(19)
(11)EP 3 509 066 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
17.06.2020 Bulletin 2020/25

(21)Application number: 19150397.8

(22)Date of filing:  04.01.2019
(51)International Patent Classification (IPC): 
G11C 13/00(2006.01)
G11C 7/22(2006.01)

(54)

REAL-TIME UPDATE METHOD OF A DIFFERENTIAL MEMORY WITH CONTINUOUS READING ACCESSIBILITY, DIFFERENTIAL MEMORY AND ELECTRONIC SYSTEM

ECHTZEITAKTUALISIERUNGSVERFAHREN EINES DIFFERENTIALSPEICHERS MIT KONTINUIERLICHER LESEZUGÄNGLICHKEIT, DIFFERENTIALSPEICHER UND ELEKTRONISCHES SYSTEM

PROCÉDÉ DE MISE À JOUR EN TEMPS RÉEL D'UNE MÉMOIRE DIFFÉRENTIELLE À ACCESSIBILITÉ DE LECTURE CONTINUE, MÉMOIRE DIFFÉRENTIELLE ET SYSTÈME ÉLECTRONIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 05.01.2018 IT 201800000580

(43)Date of publication of application:
10.07.2019 Bulletin 2019/28

(73)Proprietor: STMicroelectronics S.r.l.
20864 Agrate Brianza (MB) (IT)

(72)Inventor:
  • DISEGNI, Fabio Enrico Carlo
    26016 SPINO D'ADDA (CR) (IT)

(74)Representative: Bertolotto, Simone et al
Studio Torta S.p.A. Via Viotti, 9
10121 Torino
10121 Torino (IT)


(56)References cited: : 
WO-A1-2016/196835
US-A1- 2008 043 512
WO-A2-2008/058101
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to a method for managing a differential memory, a differential memory, and a system that comprises the differential memory. In particular, it regards a method for real-time updating of a differential memory with continuous reading accessibility by a user.

    [0002] As is known, electronic control units of vehicles include a memory designed to store a vehicle-control software. An example of such a memory is disclosed in document WO 2016/196835 A1.

    [0003] Further known is the need to test a number of versions of the software and thus alternate execution of different versions until a final version is selected.

    [0004] It is common practice to use a plurality of memories, each memory being designed to store each version of the software to be tested. Alternatively, it is possible to use a memory of a size such as to store each version of the software to be tested. This entails an increase in the costs.

    [0005] The above problem is particularly felt in the case of use of memories of a differential type, where two memory cells of opposite state are associated to each information bit. Reading architectures of a differential type afford advantages in terms of reliability, in so far as the datum is stored in a redundant way; reading is carried out by comparing the data contained in the two memory cells of opposite state.

    [0006] A class of memory of a differential type is the phase-change memory (PCM), where, in particular, reading is made by comparing respective currents that flow in the cells associated to a same information bit.

    [0007] The aim of the present invention is to provide a method for managing a differential memory, a differential memory, and a system that comprises the differential memory that will be able to overcome the drawbacks of the prior art.

    [0008] According to the present invention a method for managing a differential memory, a differential memory, and an electronic system are provided, as defined in the annexed claims.

    [0009] For a better understanding of the present invention, preferred embodiments thereof are now described, purely by way of non-limiting example, with reference to the attached drawings, wherein:
    • Figure 1 is a schematic illustration of a portion of a nonvolatile memory device according to one embodiment of the present invention;
    • Figure 2 shows schematically, by a block diagram, a method for managing the nonvolatile-memory device of Figure 1;
    • Figure 3 shows an electrical circuit corresponding to a portion of the nonvolatile-memory device of Figure 1, included in the portion of Figure 1;
    • Figures 4A-4E show the circuit of Figure 3 in respective steps of the method of Figure 2, where circuit connections of particular importance for implementation of the respective step of the method are highlighted by thick lines; and
    • Figure 5 shows an electronic system that includes the nonvolatile-memory device of Figure 1.


    [0010] Represented schematically in Figure 1 and designated as a whole by the reference number 1 is a portion of a memory device, in particular a nonvolatile memory; according to an embodiment of the present invention, the memory 1 is of a differential type, in particular of a PCM type. The nonvolatile-memory device 1 is shown limitedly to just the parts necessary for an understanding of the present disclosure.

    [0011] In a known way, phase-change memories (PCMs) of a differential type are typically designed according to a scheme with an array of memory cells arranged in rows (word lines) and columns (bit lines);. Each memory cell is provided by a phase-change storage element and by a selector transistor, connected in series. A column decoder and a row decoder enable selection, on the basis of address logic signals received at input and more or less complex decoding schemes, of the memory cells, and in particular the corresponding word lines and bit lines, each time addressed.

    [0012] The column decoder comprises a plurality of analog selection switches (provided by transistors), which receive at their respective control terminals the address signals. The selection switches are arranged according to a tree structure in hierarchical levels, and their number at each hierarchical level is linked to the arrangement and size of the memory array. The selection switches, when enabled, make it possible to bring the bit line selected to a definite value of voltage and/or current, according to the operations that it is desired to implement. In particular, a current path is created between a programming stage or a reading stage and the bit line selected. This current path is defined by the series of a certain number of selection switches. In a known way, sense amplifiers carry out reading of the data stored in the memory cells, comparing the current that flows in the memory cell selected (or an electrical quantity correlated thereto) with a reference current supplied by a reference-current generator (so-called asymmetrical or single-ended reading) and/or by one or more reference cells, used for the entire memory array. In the prior art, single-ended reading is typically used during verification that programming of the cell has occurred or during testing. During normal use of the memory, reading of a double-ended type is instead used, in which the sense amplifiers compare the current flowing in the memory cell selected with the current flowing in a respective cell associated to the memory cell selected in the differential architecture.

    [0013] To carrying out single-ended reading, an input of the sense amplifier receives the current of the memory cell that is to be read, while the other input of the sense amplifier receives the reference current supplied by the reference-current generator.

    [0014] In single-ended mode, it is possible to read and write independently two memory cells that are normally associated in order to carry out differential reading; in effect, when it is operated in single-ended mode, each memory cell may have a value independent of the value of the other memory cells, and it is consequently possible to double the amount of data that may be stored in the PCM.

    [0015] In particular, the nonvolatile-memory device 1 comprises a memory array 2, constituted by a plurality of "n" main memory modules 4a-4n. Each main memory module 4a-4n comprises a first submodule 4a'-4n' and a second submodule 4a"-4n". In particular, each first submodule 4a'-4n' comprises a plurality of memory cells, and each second submodule 4a"-4n" comprises a plurality of respective memory cells.

    [0016] In a per se known manner and not shown in Figure 1, the plurality of first memory cells stores respective logic data of a binary type. The plurality of second memory cells corresponds, as regards number and manufacturing characteristics, to the plurality of first memory cells and is configured to store respective logic data complementary to the logic data stored in the respective plurality of first memory cells so as to enable differential reading of said logic data.

    [0017] In any case, each main memory module 4a-4n may be used in single-ended mode, such that the logic data stored in the plurality of memory cells of each second submodule 4a''-4n'' are not complementary to the logic data stored in the plurality of memory cells of the respective first submodule 4a'-4n', but are further information data. In this way, it is possible to double the total capacity of the memory array 2.

    [0018] The nonvolatile-memory device 1 further comprises an auxiliary memory module 6. In particular, the auxiliary memory module 6 structurally and operatively corresponds to each main memory module 4a-4n, and is thus formed by a first submodule 6' and a second submodule 6''. In particular, the first submodule 6' comprises a plurality of memory cells, and the second submodule 6'' comprises a plurality of respective memory cells, which may be addressed and thus used in single-ended mode.

    [0019] In addition, the nonvolatile-memory device 1 comprises a controller 8, operatively coupled to the memory array 2 and to the auxiliary memory module 6. The controller 8 is configured to implement a method of reading and writing logic data in the memory array 2 and in the auxiliary memory module 6.

