(19)
(11)EP 3 510 705 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
17.06.2020 Bulletin 2020/25

(21)Application number: 17749498.6

(22)Date of filing:  11.08.2017
(51)International Patent Classification (IPC): 
H04B 7/06(2006.01)
H04W 16/14(2009.01)
H04B 7/08(2006.01)
H04W 74/08(2009.01)
(86)International application number:
PCT/EP2017/070474
(87)International publication number:
WO 2018/046235 (15.03.2018 Gazette  2018/11)

(54)

COMMUNICATION DEVICE AND METHOD

KOMMUNIKATIONSVORRICHTUNG UND -VERFAHREN

DISPOSITIF ET PROCÉDÉ DE COMMUNICATION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 09.09.2016 EP 16188126

(43)Date of publication of application:
17.07.2019 Bulletin 2019/29

(73)Proprietors:
  • Sony Corporation
    Tokyo 108-0075 (JP)
  • Sony Europe Limited
    Brooklands Weybridge Surrey KT13 0XW (GB)
    Designated Contracting States:
    AL 

(72)Inventors:
  • CIOCHINA, Dana
    70327 Stuttgart (DE)
  • HANDTE, Thomas
    70327 Stuttgart (DE)
  • LOGHIN, Nabil Sven
    70327 Stuttgart (DE)
  • FELLHAUER, Felix
    70327 Stuttgart (DE)

(74)Representative: Witte, Weller & Partner Patentanwälte mbB 
Postfach 10 54 62
70047 Stuttgart
70047 Stuttgart (DE)


(56)References cited: : 
US-A1- 2013 090 141
US-A1- 2016 205 633
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND


    FIELD OF THE DISCLOSURE



    [0001] The present disclosure relates to a communication device and a communication method for communicating over a link that is utilized substantially at the same time and with the same frequency resources by a pair of further communication devices. Further, the present disclosure relates to an interference alignment module used in such communication device as well as to computer product for implementing the communication method.

    DESCRIPTION OF RELATED ART



    [0002] The use of the millimeter (mm) wave band for wireless communication has gained considerable attention recently as vast amounts of spectrum are available in the mm-wave band (typically considered to be between 30 and 300GHz) allowing high data communications.

    [0003] To enable communication at such frequencies (e.g., 60GHz), a large number of antenna elements are required, which form very directive patterns (known as beamforming) and thus achieve high gains. However, controlling a large number of antennas simultaneously requires a large number of RF chains, which is prohibitive from both cost and complexity perspectives. Thus, in practice architectures in which multiple phased antenna elements are grouped together in a so called phased antenna array (PAA) have emerged (i.e., per PAA, only phases can be controlled, e.g, by introducing delay lines; according to phase settings, directivity can be achieved). Each PAA is connected to a dedicated RF chain or to multiple RF chains. Based on such architectures a combination of coarse analog beamforming and fine digital beamforming can be achieved.

    [0004] Analog beamforming corresponds to the act of physically steering one or more directional beams into a preferred direction, e.g. by means of analog phase shifters or by changing the phase characteristics of an antenna array. Additionally, finer digital beamformers can be created on top of the analog ones. Digital beamforming corresponds to a more general concept, in which both amplitudes and phases can be controlled of each transmitted beam. After pre-coding at transmitter side, and decoding at receiver side, the beams can be separated again.

    [0005] Communication in the mm-wave band is thus highly directive making it possible and desirable to design protocols which facilitate multiple devices to communicate with each other over the same frequency resources at the same time. Such an approach is also referred to as spatial reuse (SR). Essential for SR is, however, that the communication of the devices already occupying a particular link is not adversely affected by the devices trying to reuse the link. Hence, it is required that the interference created by the SR devices is controlled in such a manner that the interference at the devices already occupying the link is kept below a desired level. A mechanisms devised to achieve such control is referred to as interference alignment (IA). Typical for IA is that IA is performed on the individual device in an uncoordinated manner, i.e., not controlled by a master or a central interference alignment device.

    [0006] Unfortunately, state of the art robust beamforming techniques, which have the potential to provide IA for SR, cannot be directly applied to the mm-wave domain, because these generally assume some form of channel state information (CSI) at the transmitters obtained either implicitly, through channel reciprocity, or explicitly through some kind of CSI feedback. Explicitly obtaining CSI in the mm-wave domain, however, proves to be difficult since full knowledge of the channels, i.e. from each antenna element of the transmitter to each antenna element of the receiver, may only be obtained if each antenna element can be controlled independently. However, for communication in the mm-domain using phased antenna arrays this is typically not the case.

