc. The control module 220 controls the operation of the controller device 208 based on data received from the host device 204, contact device 224, and inputs 240, and provides data indicative of user interaction with the controller device 204 to the host device 204 as described below in more detail.

    [0018] The host device 204 provides interaction data indicative of user interaction with the VR environment to the control module 22. For example, the user interacts with the VR environment (e.g., as presented to the user via the display 212) using the controller device 208. In some examples, the tracking system 216 tracks user movement by monitoring movement of the controller device 208 and provides tracking data indicative of the user movement to the host device 204. The host device 204 generates and outputs the interaction data based on the tracking data received from the tracking system and, in some examples, further based on user input data received from the controller device 208 (e.g., user input data generated in response to user interaction with contact device 224, inputs 240, etc.).

    [0019] The control module 220 controls the contact device 224 based on the interaction data. For example, the interaction data may include characteristics of the interaction between the user and the VR environment. The characteristics may correspond to contact characteristics associated with contact between the user (e.g., a fingertip of the user in the VR environment) and an object in the VR environment, including, but not limited to, surface contour, shape, and texture of the object, as well as an amount of force exerted on and/or by the object. Accordingly, the control module 220 controls the output actuators 232 to physically adjust the contact device 224 so that contact between the contact device 224 and an actual fingertip of the user reflects the contact between the fingertip of the user and the object in the VR environment. In some examples, input sensors 228 (which may include force or finger position sensors) provide additional feedback indicative of contact between the user and the contact device 224.

    [0020] Referring now to FIGS. 3A and 3B and with continued reference to FIG. 2, a first example controller device 300 according to the principles of the present disclosure is shown in a side view and a plan view, respectively. The controller device 300 includes a handle 304, an actuator module 308 arranged on a first end of the handle 304, and a contact device 312 mounted on the actuator module 308. The contact device 308 is arranged to receive a fingertip 316 of a user. Although the contact device 308 as shown corresponds to a substantially circular platform, the contact device 308 may have any suitable shape in other examples (e.g., rectangular, elliptical, etc.). In some examples, the controller device 300 may include one or more tracking elements 320 (e.g., retroreflective spheres) detectable by the tracking system 216 arranged to facilitate tracking of the movement of the controller device 300 in 3D space. Other examples may implement other suitable systems and methods for tracking movement of the controller device 300. For example only, components such as the control module 220, the actuator module 308, etc. may be located within a housing of the handle 304.

    [0021] The actuator module 308 selectively physically adjusts the contact device 312 based on interaction data received from the host device 204 as described above with respect to FIG. 2. For example, the actuator module 308 may include servos or other suitable mechanisms in communication with respective actuator arms 324. The actuator module 308 may be configured to independently actuate (e.g., extend and retract) the actuator arms 324 to adjust the position of (e.g., tilt to adjust yaw and pitch, raise, lower, etc.) the contact device 312 relative to the handle 304 (and, therefore, relative to the fingertip 316). As the user moves the controller device 300 to cause contact between the fingertip of the user (i.e., a virtual fingertip) with an object in the VR environment, the actuator module 308 adjusts the position of the contact device 312 accordingly. The visual representation of the fingertip of the user within the VR environment may also be adjusted to indicate the contact (e.g., by tilting or extruding the finger).

    [0022] Referring now to FIGS. 4A and 4B, an example contact device 400 and actuator module 404 are shown. The contact device 400 includes substantially planar upper and lower platforms 408 and 412. The upper platform 408 may have a concave upper surface 416. In some examples, the platform 408 is formed from acetal or other plastic material. In some examples, a force sensor (e.g., a force transducer) 420 is arranged between the upper and lower platforms 408 and 412 to detect an amount of force applied to the contact device 400 by a user.

    [0023] The actuator module 404 includes servo motors 424 configured to adjust the contact device 400 via respective control arms 428 and actuator arms 432 (e.g., responsive to commands from the control module 220). As shown, the actuator module 404 includes three servo motors 424, control arms 428, and actuator arms 432 to provide three degrees of freedom movement of the contact device 400. For example only, the control arms 428 are connected to the actuator arms 432 via respective revolute joints 436 and the actuator arms 432 are connected to the contact device 400 via ball-and-socket spherical joints 440.