    [0020] Furthermore, the nonvolatile-memory device 1 comprises a bus 10. The controller 8, the main memory modules 4a-4n, and the auxiliary memory module 6 are each coupled to the bus 10 by respective communication lines 12a-12e so as to enable, as described in greater detail hereinafter, a transfer of data and control signals between the controller 8, the main memory modules 4a-4n, and the auxiliary memory module 6.

    [0021] Further, the nonvolatile-memory device 1 comprises a controller interface 14. The controller interface 14 is coupled to the controller 8 so as to send to the controller 8, via a communication line 13, logic data to be written in the memory array 2.

    [0022] In addition, the nonvolatile-memory device 1 comprises a memory-array interface 16. The memory-array interface 16 is coupled to the bus 10 via a respective communication line 12f. A user of the nonvolatile-memory device 1 may gain access, for example in reading, to the data stored in the nonvolatile-memory device 1 via the memory-array interface 16. The user is, for example, a microprocessor, a DSP, or a microcontroller.

    [0023] Figure 2 shows schematically, by a block diagram, a method for managing the memory array 2. In particular, by way non-limiting example, Figure 2 regards a memory array 2 in which a first main memory module 4a and a second main memory module 4b are present. In other embodiments, the number of main memory modules could be different.

    [0024] In an initial step 20, the memory array 2 contains a first set of data A, stored in a differential way. In particular, the first set of data A includes a first datum A1, a second datum A2, and the respective complementary data A1n, A2n. For instance, each of the first and second data A1, A2 and the respective complementary data A1n, A2n is a single bit or a set of bits having a size, for example, of 32 MB.

    [0025] In particular, the first main memory module 4a contains the first datum A1 and the respective complementary datum A1n, and the second main memory module 4b comprises the second datum A2 and the respective complementary datum A2n. In particular, the first datum A1 is stored in the first submodule 4a' of the first main memory module 4a; the second datum A2 is stored in the first submodule 4b' of the second main memory module 4b; the datum A1n complementary to the first datum A1 is stored in the second submodule 4a'' of the first main memory module 4a; the datum A2n complementary to the second datum A2 is stored in the second submodule 4b'' of the second main memory module 4b.

    [0026] In the initial step 20, the user of the nonvolatile-memory device 1 has access to the first set of data A, which may be read in a differential way from the first and second main memory modules 4a, 4b.

    [0027] The contents of the auxiliary memory block 6, which is represented empty in Figure 2, are irrelevant in the initial step 20 of the management method. The user of the nonvolatile-memory device 1 does not have access to the data stored in the auxiliary memory block 6, which is for this reason illustrated with a dashed line.

    [0028] After step 20, control passes to step 22 where each of the first and second data A1, A2 is written in the auxiliary memory module 6 by the controller 8, as described in detail hereinafter.

    [0029] During step 22, the user of the nonvolatile-memory device 1 continues to have access to the first set of data A, which may be read in a differential way from the first and second main memory modules 4a, 4b.

    [0030] After step 22, control passes to steps of writing a second set of data B in the first and second main memory modules 4a, 4b.

    [0031] In particular, the second set of data B includes a first datum B1n and a second datum B2n. For instance, in a way similar to what has been described with reference to the first set of data A, each of the first and second data B1n, B2n is a single bit or a set of bits having a size, for example, of 32 MB.

    [0032] In particular, after step 22 control passes to step 24, where the datum B1n is written in the second submodule 4a'' of the first main memory module 4a.

    [0033] During step 24, the contents of the first main memory module 4a are not accessible in reading for the user in so far as the module is occupied in the operation of writing of the datum B1n. For this reason, it is illustrated with a dashed line.

    [0034] In any case, during step 24, the user of the nonvolatile-memory device 1 continues to have access to the informative content associated to the first set of data A in so far as it is possible to read the first datum A1 in the auxiliary memory module 6, and the second datum A2 in the second main memory module 4b.

    [0035] After step 24 control passes to step 26, where the datum B2n is written in the second submodule 4b'' of the second main memory module 4b.

    [0036] During step 26, the contents of the second main memory module 4b are not accessible in reading in so far as the module is occupied in the operation of writing of the datum B2n. For this reason, it is illustrated with a dashed line.

    [0037] In any case, during step 26, the user of the nonvolatile-memory device 1 continues to have access to the informative content associated to the first set of data A in so far as it is possible to read the first datum A1 in the first main memory module 4a and the second datum A2 in the auxiliary memory module 6.

    [0038] After step 26, control passes to step 28, where the second main memory module 4b is rendered again accessible to the user. During step 28, the contents of the auxiliary memory module 6 are not accessible and are irrelevant, and for this reason the module is illustrated with a dashed line.

    [0039] During step 28, the user of the nonvolatile-memory device 1 continues to have access to the informative content associated to the first set of data A in so far as it is possible to read the first datum A1 in the first main memory module 4a and the second data A2 in the second main memory module 4b.

    [0040] During step 28, the user of the nonvolatile-memory device 1 has further access to the informative content associated to the second set of data B in so far as it is possible to read the datum B1n in the first main memory module 4a and the datum B2n in the second main memory module 4b.

    [0041] For instance, the informative content associated to the first set of data A is a first vehicle-control software; in this case, the nonvolatile-memory device 1 is embedded in an electronic control unit of the vehicle. In addition, the informative content associated to the second set of data B is a second vehicle-control software.

    [0042] During step 28, it is possible to carry out alternatively the first or second vehicle-control software.

    [0043] For instance, during step 28 it is possible to evaluate the performance of the vehicle during use of the first control software, and alternately, of the second control software, until the most adequate control software is determined.

    [0044] Once step 28 is through, control passes to step 30, where the control software deemed adequate is stored in a differential way in the memory array 2. For instance, in the case of Figure 2, the control software deemed adequate is that associated to the second set of data B.

    [0045] Consequently, after step 28, a datum B1 complementary to the datum B1n is written in the first submodule 4a' of the first main memory module 4a, and a datum B2 complementary to the datum B2n is written in the first submodule 4b' of the second main memory module 4b, to arrive at the configuration illustrated in step 30. The auxiliary memory module 6 is shown with a dashed line, in so far as, at the end of the steps of the method described previously, the auxiliary memory module 6 is not used and its informative content is irrelevant.

    [0046] The steps 22-26 of the management method are carried out for all "n" main memory modules 4a-4n, as illustrated previously for the case of the two main memory modules 4a, 4b.

    [0047] Figure 3 shows in greater detail a portion of the nonvolatile-memory device 1 of Figure 1, comprising the main memory module 4a, the auxiliary memory module 6, the controller 8, and the memory-array interface 16. In particular, the nonvolatile-memory device 1 further comprises a plurality of multiplexers designed to render transparent management of the first and second sets of data A, B for the user of the nonvolatile-memory device 1.

    [0048] The controller 8 is further configured to generate a first control signal BUSY, a second control signal BUSY_SP, and a third control signal SCOMM for controlling the plurality of multiplexers described more fully hereinafter.

    [0049] The controller 8 is further configured to receive data contained in the main memory module 4a and in the auxiliary memory module 6 via an input signal SDATA_IN. In particular, the signal SDATA_IN is one of the signals SMAIN_O (which carries the data contained in the main memory module 4a) and SSPARE_O (which carries the data contained in the auxiliary memory module 6) selected via a multiplexer 32 controlled by the first control signal BUSY. For this purpose, the multiplexer 32 is coupled to the main memory module 4a and to the auxiliary memory module 6 for receiving, respectively, the signal SMAIN_O and the signal SSPARE_O. For instance, the signal SSPARE_O is read after an operation of writing in the auxiliary memory module 6 in order to verify that the writing operation has been carried out correctly. Otherwise, according to known procedures, subsequent writing operations of the same datum are carried out until the datum has been written correctly.

    [0050] In particular, the multiplexer 32 is coupled to the auxiliary memory module 6 via interposition of a first buffer 33 so as to reduce the propagation times associated to the auxiliary memory module 6.