    [0007] Furthermore, reciprocity between the transmitting and the receiving antenna patterns in mm-wave communication is typically not fulfilled since, for instance, different amplifier types are used for transmission and reception. Therefore, obtaining CSI implicitly can be too erroneous and is thus not feasible in most mm-wave scenarios. IA based on such assumption may hence be insufficient and may lead to an incorrect estimation of the interference that a mm-wave transmitter may leak to other devices.

    [0008] Hence, there is a need for improved IA for SR in the mm-wave domain taking the above circumstance into account.

    [0009] US 2013/090141 A1 discloses a method, apparatus, and computer program for cognitive radio communications. A reference signal is received from a transmitter of a primary system, and the received reference signal is received with an arbitrarily selected beamforming setting. Then, a signal quality metric is calculated from the received and beamformed reference signal. If the signal quality metric indicates that a reception power of the received signal is low, transmission of a data signal to a wireless communication device of a secondary system is scheduled. In the scheduled transmission in the secondary system, the same beamforming setting as was used in the reception of the reference signal is employed.

    [0010] US 2016/205633 A1 discloses a communication control apparatus including an acquisition unit configured to acquire control information for determining uplink transmission power; and a communication control unit configured to control transmission of the control information to a terminal apparatus. The control information includes adjustment information for adjusting transmission power according to an antenna gain in a case where a beamforming process is performed.

    [0011] It shall be noted that the "background" description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors), to the extent it is described in this background section, as well as aspects of the description which may not otherwise qualify as prior art at the time of filing, are neither expressly or impliedly admitted as prior art against the present disclosure.

    SUMMARY



    [0012] It is an object to provide a communication device and method providing interference alignment for spatial reuse in the mm-wave domain, in particular, interference alignment that is not relying on full channel knowledge and reciprocity of the transmission and reception antenna patterns. It is a further object to provide an interface alignment module as well as a corresponding computer program for implementing the disclosed communication method and a non-transitory computer-readable recording medium for implementing the disclosed communication method.

    [0013] According to an aspect there are provided a first communication device, an interference alignment module, a communication method and a communication system according to the appended claims.

    [0014] Further, embodiments are defined in the dependent claims. It shall be understood that the disclosed communication method, the disclosed computer program and the disclosed computer-readable recording medium have similar and/or identical further embodiments as the claimed first communication device and as defined in the dependent claims and/or disclosed herein.

    [0015] One of the aspects of the disclosure is to enable two devices to re-utilize an already occupied mm-wave frequency channel, without adversely affecting the communication devices already occupying the frequency channel. The proposed communication device and method is suitable for practical mm-wave antenna configurations in which antenna elements are grouped together in arrays, which are controlled by a limited number of RF chains. The communication device and method allow interference at the devices, which occupy the frequency channel, to be kept below a desired limit, even when these are not capable of achieving reciprocity in their transmission and reception antenna patterns. Furthermore, the approach avoids cumbersome estimation of the full channel between transmitting and receiving devices.

    [0016] In particular, the disclosed communication device and method take into account a non-reciprocity mismatch between the transmission and reception antenna patterns of the communication devices that are already occupying the link that is to be re-utilized. Thereby, a more realistic estimation can be made of the interferences leaking from the communication device to other communication devices, and thus a more realistic interference alignment is feasible. The additional signaling required for the communication device and method can be easily integrated in future IEEE802.11 standards or 5G mm-wave related standards without introducing any large overhead to the protocol.

    [0017] The foregoing paragraphs have been provided by way of general introduction, and are not intended to limit the scope of the following claims. The described embodiments, together with further advantages, will be best understood by reference to the following detailed description taken in conjunction with the accompanying drawings.