    [0024] For example only, the force sensor 420 comprises a force sensing resistor (FSR) material and two internal electrodes for detecting compression between the upper and lower platforms 408 and 412 in response to force applied to the upper platform 408 by the user. In some examples, the upper platform 408 is connected to the lower platform 412 via adjustable screws or other fasteners 444 at respective ends of radial arms 448 around an outer perimeter of the upper platform 408. For example, the arms 444 may be formed in the material of the upper platform 408 to allow downward movement of an inner portion of the upper platform 408 in response to force applied by the user.

    [0025] When no force is applied to the upper platform 408, electrodes of the force sensor 420 do not contact each other and no voltage is generated. Conversely, a minimal amount of force applied to the upper platform 408 causes contact between the electrodes of the force sensor 420, and a voltage is generated accordingly to indicate an amount of force applied to the contact device 400 by the user. In some examples, the arms 444 may be configured to bias the upper platform 408 downward against the force sensor 420 even without contact from a user. Accordingly, a nominal voltage may be generated by the force sensor 420 with no user contact, while the voltage may increase proportionately to an amount of force applied to the upper platform 408 by the user. The voltage is provided as feedback indicative of the amount of force applied by the user (e.g., to the control module 220).

    [0026] Operation of an example contact device 500 is described below with respect to FIGS. 5A and 5B. In FIG. 5A, the contact device 500 is shown in a plurality of example positions relative to a fingertip 504 of a user. As shown, the positions of the contact device 500 correspond to a contact point between a virtual fingertip of the user and a surface of an example object 508 in a VR environment. For example, the virtual fingertip of the user (e.g., as rendered and provided to the user via the display 212) moves within the VR environment based on movement of the controller device 300. Accordingly, as the user moves the controller device 300, the virtual fingertip moves relative to the object 508 and contacts different points along the surface of the object 508. The contact device 500 is adjusted (e.g., tilted) as movement of the controller device 300 causes the virtual fingertip to make initial contact with the object 508, contact different portions of the object 508, discontinue contact with the object 508, etc. For example, as the virtual fingertip "slides" along the surface of the object 508, the contact device 500 is tilted accordingly (e.g. relative to the controller device 300, a mounting portion such as actuator module 512, etc.). For example only, the contact device 500 is adjusted such that the contact device 500 is substantially perpendicular to a surface normal 516 of the object 508 at a contact point between the virtual fingertip and the object 508.

    [0027] In FIG. 5B, the contact device 500 is shown in a plurality of positions (e.g., height positions) as a virtual fingertip of a user contacts a surface 520 in the VR environment. At 524, the virtual fingertip is not in contact with the surface 520 and therefore the contact device 500 is shown in a fully retracted position. At 528, the virtual fingertip is in contact with the surface 520.

    [0028] Continued downward movement of the controller device 300 may cause the virtual fingertip to penetrate the surface 520. The contact device 500 according to the principles of the present disclosure may be extended in response to movement that would otherwise cause the virtual fingertip to penetrate the surface 520 within the VR environment. For example, at 532, the contact device 500 is extended to apply upward force against the fingertip 504 of the user. In other words, as the controller device 300 is moved downward, the fingertip 504 is nonetheless maintained in a same position due to the opposing, upward movement of the contact device 500. In this manner, the contact device 500 indicates to the user that the movement of the controller device 300 is causing the virtual fingertip to attempt to penetrate the surface 520.

    [0029] If user behavior continues to cause the virtual fingertip to move downward toward the surface 520, the contact device 500 is extended still further as shown at 536. The position of the contact device 500 as shown at 536 may correspond to a fully extended position. Accordingly, further downward movement of the controller device 300 allows corresponding movement of the fingertip 504, resulting in penetration of the surface 520 as shown at 540. In some examples, a position of the virtual fingertip (and a virtual hand, which corresponds to a position of the controller device 300) as rendered in the VR environment may be decoupled from further movement of the controller device 300 to compensate for penetration of the surface 520. For example, rather than allowing the virtual fingertip to penetrate the surface 520 in response to continued movement of the controller device 300, the contact device 500 may be maintained in a partially extended position (e.g., 50% or 75% of a fully extended position) while maintaining presentation of the virtual fingertip on the surface 520. Accordingly, if penetration of the surface 520 by the user is inadvertent, the user is nonetheless able to interact with the surface 520.