    [0051] The controller 8 is further configured to send to the main memory module 4a an output signal SDATA_OUT' that carries data that may be stored in the main memory module 4a, and to send to the auxiliary memory module 6 an output signal SDATA_OUT" that carries data that may be stored in the auxiliary memory module 6.

    [0052] The controller 8 is further configured to generate a signal SA', which contains an address of one of the memory cells of the main memory module 4a. The signal SA' is supplied to an input of a multiplexer 34 controlled by the first control signal BUSY. The multiplexer 34 further receives a signal SINT_O from the memory-array interface 16, which contains an address for carrying out an operation of reading or writing on one of the memory cells of the main memory module 4a. The first control signal BUSY enables selection of one of the input signals SA', SINT_O in order to generate an output signal SADDR' to the multiplexer 34.

    [0053] The signal SADDR' is supplied to the main memory module 4a for addressing one of the memory cells of the main memory module 4a.

    [0054] According to one aspect of the present invention, an address-management block 44 is arranged between the multiplexer 34 and the main memory module 4a. The controller 8 is further configured to generate a control signal SWAP, designed to control the address-management block 44. Consequently, the address-management block 44 receives at input the signal SADDR' and the control signal SWAP. In particular, if the control signal SWAP has logic value "0", the signal SADDR' is directly supplied to the main memory module 4a. Otherwise, if the control signal SWAP has logic value "1", the signal SADDR' is modified so as to address the memory cell complementary to the memory cell originally addresses. Typically, in differential memories, the address of a memory cell and that of its complementary are separated by a fixed offset equal to the size of the memory cell. In this case, the address-management block 44 is configured to add said offset to the address indicated by the signal SADDR' in the case where the control signal SWAP has logic value "1".

    [0055] Consequently, the signal SMAIN_O at output from the main memory module 4a contains data corresponding to the data contained in the memory cell, addressed by the signal SADDR', of the main memory module 4a if the control signal SWAP has logic value "0", or alternatively the data contained in the complementary memory cell if the control signal SWAP has logic value "1". In this way, it is possible to access, during step 28 of the management method, both the informative content associated to the set of data A and to that associated to the set of data B. In addition, it is possible to execute each of the control softwares corresponding to the set of data A and to the set of data B with reference to a same memory-address region, namely, the one for which each of the control softwares has been compiled and linked even though the set of data B physically resides in a different memory-address region.

    [0056] The aforesaid signal SMAIN_O is further supplied to a multiplexer 36 controlled by the third control signal SCOMM. The multiplexer 38 further receives at input the signal SSPARE_O from the auxiliary memory module 6 via interposition of the first buffer 33. The multiplexer 38 selects one of the signals SMAIN_O, SSPARE_O in order to generate a signal SINT_I at input to the memory-array interface 16. The signal SINT_I consequently contains data sent in response to reading requests from the user. These data come from the main memory module 4a or from the auxiliary memory module 6.

    [0057] The controller 8 is further configured to generate a signal SA'', which contains an address of one of the memory cells of the auxiliary memory module 6. The signal SA'' is supplied to an input of a multiplexer 38 controlled by the second control signal BUSY_SP. The multiplexer 38 further receives at input the signal SADDR' via interposition of a second buffer 39 so as to reduce the propagation times associated to the auxiliary memory module 6. The second control signal BUSY_SP enables selection of one of the input signals SA'', SADDR' for generating a signal SADDR'' at output from the multiplexer 38. In particular, the output signal SADDR'' corresponds to the input signal SA'' during copying of the data of the main memory module 4a into the auxiliary memory module 6 (step 22 of the management method of Figure 2), and to the input signal SADDR' = SINT_O in the case where the user requests reading of the informative content of the memory cell 4a during writing of the datum B1n in the main memory module 4a (step 24 of the management method of Figure 2).

    [0058] In a per se known manner, the controller 8 and the main memory module 4a receive at input respective clock signals generated by clock generators not shown in Figure 3. Further, a multiplexer (not shown in the figure either) may be arranged between the main memory module 4a and the aforesaid clock generators for synchronising the main memory module 4a to the controller 8.

    [0059] It is evident that the second main memory module 4b is structurally equivalent to the first main memory module 4a of Figure 3, and is operatively coupled to the controller 8, to the auxiliary memory module 6, and to the memory-array interface 16 via respective multiplexers.

    [0060] In addition, the second main memory module 4b may be associated to a respective clock signal, for example different from the clock signal of the first main memory module 4a.

    [0061] In order to describe in greater detail some steps of the management method Figure 2, each of Figures 4A-4E shows the portion of the nonvolatile-memory device 1 of Figure 3 during a different step of the method. In each of Figures 4A-4E, communication lines corresponding to signals that are active in the corresponding step of the method are highlighted with the use of thick lines, where by "active signals" are meant signals that carry data during this step and signals that carry addresses of said data.

    [0062] In particular, Figures 4A and 4B regard step 22 of the method, where the first datum A1 is written in the auxiliary memory module 6.

    [0063] In even greater detail, Figure 4A regards a first substep of step 22, where the controller 8 reads the datum A1 from the main memory module 4a. In the course of the substep of Figure 4A, the controller 8 generates the first control signal BUSY so as to select the signals SMAIN_O and SA', which are thus supplied at output by the respective multiplexers 32, 34, respectively, via the signals SDATA_IN and SADDR'. In this way, the controller 8 receives at input the signal SDATA_IN, corresponding to the datum A1, contained in the memory cell addressed by the signal SA' and contained in the main memory module 4a.

    [0064] In the course of the substep of Figure 4A, the control signal SWAP has logic value "0", so that the main memory module 4a will receive the unaltered signal SADDR', which thus corresponds to the signal SA'.

    [0065] Figure 4B regards a second substep of step 22 of the method, after the first substep of Figure 4A, where the controller 8 writes in the auxiliary memory module 6 the datum A1 read in the course of the substep of Figure 4A.

    [0066] In the course of the substep of Figure 4B, the controller 8 generates the second control signal BUSY_SP so as to select the signal SA'', which is then supplied at output by the multiplexer 38 via the signal SADDR''. Furthermore, the controller 8 sends to the auxiliary memory module 6 the output signal SDATA_OUT'', which contains the datum A1 to be written in the memory cell of the auxiliary memory module 6 addressed by the signal SADDR'' = SA''. The signal SA'' supplied by the controller 8 in the course of the substep of Figure 4B contains the same address contained in the signal SA' supplied by the controller 8 in the course of the substep of Figure 4A.

    [0067] Consequently, at the end of the substep of Figure 4B, the datum A1 is stored in the auxiliary memory module 6 at the same address as the one to which it is associated in the main memory module 4a.

    [0068] It is evident that the second datum A2 is read from the second main memory module 4b and written in the auxiliary memory module 6 as has been described with reference to the first datum A1 and to the first main memory module 4a and illustrated in Figures 4A and 4B.

    [0069] Figures 4C and 4D regard step 24 of the method, where the datum B1n is written in the first main memory module 4a, and requests of reading of the datum A1 by the user are re-addressed to the auxiliary memory module 6.

    [0070] In particular, Figure 4C illustrates an operation of reading by the user of an informative content of the main memory module 4a, re-addressed to the auxiliary memory module 6.

    [0071] During step 24, the controller 8 generates the second control signal BUSY_SP so as to select the signals SINT_O, SADDR', which are thus supplied at output by the respective multiplexers 34, 38. In addition, the controller 8 generates the third control signal SCOMM so as to select the signal SSPARE_O, supplied at output by the multiplexer 36. In this way, whenever during step 24 the user asks to read the datum A1, associated to the memory cell of the main memory module 4a addressed by the signal SINT_O, the datum contained in the memory cell of the auxiliary memory module 6 addressed by the signal SADDR'' = SADDR' = SINT_O is read. This datum, supplied at output by the auxiliary memory module 6 via the signal SSPARE_O, is then sent to the memory-array interface 16 via the signal SINT_I.