    BRIEF DESCRIPTION OF THE DRAWING



    [0018] A more complete appreciation of the disclosure and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
    Fig. 1
    shows an exemplary embodiment of the communication system according to the present disclosure;
    Fig. 2
    shows a schematic diagram of an exemplary embodiment of the first and the second communication device according to the present disclosure;
    Fig. 3
    shows a schematic diagram of an embodiment of a first communication device according to the present disclosure;
    Fig. 4
    shows a simplified flow chart of a first embodiment of the communication method according to the present disclosure;
    Fig. 5
    shows in a schematic diagram processing of the first communication device according to the present disclosure;
    Fig. 6
    shows in a schematic diagram processing of the second communication device according to the present disclosure; and
    Fig. 7
    shows a flow chart of a preferred communication method for spatial reuse according to the present disclosure.

    DETAILED DESCRIPTION OF THE EMBODIMENTS



    [0019] Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, Fig. 1 shows an exemplary embodiment of the communication system according to the present disclosure.

    [0020] The exemplary communication system of Fig. 1 shows four communication devices 10, 20, 30, 40 capable of communicating in a defined mm-wave band. The communication devices 10, 20, 30, 40 could, for instance, be access points or mobile stations such as smartphones, laptops etc. With reference numeral 10 a first communication device according to the present disclosure is denoted. Reference numerals 20, 30 and 40 denote a second communication device and two further communication devices respectively. Despite the different labels used for these devices, the devices can essentially be all of the same kind and configured in a similar or equivalent manner.

    [0021] As depicted in Fig. 1, a primary link 50 has been established between the two further communication devices 30, 40 using a dedicated radio resource 60, e.g., frequency channel. At the same time, the first communication device 10 seeks to communicate with the second communication device 20 by using the same radio resource 60 that is being used by the primary link 50. In other words, the first communication device 10 tries to establish a spatial reuse link using the same radio resource 60 at substantially the same time, wherein the same time refers here to the same transmission opportunity or the same time slot that is being used by the two further devices 30, 40. The spatial reuse link is indicated here by the dashed arrow 70

    [0022] To establish the spatial reuse link between the first and the second communication device 10, 20, it must be ensured that a communication over the spatial reuse link 70 does not adversely affect the communication of the two further communication devices 30, 40 over the primary link 50. In other words, if the first communication device 10 transmits data over the spatial reuse link 70, the first communication device 10 must ensure that either no interference leaks to any of the two further communication devices 30, 40 or that this interference is below a certain, preferably variable, limit. This process of determining whether the interference, when using particular analog beam formers, is below a certain threshold is addressed in this disclosure. Whereas primarily analog beamforming is addressed herein, it shall be noted that digital beamforming may be optionally applied as well.

    [0023] Before details of the disclosed interference alignment approach for spatial reuse are explained, some explanation shall be provided about analog and hybrid beamforming in general. Fig. 2 shows a schematic diagram of the first and the second communication device 10, 20 of the exemplary communication system 1 shown in Fig. 1.

    [0024] The first and the second communication device 10, 20 intend to communicate with each other over a channel which is described here by channel matrix H. The first communication device 10 generally has one or more (two in this embodiment) antenna arrays 11, 12 each comprising two or more (four in this embodiment) antenna elements 110, 120. The second communication device 20 is similar to the first communication device 10 and has one or more (two in this embodiment) antenna arrays 21, 22, each comprising two or more (four in this embodiment) antenna elements 210, 220. It shall be noted that the communication device is not limited to communication devices having exactly the same structure. In other embodiments, the two communication devices communicating with each other can have different antenna setups.

    [0025] Analog beam forming is often implemented using a network of digitally controlled phase shifters. In this configuration, the antenna elements 110, 120, 210, 220 belonging to one antenna array 11, 12, 21, 22 are connected via phase shifters 111, 121, 211, 221 to a single RF chain 13, 14, 23, 24, as illustrated in Fig. 2 showing a communication system using hybrid architecture. Generally, the phase shifters weights are adaptively adjusted using digital signal processing using a specific strategy to steer one or more beams and meet a given objective, for example to maximize received signal power. The hybrid architecture shown in Fig. 2 uses MIMO communication at mm-wave frequencies and comprises, in addition to the analog domain, a digital domain. In the digital domain base band preprocessing and combining is performed using a base band processing circuit 15, 25 coupled to the respective RF chains 13, 14, 23, 24. Such a communication architecture is commonly known in the prior art.