    [0030] Referring now to FIGS. 6A and 6B, a second example controller device 600 according to the principles of the present disclosure is shown in a side view and a plan view, respectively. The controller device 600 includes a handle 604, an actuator module 608 arranged on a first end of the handle 604, and a contact device 612 mounted on the actuator module 308. The contact device 608 is arranged to receive a fingertip 616 of a user. Although the contact device 608 as shown corresponds to a substantially circular platform, the contact device 608 may have any suitable shape in other examples (e.g., rectangular, elliptical, etc.). In some examples, the controller device 600 may include one or more tracking elements 620 (e.g., retroreflective spheres) detectable by the tracking system 216 arranged to facilitate tracking of the movement of the controller device 600. For example only, components such as the control module 220, the actuator module 608, etc. may be located within a housing of the handle 604.

    [0031] The actuator module 608 selectively adjusts the contact device 612 based on interaction data received from the host device 204 as described above with respect to FIG. 2. In this example, the contact device 612 includes a tactile array 624 (e.g., as shown, a 4 x 4 array) of adjustable pins 628. The actuator module 608 includes servos and/or other suitable mechanisms configured to independently actuate respective ones of the pins 628. For example, the actuator module 608 independently actuates (e.g., extends and retracts) the pins 628 to adjust the position of (e.g., tilt, raise, lower, etc.) the tactile array 624 relative to the handle 604 (and, therefore, relative to the fingertip 616). As the user moves the controller device 600 to cause contact between the fingertip of the user (i.e., a virtual fingertip) with an object in the VR environment, the actuator module 608 adjusts respective positions of the pins 628 of the tactile array 624 accordingly.

    [0032] Referring now to FIG. 7, an example contact device 700 and actuator module 704 are shown. The contact device 700 includes a substantially planar upper platform 708 including a 4 x 4 tactile array 712 of sixteen pins 716. Although the tactile array 712 has a 4 x 4 configuration, other examples may use a different configuration (e.g., 3 x 4, 5 x 5, 4 x 6, etc.). The actuator module 704 is configured to independently actuate (e.g., extend and retract) each of the pins 716 based on interaction with an object in the VR environment.

    [0033] For example, the actuator module 704 includes a plurality of linear actuator systems 720 in communication with respective ones of the pins 716, although only a single linear actuator system 720 is shown for simplicity. For example only, the linear actuator system 720 has a rack and pinion configuration. Each of the linear actuator systems 720 includes a servo motor 724 configured to rotate a first spur or pinion gear 728. Rotation of the first spur gear 728 causes linear actuation of rack gear 732, which in turn causes rotation of second spur gear 736. The second spur gear 736 is mechanically coupled to a lower gear portion 740 of the pin 716. Accordingly, horizontal linear actuation of the rack gear 732 is translated to vertical linear actuation of the pin 716. In this manner, the actuator module 704 adjusts the tactile array 712 to represent contact between a user and a surface in the VR environment (e.g., responsive to commands from the control module 220).

    [0034] Operation of an example contact device 800 is shown below in FIG. 8. The contact device 800 is shown in a plurality of example configurations relative to a fingertip 804 of a user. As shown, the positions of the contact device 800 correspond to a contact point between a virtual fingertip of the user and a surface of an example object 808 in a VR environment. For example, the virtual fingertip of the user (e.g., as rendered and provided to the user via the display 212) moves within the VR environment based on movement of the controller device 600. Accordingly, as the user moves the controller device 600, the virtual fingertip moves relative to the object 808 and contacts different points along the surface of the object 808. The contact device 800 is adjusted as movement of the controller device 600 causes the virtual fingertip to make initial contact with the object 808, contact different portions of the object 808, discontinue contact with the object 808, etc.

    [0035] For example, as the virtual fingertip "slides" along the surface of the object 808, actuator module 812 selectively extends and/or retracts pins 816 of tactile array 820. For example only, the pins 816 are adjusted to a configuration such that a plane defined by the tactile array 820 is substantially perpendicular to a surface normal 816 of the object 808 at a contact point between the virtual fingertip and the object 808. In some examples, the pins 816 may be further adjusted based on a texture of the surface of the object 808. For example, for an object 808 having a substantially flat and smooth surface, each of the pins 816 can be adjusted to a same height to provide a smooth surface. Conversely, for an object 808 having a rough surface, the pins 816 can be adjusted to different heights to provide a rough surface. In some examples, the tactile array 820 may include a flexible or stretchable membrane arranged over the pins 816.