    [0072] Figure 4D illustrates a substep of writing of the datum B1n in the second submodule 4a'' of the main memory module 4a, carried out during step 24, after the substep of Figure 4C.

    [0073] The datum B1n is, for example, supplied to the controller 8 by the controller interface 14 of Figure 1.

    [0074] During the substep of Figure 4D, the controller 8 generates the first control signal BUSY so as to select the signal SA', which is then supplied at output by the multiplexer 34 so as to indicate the address of writing of the datum B1n. For instance, writing address of the datum B1n may point to the second submodule 4a'' of the first main memory module 4a; in this case, the logic value of the control signal SWAP is "0". Alternatively, the writing address of the datum B1n may point to the first submodule 4a' of the first main memory module 4a. In this case, the logic value of the control signal SWAP is "1" and consequently, after applying the fixed offset to the signal SADDR' at output from the address-management block 44, the datum B1n is in any case written in the second submodule 4a' ' .

    [0075] It is evident that step 26 of the method, where the datum B2n is written in the second main memory module 4b and requests of reading of the datum A2 by the user are re-addressed to the auxiliary memory module 6, is carried out in a way similar to what has been illustrated in Figures 4C and 4D with reference to the datum B1n, to the datum A1, and to the first main memory module 4a.

    [0076] Figure 4E regards step 28 of the management method, where the user may access the set of data A (for example, the first vehicle-control software) or alternatively the set of data B (in this example, the second vehicle-control software). In particular, Figure 4E illustrates an operation of reading by the user of an informative content of the first main memory module 4a.

    [0077] During step 28, the controller 8 controls the multiplexers 34 and 36 so as to select and supply at output, respectively, the signals SINT_O and SMAIN_O. In this way, in the case where during step 28 the user requests reading of the informative content of the main memory module 4a associated to the memory cell addressed by the signal SINT_O, the datum A1 is read if the control signal SWAP has logic value "0", and the datum B1n is read if the control signal SWAP has logic value "1". Consequently, in the case where the user has to use the first control software, the control signal SWAP has logic value "0"; otherwise, the control signal SWAP has logic value "1". In any case, the datum read, supplied at output by the first main memory module 4a via the signal SMAIN_O, is sent to the memory-array interface 16 via the signal SINT_I.

    [0078] Figure 5 illustrates a portion of an electronic system 50 according to an embodiment of the present invention. The electronic system 50 may be used in electronic devices, such as: an electronic control unit of a vehicle; a PDA (Personal Digital Assistant); a portable or fixed computer, possibly with capacity of wireless data transfer; a mobile phone; a tablet; a smartphone; a digital audio player; a photographic or video camera; or further devices that are able to process, store, transmit, and receive information.

    [0079] In detail, the electronic system 50 comprises a controller 51 (for example, provided with a microprocessor, a DSP, or a microcontroller) and the nonvolatile-memory device 1 described previously. Optionally, the electronic system 50 comprises one or more from among an input/output device 52 (for example, provided with a keypad and a display) for input and display data, a wireless interface 54, for example, an antenna for transmitting and receiving data through a radio-frequency wireless-communication network, and a RAM 55, all coupled through a bus 56. A battery 57 may be used as electrical supply source in the electronic system 50, which may further be provided with a photographic or video camera 58.

    [0080] According to a further embodiment (not illustrated in the figures), the nonvolatile-memory device 1 may be embedded in the controller 51.

    [0081] In any case, the present invention finds application in an operating condition where the electronic system 50 is controlled by the first control software, and the second control software is written in the nonvolatile-memory device 1, without interrupting execution of the first control software.

    [0082] For instance, writing of the second control software is carried out using over-the-air methodology.

    [0083] From an examination of the characteristics of the invention described and illustrated herein, the advantages that it affords are evident.

    [0084] In particular, the user has an uninterrupted access in reading to the informative content of the set of data A during writing of the set of data B, and further, at the end of writing of the set of data B, may access alternatively the set of data A or the set of data B without any need to provide an additional memory module dedicated to storage of the set of data B. Consequently, it is possible to store twice the amount of the data as compared to differential memories of a conventional type and having the same amount of main memory modules.

    [0085] Furthermore, it is possible to execute a software corresponding to the set of data B compiled and linked as if it physically resided in the memory region occupied by the set of data A. In this way, there is no need to specify in an image of the software, contained in the set of data B, its physical location in the memory. In particular, in a context where a number of versions of the software are tested, typically the sequence of updates of the versions of the software is not foreseeable, thus rendering not possible specification of the physical location of the respective images in the memory.

    [0086] Finally, it is clear that modifications and variations may be made to the disclosure described and illustrated herein, without thereby departing from the scope of the present invention, as defined in the annexed claims.

    [0087] For instance, the method of management of the nonvolatile-memory device 1 envisages operations of refreshing of the data contained in the memory array 2, for example between step 26 and step 28 and/or between step 20 and step 22 and/or in any other moment, according to the need. In this case, access in reading to the informative content associated to the datum during refresh is guaranteed by a method implemented by the controller 8 that envisages the steps of: copying the datum to be refreshed in the auxiliary memory module 6; carrying out the aforementioned refresh of the datum in the memory array 2; and reading the informative content from the auxiliary memory module 6, during the step of refresh, and from the memory array 2, otherwise.

    [0088] Consequently, refresh is carried out in a way transparent for the user, which has an uninterrupted access in reading and writing to the informative content of the entire nonvolatile-memory device, enabling use thereof for real-time applications.


    Claims

    1. A method for real-time management of a differential memory (1) comprising: a first main memory module (4a) including a first submodule (4a') that stores first logic data (A1) and a second submodule (4a'') that stores second logic data (A1n) which are complementary to the first logic data (A1), for enabling differential reading of a first informative content (A) associated to the first and second logic data (A1, A1n); and an auxiliary memory module (6),
    said method comprising the steps of:

    a- storing (22) the first logic data (A1) in the auxiliary memory module (6);

    b- storing (24) third logic data (B1n), associated to a second informative content (B), in the second submodule (4a''), overwriting respective second logic data (A1n), while maintaining the first logic data (A1) contained in the first submodule (4a') unaltered;

    c- in response to a request for reading the first informative content (A), reading (24, 28) in single-ended mode the first logic data (A1) from the auxiliary memory module (6) during the step of storing (24) the third logic data (B1n), or otherwise from the first submodule (4a');

    d- reading (28), in response to a request for reading the second informative content (B), the third logic data (B1n) in single-ended mode.


     
    2. The method according to claim 1, wherein the step (24) of storing the third logic data (B1n) is carried out after the step of storing (22) the first logic data (A1).
     
    3. The method according to claim 1 or claim 2, further comprising the step (30) of storing in the first submodule (4a') fourth logic data (B1), complementary to the third logic data (B1n), for enabling differential reading of the second informative content (B) associated to the third and fourth logic data (B1n, B1),
    said step (30) of storing the fourth logic data (B1) comprising the step of overwriting the first logic data (A1).
     
    4. The method according to any one of the preceding claims, further comprising the step of refreshing at least one among: the first logic data (A1), the second logic data (A1n), the third logic data (B1n), and the fourth logic data (B1) .
     
    5. The method according to claim 4, wherein the refresh step comprises reading said at least one among the first logic data (A1), the second logic data (A1n), the third logic data (B1n), and the fourth logic data (B1), and rewriting it, respectively, in the first submodule (4a'), in the second submodule (4a''), in the second submodule (4a''), and in the first submodule (4a').
     