    [0036] The controller devices 300 and 600 may implement additional features. For example, the controller devices 300 and 600 may include a vibration mechanism (e.g., corresponding to the other outputs 244 of FIG. 2) configured to vibrate in response to user contact and/or lateral movement with a surface of an object in the VR environment. For example, the vibration mechanism may be configured to vibrate as a function of movement speed of the controller device 300 or 600 relative to the surface of the object. In this manner, vibration may be indicative of the texture (e.g., roughness) of the surface. Other features may include, but are not limited to, a heater or other temperature output device to provide temperature feedback, inputs such as touchpads or force sensors incorporated within the respective contact devices 312 and 612, etc. Some example VR systems may include two or more of the controller devices 300 or 600, and/or include both the controller device 300 and the controller device 600.

    [0037] An example method 900 for providing feedback to a user of a VR system according to the principles of the present disclosure begins at 904. At 908, the method 900 adjusts a contact device of a controller (e.g., a handheld controller such as the controller device 300 or 600) to a default position. For example, the default position may correspond to a fully lowered or retracted position with a neutral orientation relative to the controller. For example only, in the default position, a planar surface of the contact device may be substantially parallel to a horizontal axis of the controller.

    [0038] At 912, the method 900 determines whether an appendage of a user (e.g., a fingertip) contacts a surface of an object in the VR environment. If true, the method 900 continues to 916. If false, the method 900 continues to 908. At 916, the method 900 adjusts the contact device based on the contact with the object. For example, the method 900 may adjust a position of the contact device based on a surface normal of the object at a contact point between the user and the object in the VR environment. At 920, the method 900 determines whether the contact point between the user and the object changed due to movement of the user. If true, the method 900 continues to 916. If false, the method 900 continues to 924. At 924, the method 900 maintains the position of the contact device.

    [0039] At 928, the method 900 determines whether the user has discontinued contact with the object in the VR environment. If true, the method 900 continues to 908 and returns the contact device to the default position. If false, the method 900 continues to 920.

    [0040] The foregoing description is merely illustrative in nature and is in no way intended to limit the disclosure, its application, or uses. The scope of the invention is set out in the appended claims.

    [0041] Spatial and functional relationships between elements (for example, between modules, circuit elements, semiconductor layers, etc.) are described using various terms, including "connected," "engaged," "coupled," "adjacent," "next to," "on top of," "above," "below," and "disposed." Unless explicitly described as being "direct," when a relationship between first and second elements is described in the above disclosure, that relationship can be a direct relationship where no other intervening elements are present between the first and second elements, but can also be an indirect relationship where one or more intervening elements are present (either spatially or functionally) between the first and second elements. As used herein, the phrase at least one of A, B, and C should be construed to mean a logical (A OR B OR C), using a non-exclusive logical OR, and should not be construed to mean "at least one of A, at least one of B, and at least one of C."

    [0042] In the figures, the direction of an arrow, as indicated by the arrowhead, generally demonstrates the flow of information (such as data or instructions) that is of interest to the illustration. For example, when element A and element B exchange a variety of information but information transmitted from element A to element B is relevant to the illustration, the arrow may point from element A to element B. This unidirectional arrow does not imply that no other information is transmitted from element B to element A. Further, for information sent from element A to element B, element B may send requests for, or receipt acknowledgements of, the information to element A.

    [0043] In this application, including the definitions below, the term "module" or the term "controller" may be replaced with the term "circuit." The term "module" may refer to, be part of, or include: an Application Specific Integrated Circuit (ASIC); a digital, analog, or mixed analog/digital discrete circuit; a digital, analog, or mixed analog/digital integrated circuit; a combinational logic circuit; a field programmable gate array (FPGA); a processor circuit (shared, dedicated, or group) that executes code; a memory circuit (shared, dedicated, or group) that stores code executed by the processor circuit; other suitable hardware components that provide the described functionality; or a combination of some or all of the above, such as in a system-on-chip.

    [0044] The module may include one or more interface circuits. In some examples, the interface circuits may include wired or wireless interfaces that are connected to a local area network (LAN), the Internet, a wide area network (WAN), or combinations thereof. The functionality of any given module of the present disclosure may be distributed among multiple modules that are connected via interface circuits. For example, multiple modules may allow load balancing. In a further example, a server (also known as remote, or cloud) module may accomplish some functionality on behalf of a client module.