    6. The method according to any one of the preceding claims, wherein the first informative content (A) is further associated to fifth logic data (A2) and sixth logic data (A2n), complementary to the fifth logic data (A2), and wherein the second informative content (B) is further associated to seventh logic data (B2n),
    and wherein the differential memory (1) further comprises: a second main memory module (4b) including a third submodule (4b') that stores the fifth logic data (A2); and a fourth submodule (4b'') that stores the sixth logic data (A2n), for enabling differential reading of the first informative content (A),
    said method further comprising the steps of:

    e- storing (22) the fifth logic data (A2) in the auxiliary memory module (6);

    f- storing (26) seventh logic data (B2n) in the fourth submodule (4b''), overwriting respective sixth logic data (A2n), while maintaining the fifth logic data (A2) contained in the third submodule (4b') unaltered;

    g- reading (26, 28), in response to a request for reading the first informative content (A), the fifth logic data (A2) in single-ended mode from the auxiliary memory module (6) during the step (26) of storing of the seventh logic data (B2n), or otherwise from the third submodule (4b');

    h- reading (28), in response to a request for reading the second informative content (B), the seventh logic data (B2n) in single-ended mode.


     
    7. The method according to any one of the preceding claims, wherein the auxiliary memory module (6) includes a fifth submodule (6') and a sixth submodule (6'') of a same size as the first, second, third, and fourth submodules (4a', 4a'', 4b', 4b''), and wherein the step of storing (22) the first logic data (A1) in the auxiliary memory module (6) comprises storing the first logic data (A1) in the fifth submodule (6').
     
    8. The method according to claim 7 when depending upon claim 6, wherein the step (22) of storing the fifth logic data (A2) comprises storing the fifth logic data (A2) in the sixth submodule (6'').
     
    9. The method according to any one of the preceding claims, wherein the differential memory (1) is a phase-change memory.
     
    10. A differential memory (1) comprising:

    - a first main memory module (4a) including a first submodule (4a') configured to store first logic data (A1) and a second submodule (4a'') configured to store second logic data (A1n), complementary to the first logic data (A1), for enabling differential reading of a first informative content (A) associated to the first and second logic data (A1, A1n);

    - an auxiliary memory module (6); and

    - a controller (8) configured to:

    a- control a storage operation (22) of the first logic data (A1) in the auxiliary memory module (6);

    b- control a storage operation (24) of third logic data (B1n), associated to a second informative content (B), in the second submodule (4a'') by overwriting respective second logic data (A1n) while maintaining unaltered the first logic data (A1) contained in the first submodule (4a');

    c- in response to a request for reading the first informative content (A), read (24, 28) in single-ended mode the first logic data (A1) from the auxiliary memory module (6) during the operation of controlling storage (24) of the third logic data (B1n), or otherwise from the first submodule (4a');

    d- read (28), in response to a request for reading the second informative content (B), the third logic data (B1n) in single-ended mode.


     
    11. The memory according to claim 10, wherein the controller (8) is further configured to control the storage operation (24) of the third logic data (B1n) after the operation of controlling the storage (22) of the first logic data (A1).
     
    12. The memory according to claim 10 or claim 11, wherein the controller (8) is further configured to control a storage operation (30) in the first submodule (4a') of fourth logic data (B1), complementary to the third logic data (B1n), to enable differential reading of the second informative content (B) associated to the third and fourth logic data (B1n, B1),
    and wherein the controller (8) is further configured to carry out said operation of controlling the storage (30) of fourth logic data (B1) by overwriting the first logic data (A1).
     
    13. The memory according to any one of claims 10 to 12, wherein the controller (8) is further configured to refresh at least one among: the first logic data (A1), the second logic data (A1n), the third logic data (B1n), and the fourth logic data (B1).
     
    14. The memory according to claim 13, wherein the controller (8) is further configured to carry out the refresh operation by reading said at least one among first logic data (A1), second logic data (A1n), third logic data (B1n), and fourth logic data (B1), and rewriting it, respectively, in the first submodule (4a'), in the second submodule (4a''), in the second submodule (4a''), and in the first submodule (4a').
     
    15. The memory according to any one of claims 10 to 14, wherein the first informative content (A) is further associated to fifth logic data (A2) and sixth logic data (A2n), complementary to the fifth logic data (A2), and wherein the second informative content (B) is further associated to seventh logic data (B2n),
    and wherein the differential memory (1) further comprises a second main memory module (4b) including a third submodule (4b') that stores the fifth logic data (A2), and a fourth submodule (4b'') that stores the sixth logic data (A2n), for enabling differential reading of the first informative content (A),
    and wherein the controller (8) is further configured to:

    e- control a storage operation (22) of the fifth logic data (A2) in the auxiliary memory module (6);

    f- control a storage operation (26) of the seventh logic data (B2n) in the fourth submodule (4b'') by overwriting respective sixth logic data (A2n), while maintaining unaltered the fifth logic data (A2) contained in the third submodule (4b');

    g- read (26, 28), in response to a request for reading the first informative content (A), the fifth logic data (A2) in single-ended mode from the auxiliary memory module (6), during the operation of controlling storage (26) of the seventh logic data (B2n), or otherwise from the third submodule (4b');

    h- read (28), in response to a request for reading the second informative content (B), the seventh logic data (B2n) in single-ended mode.


     
    16. The memory according to any one of claims 10 to 15, wherein the auxiliary memory module (6) includes a fifth submodule (6') and a sixth submodule (6'') of the same size as the first, second, third, and fourth submodules (4a', 4a'', 4b', 4b''), and wherein the controller (8) is further configured to carry out the operation of storing (22) the first logic data (A1) in the auxiliary memory module (6) by storing the first logic data (A1) in the fifth submodule (6').
     
    17. The memory according to claim 16 when depending upon claim 15, wherein the controller (8) is further configured to carry out the operation (22) of storing the fifth logic data (A2) by storing the fifth logic data (A2) in the sixth submodule (6'').
     
    18. The memory according to any one of claims 10 to 17, wherein the memory (1) is a phase-change memory.
     
    19. An electronic system (50) comprising a differential memory (1) according to any one of claims 10 to 18, the electronic system (50) being one among: an electronic control unit of a vehicle; a personal digital assistant (PDA); a notebook; a mobile phone; a smartphone; a tablet; a digital audio player; a photographic camera or video camera; or another device that is able to process, store, transmit, and/or receive information.
     
    20. The electronic system (50) according to claim 19, wherein the first and second informative content (A, B) are respective control softwares or firmwares of the electronic system (50).
     
    21. The electronic system (50) according to claim 19 or claim 20, wherein storage of the second informative content (B) is carried out in over-the-air mode.
     


    Ansprüche

    1. Verfahren zum Echtzeitmanagement eines differentiellen Speichers (1), der Folgendes umfasst: ein erstes Hauptspeichermodul (4a), das ein erstes Untermodul (4a') beinhaltet, das erste Logikdaten (A1) speichert, und ein zweites Untermodul (4a"), das zweite Logikdaten (A1n) speichert, welche zu den Logikdaten (A1) komplementär sind, zum Ermöglichen differentiellen Auslesens eines ersten Informationsinhalts (A), der mit den ersten und den zweiten Logikdaten (A1, A1n) verknüpft ist; und ein Hilfsspeichermodul (6),
    wobei das Verfahren die folgenden Schritte umfasst:

    a- Speichern (22) der ersten Logikdaten (A1) in dem Hilfsspeichermodul (6);

    b- Speichern (24) von dritten Logikdaten (B1n), die mit einem zweiten Informationsinhalt (B) verknüpft sind, in dem zweiten Untermodul (4a"), wobei jeweilige zweite Logikdaten (A1n) überschrieben werden, wohingegen die in dem ersten Untermodul (4a') enthaltenen ersten Logikdaten (A1) unverändert beibehalten werden;

    c- als Reaktion auf eine Anforderung zum Auslesen des ersten Informationsinhalts (A), Auslesen (24, 28) in einem unsymmetrischen Modus der ersten Logikdaten (A1) aus dem Hilfsspeichermodul (6) während des Schritts des Speicherns (24) der dritten Logikdaten (B1n), oder ansonsten aus dem ersten Untermodul (4a');

    d- Auslesen (28), als Reaktion auf eine Anforderung zum Auslesen des zweiten Informationsinhalts (B), der dritten Logikdaten (B1n) im unsymmetrischen Modus.