    [0045] The term code, as used above, may include software, firmware, and/or microcode, and may refer to programs, routines, functions, classes, data structures, and/or objects. The term shared processor circuit encompasses a single processor circuit that executes some or all code from multiple modules. The term group processor circuit encompasses a processor circuit that, in combination with additional processor circuits, executes some or all code from one or more modules. References to multiple processor circuits encompass multiple processor circuits on discrete dies, multiple processor circuits on a single die, multiple cores of a single processor circuit, multiple threads of a single processor circuit, or a combination of the above. The term shared memory circuit encompasses a single memory circuit that stores some or all code from multiple modules. The term group memory circuit encompasses a memory circuit that, in combination with additional memories, stores some or all code from one or more modules.

    [0046] The term memory circuit is a subset of the term computer-readable medium. The term computer-readable medium, as used herein, does not encompass transitory electrical or electromagnetic signals propagating through a medium (such as on a carrier wave); the term computer-readable medium may therefore be considered tangible and non-transitory. Non-limiting examples of a non-transitory, tangible computer-readable medium are nonvolatile memory circuits (such as a flash memory circuit, an erasable programmable read-only memory circuit, or a mask read-only memory circuit), volatile memory circuits (such as a static random access memory circuit or a dynamic random access memory circuit), magnetic storage media (such as an analog or digital magnetic tape or a hard disk drive), and optical storage media (such as a CD, a DVD, or a Blu-ray Disc).

    [0047] In this application, apparatus elements described as having particular attributes or performing particular operations are specifically configured to have those particular attributes and perform those particular operations. Specifically, a description of an element to perform an action means that the element is configured to perform the action. The configuration of an element may include programming of the element, such as by encoding instructions on a non-transitory, tangible computer-readable medium associated with the element.

    [0048] The apparatuses and methods described in this application may be partially or fully implemented by a special purpose computer created by configuring a general purpose computer to execute one or more particular functions embodied in computer programs. The functional blocks, flowchart components, and other elements described above serve as software specifications, which can be translated into the computer programs by the routine work of a skilled technician or programmer.

    [0049] The computer programs include processor-executable instructions that are stored on at least one non-transitory, tangible computer-readable medium. The computer programs may also include or rely on stored data. The computer programs may encompass a basic input/output system (BIOS) that interacts with hardware of the special purpose computer, device drivers that interact with particular devices of the special purpose computer, one or more operating systems, user applications, background services, background applications, etc.

    [0050] The computer programs may include: (i) descriptive text to be parsed, such as HTML (hypertext markup language) or XML (extensible markup language), (ii) assembly code, (iii) object code generated from source code by a compiler, (iv) source code for execution by an interpreter, (v) source code for compilation and execution by a just-in-time compiler, etc. As examples only, source code may be written using syntax from languages including C, C++, C#, Objective C, Haskell, Go, SQL, R, Lisp, Java®, Fortran, Perl, Pascal, Curl, OCaml, Javascript®, HTML5, Ada, ASP (active server pages), PHP, Scala, Eiffel, Smalltalk, Erlang, Ruby, Flash®, Visual Basic®, Lua, and Python®.


    Claims

    1. A controller device (208) for a virtual environment, the controller device comprising:

    a handle (304, 604);

    a contact device (312, 612) having a substantially planar surface, wherein a position of the contact device relative to the handle is adjustable;

    an actuator module (308, 608) arranged on a first end of the handle, including a plurality of actuator arms configured to adjust the position of the contact device relative to the handle, wherein the contact device is mounted on the actuator module via the plurality of actuator arms; and

    a control module (220) in communication with the virtual environment, wherein the control module is configured to selectively control one or more of the plurality of actuator arms of the actuator module to adjust the position of the contact device in response to data received from the virtual environment, wherein the data includes an indication of an interaction between a user and an object represented within the virtual environment.


     
    2. The controller device of claim 1, wherein the contact device includes a platform (408), and wherein, to adjust the position of the contact device, the actuator module at least one of i) tilts the platform and ii) extends and retracts the platform.
     