     
    2. Verfahren nach Anspruch 1, wobei der Schritt (24) des Speicherns der dritten Logikdaten (B1n) nach dem Schritt des Speicherns (22) der ersten Logikdaten (A1) ausgeführt wird.
     
    3. Verfahren nach Anspruch 1 oder Anspruch 2, das ferner den Schritt (30) des Speicherns von vierten Logikdaten (B1), die zu den dritten Logikdaten (B1n) komplementär sind, in dem ersten Untermodul (4a') zum Ermöglichen differentiellen Auslesens des zweiten Informationsinhalts (B), der mit den dritten und den vierten Logikdaten (B1n, B1) verknüpft ist, umfasst, wobei der Schritt (30) des Speicherns der vierten Logikdaten (B1) den Schritt des Überschreibens der ersten Logikdaten (A1) umfasst.
     
    4. Verfahren nach einem der vorhergehenden Ansprüche, ferner umfassend den Schritt des Auffrischens mindestens eines unter den Folgenden: die ersten Logikdaten (A1), die zweiten Logikdaten (A1n), die dritten Logikdaten (B1n) und die vierten Logikdaten (B1).
     
    5. Verfahren nach Anspruch 4, wobei der Auffrischungsschritt Auslesen der mindestens einen unter den ersten Logikdaten (A1), den zweiten Logikdaten (A1n), den dritten Logikdaten (B1n) und den vierten Logikdaten (B1) und jeweiliges Neuschreiben derselben in das erste Untermodul (4a'), das zweite Untermodul (4a"), das zweite Untermodul (4a") und das erste Untermodul (4a') umfasst.
     
    6. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste Informationsinhalt (A) ferner mit fünften Logikdaten (A2) und sechsten Logikdaten (A2n), die zu den fünften Logikdaten (A2) komplementär sind, verknüpft ist, und wobei der zweite Informationsinhalt (B) ferner mit siebten Logikdaten (B2n) verknüpft ist,
    und wobei der differentielle Speicher (1) ferner Folgendes umfasst: ein zweites Hauptspeichermodul (4b), das ein drittes Untermodul (4b') beinhaltet, das die fünften Logikdaten (A2) speichert; und ein viertes Untermodul (4b"), das die sechsten Logikdaten (A2n) speichert, zum Ermöglichen differentiellen Auslesens des ersten Informationsinhalts (A),
    wobei das Verfahren ferner die folgenden Schritte umfasst:

    e- Speichern (22) der fünften Logikdaten (A2) in dem Hilfsspeichermodul (6);

    f-Speichern (26) von siebten Logikdaten (B2n) in dem vierten Untermodul (4b"), wobei jeweilige sechste Logikdaten (A2n) überschrieben werden, wohingegen die in dem dritten Untermodul (4b') enthaltenen fünften Logikdaten (A2) unverändert beibehalten werden;

    g-Auslesen (26, 28), als Reaktion auf eine Anforderung zum Auslesen des ersten Informationsinhalts (A), in einem unsymmetrischen Modus der fünften Logikdaten (A2) aus dem Hilfsspeichermodul (6) während des Schritts (26) des Speicherns der siebten Logikdaten (B2n), oder ansonsten aus dem dritten Untermodul (4b');

    h-Auslesen (28), als Reaktion auf eine Anforderung zum Auslesen des zweiten Informationsinhalts (B), der siebten Logikdaten (B2n) im unsymmetrischen Modus.


     
    7. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Hilfsspeichermodul (6) ein fünftes Untermodul (6') und ein sechstes Untermodul (6") einer gleichen Größe wie das erste, das zweite, das dritte und das vierte Untermodul (4a', 4a", 4b', 4b") beinhaltet, und wobei der Schritt des Speicherns (22) der ersten Logikdaten (A1) in dem Hilfsspeichermodul (6) Speichern der ersten Logikdaten (A1) in dem fünften Untermodul (6') umfasst.
     
    8. Verfahren nach Anspruch 7, wenn abhängig von Anspruch 6, wobei der Schritt (22) des Speicherns der fünften Logikdaten (A2) Speichern der fünften Logikdaten (A2) in dem sechsten Untermodul (6") umfasst.
     
    9. Verfahren nach einem der vorhergehenden Ansprüche, wobei der differentielle Speicher (1) ein Phasenwechselspeicher ist.
     
    10. Differentialspeicher (1), der Folgendes umfasst:

    - ein erstes Hauptspeichermodul (4a), das ein erstes Untermodul (4a') beinhaltet, das ausgelegt ist zum Speichern erster Logikdaten (A1), und ein zweites Untermodul (4a"), das ausgelegt ist zum Speichern zweiter Logikdaten (A1n), welche zu den Logikdaten (A1) komplementär sind, zum Ermöglichen differentiellen Auslesens eines ersten Informationsinhalts (A), der mit den ersten und den zweiten Logikdaten (A1, A1n) verknüpft ist;

    - ein Hilfsspeichermodul (6); und

    - einen Controller (8), der ausgelegt ist zum:

    a- Steuern einer Speicheroperation (22) der ersten Logikdaten (A1) in dem Hilfsspeichermodul (6);

    b- Steuern einer Speicheroperation (24) von dritten Logikdaten (B1n), die mit einem zweiten Informationsinhalt (B) verknüpft sind, in dem zweiten Untermodul (4a") durch Überschreiben jeweiliger zweiter Logikdaten (A1n), wohingegen die in dem ersten Untermodul (4a') enthaltenen ersten Logikdaten (A1) unverändert beibehalten werden;

    c- als Reaktion auf eine Anforderung zum Auslesen des ersten Informationsinhalts (A), Auslesen (24, 28) in einem unsymmetrischen Modus der ersten Logikdaten (A1) aus dem Hilfsspeichermodul (6) während der Operation des Steuern des Speicherns (24) der dritten Logikdaten (B1n), oder ansonsten aus dem ersten Untermodul (4a');

    d- Auslesen (28), als Reaktion auf eine Anforderung zum Auslesen des zweiten Informationsinhalts (B), der dritten Logikdaten (B1n) im unsymmetrischen Modus.


     
    11. Speicher nach Anspruch 10, wobei der Controller (8) ferner ausgelegt ist zum Steuern der Speicheroperation (24) der dritten Logikdaten (B1n) nach der Operation des Steuerns des Speicherns (22) der ersten Logikdaten (A1).
     
    12. Speicher nach Anspruch 10 oder 11, wobei der Controller (8) ferner ausgelegt ist zum Steuern einer Speicheroperation (30) in dem ersten Untermodul (4a') von vierten Logikdaten (B1), die zu den dritten Logikdaten (B1n) komplementär sind, zum Ermöglichen des differentiellen Auslesens des zweiten Informationsinhalts (B), der mit den dritten und vierten Logikdaten (B1n, B1) verknüpft ist,
    und wobei der Controller (8) ferner ausgelegt ist zum Ausführen der Operation des Steuerns des Speicherns (30) der vierten Logikdaten (B1) durch Überschreiben der ersten Logikdaten (A1).
     
    13. Speicher nach einem der Ansprüche 10 bis 12, wobei der Controller (8) ferner ausgelegt ist zum Auffrischen mindestens eines unter den Folgenden: die ersten Logikdaten (A1), die zweiten Logikdaten (A1n), die dritten Logikdaten (B1n) und die vierten Logikdaten (B1).
     
    14. Speicher nach Anspruch 13, wobei der Controller (8) ferner ausgelegt ist zum Ausführen der Auffrischungsoperation durch Auslesen der mindestens einen unter den ersten Logikdaten (A1), den zweiten Logikdaten (A1n), den dritten Logikdaten (B1n) und den vierten Logikdaten (B1) und jeweiliges Neuschreiben derselben in das erste Untermodul (4a'), das zweite Untermodul (4a"), das zweite Untermodul (4a") und das erste Untermodul (4a').
     