    3. The controller device of claim 1, wherein, to adjust the position of the contact device, the actuator module adjusts the position of the contact device based on a contact point between the user and the object represented within the virtual environment.
     
    4. The controller device of claim 3, wherein the actuator module adjusts the position of the contact device based on at least one of i) a surface normal of the object at the contact point and ii) a determination of whether movement of the controller device causes the user to penetrate the object represented within the virtual environment.
     
    5. The controller device of claim 4, wherein the actuator module selectively extends the contact device based on the determination of whether movement of the controller device causes the user to penetrate the object represented within the virtual environment.
     
    6. The controller device of claim 1, wherein the contact device includes at least one of a force sensor (420), a vibration mechanism, a temperature output device, and a touchpad.
     
    7. The controller device of claim 1, wherein the actuator module is configured to independently actuate one or more of the actuator arms to adjust the position of the contact device relative to the handle.
     
    8. The controller device of claim 1, wherein the actuator module includes servo motors configured to adjust the contact device via one or more of the plurality of actuator arms and respective one or more of a plurality of control arms in response to the data received from the virtual environment.
     
    9. A method for operating a controller device (208) for a virtual environment, the method comprising:

    displaying an object within the virtual environment;

    generating data including an indication of interaction between a user and a surface of the object;

    providing the data to an actuator (232) of the controller device; and

    using the actuator, adjusting a position of a contact device (224) relative to a handle (304, 604) of the controller device based on the data, wherein the actuator is arranged on a first end of the handle and includes a plurality of actuator arms configured to adjust the position of the contact device relative to the handle, and wherein the contact device is mounted on the actuator module via the plurality of actuator arms,

    wherein the position of the contact device is adjusted in response to the data received from the virtual environment by selectively controlling one or more actuator arms of the plurality of actuator arms of the actuator.


     
    10. The method of claim 9, wherein adjusting the position of the contact device includes at least one of i) tilting the contact device and ii) extending and retracting the contact device.
     
    11. The method of claim 9, wherein adjusting the position of the contact device includes adjusting the position of the contact device based on a contact point between the user and the surface of the object.
     
    12. The method of claim 11, wherein adjusting the position of the contact device includes adjusting the position of the contact device based on a surface normal of the object at the contact point.
     


    Ansprüche

    1. Steuervorrichtung (208) für eine virtuelle Umgebung, die Steuervorrichtung umfassend:

    einen Griff (304, 604);

    eine Kontaktvorrichtung (312, 612) mit einer im Wesentlichen ebenen Oberfläche, wobei eine Position der Kontaktvorrichtung relativ zu dem Griff einstellbar ist;

    ein Betätigungsmodul (308, 608), das an einem ersten Ende des Griffs angeordnet ist, beinhaltend eine Vielzahl von Betätigungsarmen, die konfiguriert sind, die Position der Kontaktvorrichtung relativ zu dem Griff einzustellen, wobei die Kontaktvorrichtung an dem Betätigungsmodul über die Vielzahl von Betätigungsarmen montiert ist; und

    ein Steuermodul (220) in Kommunikation mit der virtuellen Umgebung, wobei das Steuermodul konfiguriert ist, einen oder mehrere der Vielzahl von Betätigungsarmen des Betätigungsmoduls selektiv zu steuern, um die Position der Kontaktvorrichtung in Antwort auf Daten, die aus der virtuellen Umgebung empfangen werden, einzustellen, wobei die Daten eine Angabe einer Interaktion zwischen einem Benutzer und einem Objekt beinhalten, das in der virtuellen Umgebung dargestellt ist.


     
    2. Steuervorrichtung nach Anspruch 1, wobei die Kontaktvorrichtung eine Plattform (408) beinhaltet und wobei zum Einstellen der Position der Kontaktvorrichtung das Betätigungsmodul mindestens eines von i) die Plattform kippt und ii) die Plattform ausrückt und zurückzieht.
     
    3. Steuervorrichtung nach Anspruch 1, wobei zum Einstellen der Position der Kontaktvorrichtung das Betätigungsmodul die Position der Kontaktvorrichtung basierend auf einem Kontaktpunkt zwischen dem Benutzer und dem Objekt, das in der virtuellen Umgebung dargestellt ist, einstellt.
     
    4. Steuervorrichtung nach Anspruch 3, wobei das Betätigungsmodul die Position der Kontaktvorrichtung basierend auf mindestens einem von i) einer Oberfläche normal zu dem Objekt an dem Kontaktpunkt und ii) einer Bestimmung, ob Bewegung der Steuervorrichtung den Benutzer veranlasst, das Objekt, das in der virtuellen Umgebung dargestellt ist, zu durchdringen, einstellt.
     
    5. Steuervorrichtung nach Anspruch 4, wobei das Betätigungsmodul die Kontaktvorrichtung selektiv basierend auf der Bestimmung einstellt, ob Bewegung der Steuervorrichtung den Benutzer veranlasst, das Objekt, das in der virtuellen Umgebung dargestellt ist, zu durchdringen.
     
    6. Steuervorrichtung nach Anspruch 1, wobei die Kontaktvorrichtung mindestens einen Kraftsensor (420), einen Vibrationsmechanismus, eine Temperaturausgabevorrichtung und ein Berührungsfeld beinhaltet.
     
    7. Steuervorrichtung nach Anspruch 1, wobei das Betätigungsmodul konfiguriert ist, unabhängig einen oder mehrere der Betätigungsarme zu betätigen, um die Position der Kontaktvorrichtung relativ zu dem Griff einzustellen.
     
    8. Steuervorrichtung nach Anspruch 1, wobei das Betätigungsmodul Servomotoren beinhaltet, die konfiguriert sind, die Kontaktvorrichtung über einen oder mehrere der Vielzahl von Kontaktarmen und einen oder mehrere entsprechende einer Vielzahl von Steuerarmen in Reaktion auf die Daten, die aus der virtuellen Umgebung empfangen werden, einzustellen.
     
    9. Verfahren zum Betreiben einer Steuervorrichtung (208) für eine virtuelle Umgebung, das Verfahren umfassend:

    Anzeigen eines Objekts in der virtuellen Umgebung;

    Erzeugen von Daten, die eine Angabe einer Interaktion zwischen einem Benutzer und einer Oberfläche des Objekts beinhalten;

    Bereitstellen der Daten einem Betätigungselement (232) der Steuervorrichtung; und

    Verwenden des Betätigungselements zum Einstellen einer Position der Kontaktvorrichtung (224) relativ zu einem Griff (304, 604) der Steuervorrichtung basierend auf den Daten, wobei das Betätigungselement an einem ersten Ende des Griffs angeordnet ist und eine Vielzahl von Betätigungsarmen beinhaltet, die konfiguriert sind, die Position der Kontaktvorrichtung relativ zu dem Griff einzustellen, und wobei die Kontaktvorrichtung an dem Betätigungsmodul über die Vielzahl von Betätigungsarmen montiert ist,

    wobei die Position der Kontaktvorrichtung als Reaktion auf die Daten eingestellt wird, die aus der virtuellen Umgebung empfangen werden, indem ein oder mehrere Betätigungsarme der Vielzahl von Betätigungsarmen des Betätigungselements selektiv gesteuert werden.


     
    10. Verfahren nach Anspruch 9, wobei Einstellen der Position der Kontaktvorrichtung mindestens eines von i) Kippen der Kontaktvorrichtung und ii) Ausrücken und Zurückziehen der Kontaktvorrichtung beinhaltet.
     
    11. Verfahren nach Anspruch 9, wobei Einstellen der Position der Kontaktvorrichtung Einstellen der Position der Kontaktvorrichtung basierend auf einem Kontaktpunkt zwischen dem Benutzer und der Oberfläche des Objekts beinhaltet.
     
    12. Verfahren nach Anspruch 11, wobei Einstellen der Position der Kontaktvorrichtung Einstellen der Position der Kontaktvorrichtung basierend auf einer Oberfläche normal zu dem Objekt am Kontaktpunkt beinhaltet.
     


    Revendications

    1. Dispositif de commande (208) pour un environnement virtuel, le dispositif de commande comprenant :

    une poignée (304, 604) ;

    un dispositif de contact (312, 612) ayant une surface sensiblement plane, dans lequel une position du dispositif de contact par rapport à la poignée est ajustable ;

    un module d'actionneur (308, 608) agencé à une première extrémité de la poignée, incluant une pluralité de bras d'actionneur configurés pour ajuster la position du dispositif de contact par rapport à la poignée, dans lequel le dispositif de contact est monté sur le module d'actionneur par l'intermédiaire de la pluralité de bras d'actionneur ; et

    un module de commande (220) en communication avec l'environnement virtuel, dans lequel le module de commande est configuré pour commander sélectivement un ou plusieurs de la pluralité de bras d'actionneur du module d'actionneur pour ajuster la position du dispositif de contact en réponse à des données reçues depuis l'environnement virtuel, dans lequel les données incluent une indication d'une interaction entre un utilisateur et un objet représenté dans l'environnement virtuel.