    15. Speicher nach einem der Ansprüche 10 bis 14, wobei der erste Informationsinhalt (A) ferner mit fünften Logikdaten (A2) und sechsten Logikdaten (A2n), die zu den fünften Logikdaten (A2) komplementär sind, verknüpft ist, und wobei der zweite Informationsinhalt (B) ferner mit siebten Logikdaten (B2n) verknüpft ist,
    und wobei der differentielle Speicher (1) ferner ein zweites Hauptspeichermodul (4b), das ein drittes Untermodul (4b') beinhaltet, das die fünften Logikdaten (A2) speichert, und ein viertes Untermodul (4b"), das die sechsten Logikdaten (A2n) speichert, zum Ermöglichen differentiellen Auslesens des ersten Informationsinhalts (A), umfasst,
    und wobei der Controller (8) ferner ausgelegt ist zum:

    e- Steuern einer Speicheroperation (22) der fünften Logikdaten (A2) in dem Hilfsspeichermodul (6);

    f-Steuern einer Speicheroperation (26) der siebten Logikdaten (B2n) in dem vierten Untermodul (4b") durch Überschreiben jeweiliger sechster Logikdaten (A2n), wohingegen die in dem dritten Untermodul (4b') enthaltenen fünften Logikdaten (A2) unverändert beibehalten werden;

    g-Auslesen (26, 28), als Reaktion auf eine Anforderung zum Auslesen des ersten Informationsinhalts (A), in einem unsymmetrischen Modus der fünften Logikdaten (A2) aus dem Hilfsspeichermodul (6), während der Operation des Steuerns des Speicherns (26) der siebten Logikdaten (B2n), oder ansonsten aus dem dritten Untermodul (4b');

    h-Auslesen (28), als Reaktion auf eine Anforderung zum Auslesen des zweiten Informationsinhalts (B), der siebten Logikdaten (B2n) im unsymmetrischen Modus.


     
    16. Speicher nach einem der Ansprüche 10 bis 15, wobei das Hilfsspeichermodul (6) ein fünftes Untermodul (6') und ein sechstes Untermodul (6") der gleichen Größe wie das erste, das zweite, das dritte und das vierte Untermodul (4a', 4a", 4b', 4b") beinhaltet, und wobei der Controller (8) ferner ausgelegt ist zum Ausführen der Operation des Speicherns (22) der ersten Logikdaten (A1) in dem Hilfsspeichermodul (6) durch Speichern der ersten Logikdaten (A1) in dem fünften Untermodul (6').
     
    17. Speicher nach Anspruch 16, wenn abhängig von Anspruch 15, wobei der Controller (8) ferner ausgelegt ist zum Ausführen der Operation (22) des Speicherns der fünften Logikdaten (A2) durch Speichern der fünften Logikdaten (A2) in dem sechsten Untermodul (6").
     
    18. Speicher nach einem der Ansprüche 10 bis 17, wobei der Speicher (1) ein Phasenwechselspeicher ist.
     
    19. Elektronisches System (50), das einen differentiellen Speicher (1) nach einem der Ansprüche 10 bis 18 umfasst, wobei das elektronische System (50) eines unter den Folgenden ist: eine elektronische Steuereinheit eines Fahrzeugs, ein PDA (Personal Digital Assistant), ein Notebook, ein Mobiltelefon, ein Smartphone, ein Tablet, ein digitales Audioabspielgerät, eine Fotokamera oder eine Videokamera, oder eine andere Vorrichtung, die fähig ist zum Verarbeiten, Speichern, Senden und/oder Empfangen von Informationen.
     
    20. Elektronisches System (50) nach Anspruch 19, wobei der erste und der zweite Informationsinhalt (A, B) jeweilige Steuersoftwares oder -firmwares des elektronischen Systems (50) sind.
     
    21. Elektronisches System (50) nach Anspruch 19 oder Anspruch 20, wobei Speichern des zweiten Informationsinhalts (B) im Over-the-Air-Modus ausgeführt wird.
     


    Revendications

    1. Procédé de gestion en temps réel d'une mémoire différentielle (1) comprenant : un premier module de mémoire principale (4a) comportant un premier sous-module (4a') qui stocke des premières données logiques (A1) et un deuxième sous-module (4a") qui stocke des deuxièmes données logiques (A1n) qui sont complémentaires des premières données logiques (A1), pour permettre une lecture différentielle d'un premier contenu informatif (A) associé aux premières et deuxièmes données logiques (A1, A1n) ; et un module de mémoire auxiliaire (6),
    ledit procédé comprenant les étapes suivantes :

    a- stocker (22) les premières données logiques (A1) dans le module de mémoire auxiliaire (6) ;

    b- stocker (24) des troisièmes données logiques (B1n), associées à un deuxième contenu informatif (B), dans le deuxième sous-module (4a"), en écrasant des deuxièmes données logiques respectives (A1n), tout en maintenant non altérées les premières données logiques (A1) contenues dans le premier sous-module (4a') ;

    c- en réponse à une demande de lecture du premier contenu informatif (A), lire (24, 28) en mode simple les premières données logiques (A1) dans le module de mémoire auxiliaire (6) pendant l'étape de stockage (24) des troisièmes données logiques (B1n), ou sinon dans le premier sous-module (4a') ;

    d- lire (28), en réponse à une demande de lecture du deuxième contenu informatif (B), les troisièmes données logiques (B1n) en mode simple.


     
    2. Procédé selon la revendication 1, dans lequel l'étape (24) de stockage des troisièmes données logiques (B1n) est exécutée après l'étape de stockage (22) des premières données logiques (A1).
     
    3. Procédé selon la revendication 1 ou 2, comprenant en outre l'étape (30) consistant à stocker dans le premier sous-module (4a') des quatrièmes données logiques (B1), complémentaires des troisièmes données logiques (B1n), pour permettre une lecture différentielle du deuxième contenu informatif (B) associé aux troisièmes et quatrièmes données logiques (B1n, B1),
    ladite étape (30) de stockage des quatrièmes données logiques (B1) comprenant l'étape d'écrasement des premières données logiques (A1).
     
    4. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre l'étape consistant à rafraîchir au moins un groupe parmi : les premières données logiques (A1), les deuxièmes données logiques (A1n), les troisièmes données logiques (B1n) et les quatrièmes données logiques (B1).
     
    5. Procédé selon la revendication 4, dans lequel l'étape de rafraîchissement comprend la lecture dudit au moins un groupe parmi les premières données logiques (A1), les deuxièmes données logiques (A1n), les troisièmes données logiques (B1n) et les quatrièmes données logiques (B1), et sa réécriture respectivement dans le premier sous-module (4a'), dans le deuxième sous-module (4a"), dans le deuxième sous-module (4a"), et dans le premier sous-module (4a').
     
    6. Procédé selon l'une quelconque des revendications précédentes, dans lequel le premier contenu informatif (A) est en outre associé à des cinquièmes données logiques (A2) et des sixièmes données logiques (A2n), complémentaires des cinquièmes données logiques (A2), et dans lequel le deuxième contenu informatif (B) est en outre associé à des septièmes données logiques (B2n),
    et dans lequel la mémoire différentielle (1) comprend en outre : un deuxième module de mémoire principale (4b) comportant un troisième sous-module (4b') qui stocke les cinquièmes données logiques (A2) ; et un quatrième sous-module (4b") qui stocke les sixièmes données logiques (A2n) qui sont complémentaires des premières données logiques (A1), pour permettre une lecture différentielle du premier contenu informatif (A),
    ledit procédé comprenant en outre les étapes suivantes :

    e- stocker (22) les cinquièmes données logiques (A2) dans le module de mémoire auxiliaire (6) ;

    f- stocker (26) des septièmes données logiques (B2n) dans le quatrième sous-module (4b"), en écrasant les sixièmes données logiques respectives (A2n), tout en maintenant non altérées les cinquièmes données logiques (A2) contenues dans le troisième sous-module (4b') ;

    g- lire (26, 28), en réponse à une demande de lecture du premier contenu informatif (A), les cinquièmes données logiques (A2) en mode simple dans le module de mémoire auxiliaire (6) pendant l'étape (26) de stockage des septièmes données logiques (B2n), ou sinon dans le troisième sous-module (4b') ;

    h- lire (28), en réponse à une demande de lecture du deuxième contenu informatif (B), les septièmes données logiques (B2n) en mode simple.


     
    7. Procédé selon l'une quelconque des revendications précédentes, dans lequel le module de mémoire auxiliaire (6) comporte un cinquième sous-module (6') et un sixième sous-module (6") de même taille que les premier, deuxième, troisième et quatrième sous-modules (4a', 4a", 4b', 4b"), et dans lequel l'étape de stockage (22) des premières données logiques (A1) dans le module de mémoire auxiliaire (6) comprend le stockage des premières données logiques (A1) dans le cinquième sous-module (6').
     
    8. Procédé selon la revendication 7 lorsqu'elle dépend de la revendication 6, dans lequel l'étape (22) de stockage des cinquièmes données logiques (A2) comprend le stockage des cinquièmes données logiques (A2) dans le sixième sous-module (6").
     
    9. Procédé selon l'une quelconque des revendications précédentes, dans lequel la mémoire différentielle (1) est une mémoire à changement de phase.
     
    10. Mémoire différentielle (1) comprenant :

    - un premier module de mémoire principale (4a) comportant un premier sous-module (4a') configuré pour stocker des premières données logiques (A1) et un deuxième sous-module (4a") configuré pour stocker des deuxièmes données logiques (A1n), complémentaires des premières données logiques (A1), pour permettre une lecture différentielle d'un premier contenu informatif (A) associé aux premières et deuxièmes données logiques (A1, A1n) ;

    - un module de mémoire auxiliaire (6) ; et

    - un contrôleur (8) configuré pour :

    a- commander une opération de stockage (22) des premières données logiques (A1) dans le module de mémoire auxiliaire (6) ;

    b- commander une opération de stockage (24) de troisièmes données logiques (B1n), associées à un deuxième contenu informatif (B), dans le deuxième sous-module (4a") en écrasant des deuxièmes données logiques respectives (A1n) tout en maintenant non altérées les premières données logiques (A1) contenues dans le premier sous-module (4a') ;

    c- en réponse à une demande de lecture du premier contenu informatif (A), lire (24, 28) en mode simple les premières données logiques (A1) dans le module de mémoire auxiliaire (6) pendant l'opération de commande de stockage (24) des troisièmes données logiques (B1n), ou sinon dans le premier sous-module (4a') ;

    d- lire (28), en réponse à une demande de lecture du deuxième contenu informatif (B), les troisièmes données logiques (B1n) en mode simple.


     
    11. Mémoire selon la revendication 10, dans laquelle le contrôleur (8) est en outre configuré pour commander l'opération de stockage (24) des troisièmes données logiques (B1n) après l'opération de commande du stockage (22) des premières données logiques (A1).
     
    12. Mémoire selon la revendication 10 ou 11, dans laquelle le contrôleur (8) est en outre configuré pour commander une opération de stockage (30) dans le premier sous-module (4a') de quatrièmes données logiques (B1), complémentaires des troisièmes données logiques (B1n), pour permettre une lecture différentielle du deuxième contenu informatif (B) associé aux troisièmes et quatrièmes données logiques (B1n, B1),
    et dans lequel le contrôleur (8) est en outre configuré pour exécuter ladite opération de commande du stockage (30) de quatrièmes données logiques (B1) en écrasant les premières données logiques (A1).
     
    13. Mémoire selon l'une quelconque des revendications 10 à 12, dans laquelle le contrôleur (8) est en outre configuré pour rafraîchir au moins un groupe parmi : les premières données logiques (A1), les deuxièmes données logiques (A1n), les troisièmes données logiques (B1n) et les quatrièmes données logiques (B1).
     
    14. Mémoire selon la revendication 13, dans laquelle le contrôleur (8) est en outre configuré pour exécuter l'opération de rafraîchissement en lisant ledit au moins un groupe parmi les premières données logiques (A1), les deuxièmes données logiques (A1n), les troisièmes données logiques (B1n) et les quatrièmes données logiques (B1), et en le réécrivant respectivement dans le premier sous-module (4a'), dans le deuxième sous-module (4a"), dans le deuxième sous-module (4a"), et dans le premier sous-module (4a').
     
    15. Mémoire selon l'une quelconque des revendications 10 à 14, dans laquelle le premier contenu informatif (A) est en outre associé à des cinquièmes données logiques (A2) et des sixièmes données logiques (A2n), complémentaires des cinquièmes données logiques (A2), et dans lequel le deuxième contenu informatif (B) est en outre associé à des septièmes données logiques (B2n),
    et dans laquelle la mémoire différentielle (1) comprend en outre un deuxième module de mémoire principale (4b) comportant un troisième sous-module (4b') qui stocke les cinquièmes données logiques (A2), et un quatrième sous-module (4b") qui stocke les sixièmes données logiques (A2n) pour permettre une lecture différentielle du premier contenu informatif (A),
    et dans laquelle le contrôleur (8) est en outre configuré pour :

    e- commander une opération de stockage (22) des cinquièmes données logiques (A2) dans le module de mémoire auxiliaire (6) ;

    f- commander une opération de stockage (26) des septièmes données logiques (B2n) dans le quatrième sous-module (4b") en écrasant les sixièmes données logiques respectives (A2n), tout en maintenant non altérées les cinquièmes données logiques (A2) contenues dans le troisième sous-module (4b') ;

    g- lire (26, 28), en réponse à une demande de lecture du premier contenu informatif (A), les cinquièmes données logiques (A2) en mode simple dans le module de mémoire auxiliaire (6), pendant l'opération de commande de stockage (26) des septièmes données logiques (B2n), ou sinon dans le troisième sous-module (4b') ;

    h- lire (28), en réponse à une demande de lecture du deuxième contenu informatif (B), les septièmes données logiques (B2n) en mode simple.


     
    16. Mémoire selon l'une quelconque des revendications 10 à 15, dans laquelle le module de mémoire auxiliaire (6) comporte un cinquième sous-module (6') et un sixième sous-module (6") de même taille que les premier, deuxième, troisième et quatrième sous-modules (4a', 4a", 4b', 4b"), et dans laquelle le contrôleur (8) est en outre configuré pour exécuter l'opération de stockage (22) des premières données logiques (A1) dans le module de mémoire auxiliaire (6) en stockant les premières données logiques (A1) dans le cinquième sous-module (6').
     
    17. Mémoire selon la revendication 16 lorsqu'elle dépend de la revendication 15, dans laquelle le contrôleur (8) est en outre configuré pour exécuter l'opération (22) de stockage des cinquièmes données logiques (A2) en stockant les cinquièmes données logiques (A2) dans le sixième sous-module (6").
     
    18. Mémoire selon l'une quelconque des revendications 10 à 17, dans laquelle la mémoire (1) est une mémoire à changement de phase.
     
    19. Système électronique (50) comprenant une mémoire différentielle (1) selon l'une quelconque des revendications 10 à 18, le système électronique (50) étant un système parmi : un bloc de commande électronique d'un véhicule ; un assistant numérique personnel (PDA) ; un ordinateur portable ; un téléphone mobile ; un mobile multifonction ; une tablette ; un lecteur audio numérique ; un appareil photo ou une caméra vidéo ; ou un autre appareil qui est apte à traiter, stocker, transmettre et/ou recevoir des informations.
     
    20. Système électronique (50) selon la revendication 19, dans lequel les premier et deuxième contenus informatifs (A, B) sont des logiciels de commande ou micrologiciels respectifs du système électronique (50).
     
    21. Système électronique (50) selon la revendication 19 ou 20, dans lequel le stockage du deuxième contenu informatif (B) est réalisé en mode sans fil.
     




    Drawing
































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description