     
    2. Dispositif de commande selon la revendication 1, dans lequel le dispositif de contact inclut une plate-forme (408), et dans lequel, pour ajuster la position du dispositif de contact, le module d'actionneur réalise au moins l'une de : i) l'inclinaison de la plate-forme et ii) l'extension et la rétraction de la plate-forme.
     
    3. Dispositif de commande selon la revendication 1, dans lequel, pour ajuster la position du dispositif de contact, le module d'actionneur ajuste la position du dispositif de contact sur la base d'un point de contact entre l'utilisateur et l'objet représenté dans l'environnement virtuel.
     
    4. Dispositif de commande selon la revendication 3, dans lequel le module d'actionneur ajuste la position du dispositif de contact sur la base d'au moins l'une de : i) une normale de surface de l'objet au point de contact et ii) une détermination si un mouvement du dispositif de commande amène l'utilisateur à pénétrer l'objet représenté dans l'environnement virtuel.
     
    5. Dispositif de commande selon la revendication 4, dans lequel le module d'actionneur étend sélectivement le dispositif de contact sur la base de la détermination si un mouvement du dispositif de commande amène l'utilisateur à pénétrer l'objet représenté dans l'environnement virtuel.
     
    6. Dispositif de commande selon la revendication 1, dans lequel le dispositif de contact inclut au moins l'un d'un capteur de force (420), d'un mécanisme de vibration, d'un dispositif de sortie de température, et d'un pavé tactile.
     
    7. Dispositif de commande selon la revendication 1, dans lequel le module d'actionneur est configuré pour actionner indépendamment un ou plusieurs des bras d'actionneur pour ajuster la position du dispositif de contact par rapport à la poignée.
     
    8. Dispositif de commande selon la revendication 1, dans lequel le module d'actionneur inclut des servomoteurs configurés pour ajuster le dispositif de contact par l'intermédiaire d'un ou plusieurs de la pluralité de bras d'actionneur et d'un ou plusieurs respectifs d'une pluralité de bras de commande en réponse aux données reçues depuis l'environnement virtuel.
     
    9. Procédé de fonctionnement d'un dispositif de commande (208) pour un environnement virtuel, le procédé comprenant :

    l'affichage d'un objet à l'intérieur de l'environnement virtuel ;

    la génération de données incluant une indication d'interaction entre un utilisateur et une surface de l'objet ;

    la fourniture des données à un actionneur (232) du dispositif de commande ; et

    en utilisant l'actionneur, l'ajustement d'une position d'un dispositif de contact (224) par rapport à une poignée (304, 604) du dispositif de commande sur la base des données, dans lequel l'actionneur est agencé à une première extrémité de la poignée et inclut une pluralité de bras d'actionneur configurés pour ajuster la position du dispositif de contact par rapport à la poignée, et dans lequel le dispositif de contact est monté sur le module d'actionneur par l'intermédiaire de la pluralité de bras d'actionneur,

    dans lequel la position du dispositif de contact est ajustée en réponse aux données reçues depuis l'environnement virtuel par la commande sélective d'un ou plusieurs bras d'actionneur de la pluralité de bras d'actionneur de l'actionneur.


     
    10. Procédé selon la revendication 9, dans lequel l'ajustement de la position du dispositif de contact inclut au moins l'une de : i) l'inclinaison du dispositif de contact et ii) l'extension et la rétraction du dispositif de contact.
     
    11. Procédé selon la revendication 9, dans lequel l'ajustement de la position du dispositif de contact inclut l'ajustement de la position du dispositif de contact sur la base d'un point de contact entre l'utilisateur et la surface de l'objet.
     
    12. Procédé selon la revendication 11, dans lequel l'ajustement de la position du dispositif de contact inclut l'ajustement de la position du dispositif de contact sur la base d'une normale de surface de l'objet au point de contact.
     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description