    [0026] Fig. 3 shows a schematic diagram of an embodiment of a first communication device 10 according to the present disclosure. In this embodiment the first communication device 10 comprises a communication unit 16 as explained in detail with reference to Fig. 2. Furthermore, the first communication device comprises a control unit 17 configured to apply beamformers, i.e. antenna weight vectors (AWV), to control beamforming by the one or more antenna arrays 11, 12. Applying beamformers in this regard refers to adjusting the individual phase shifters 111, 121 by the control unit 17 such that a desired directivity is being achieved. Beamformers are generally defined by antenna weight vectors (AWV), wherein each element of the vector defines the setting of an individual phase shifter.

    [0027] In order to establish the spatial reuse link 70 the control unit 17 applies a beamformer which is selected according to the interference alignment processing according to the present disclosure. The interference alignment processing ensures that one or more beamformer is selected in such a manner that the created beam does not interfere with beams selected by the further communication devices 30, 40 for communicating over the primary link. In order to select an appropriate beamformer, which is not interfering, the first communication device 10 comprises an interference alignment module 18. The interference alignment module 18 is configured to determine whether at least one beamformer satisfies an interference condition such that a level of interference leaked to the further communication devices by the first communication device is below a defined threshold. Thereby, the interference condition is based on channel characteristics and non-reciprocity mismatch of at least one of the two further communication devices 30, 40. If a beamformer satisfies the interference condition, the beamformer is selected to establish the spatial reuse link 70 with the second communication device.

    [0028] The function of the interference alignment module 18 is described in detail with reference to Fig. 4. Fig. 4 shows a simplified flow chart of a first embodiment of the communication method for interference alignment according to the present disclosure. In particular, Fig. 4 shows the steps required to perform interference alignment according to the present disclosure. It is understood that the communication method may include further steps or additional intermediate steps which are not depicted in this flow chart.

    [0029] In Fig. 4, with reference numerals 301 and 302, a first and a second input to the interference alignment process are denoted. The first input 301 constitutes channel characteristics between the first communication device and one of the further communication devices. Preferably, the channel characteristics are an estimation of the channel between these two devices which is determined by the first communication device detecting flow control signals exchanged between the further communication devices currently occupying the radio resource. Typically, the flow control information includes a Request-to-Send (RTS) Signal, which is sent from one of the further communication trying to send data, and a Clear-to-Send (CTS) signal, which is transmitted as a response to the RTS-Signal from the communication partner. Preferably, each signal of the flow control information includes beamforming training units or one or more channel estimation sequences or a combination of both types of training information, which can be used by the first communication device to estimate the channel characteristics from to the further communication device, which is transmitting the flow control signals.

    [0030] In an embodiment, the interference alignment module is configured to apply one or more receive beamformers to determine the channel characteristics between a transmitting device of the pair of further communication devices and the first communication device.

    [0031] The second input 302 to the interference alignment processing constitutes non-reciprocity mismatch information of one of the further communication devices, in particular, of the further communication device, with regard to which the channel characteristics have been determined. The non-reciprocity mismatch is a measure indicative of a mismatch of the transmission pattern and the reception pattern of said further communication device. In particular, the non-reciprocity mismatch depends on a difference between transmission and reception antenna patterns of said further communication device. Possible sources for non-reciprocity could be the use of different types of amplifies in the transmission and reception strand (Power Amplifies vs. Low-Noise-Amplifies), different phase shifter settings and/or different effects of the Analog/Digital- and Digital/Analog-Converters that are being used.

    [0032] The non-reciprocity mismatch information preferably includes a level of non-reciprocity of the transmission and reception antenna patterns. The level of non-reciprocity could be a specific value, a range or some other quantifier indicative of the mismatch. In a preferred embodiment the non-reciprocity mismatch is indicative of the largest mismatch between the analog antenna weight vectors of the transmission and reception patterns used by the one of the further communication devices which has been receiving data during a transmission opportunity.

    [0033] The non-reciprocity mismatch is preferably determined individually by a communication device and provided to the other communication devices in the network. In a preferred embodiment, the non-reciprocity information is included in the flow control information exchanged between two communication partners that are communicating with each other. For example, in an embodiment the non-reciprocity mismatch information could be appended to either of the RTS or CTS-Signal. In this case, a first communication device, which is trying to re-utilize the same link occupied by two further communication devices, could simply monitor the flow control message exchange of these two further communication devices in order to obtain the non-reciprocity mismatch. It goes without say that other ways of obtaining the non-reciprocity mismatch information are conceivable.

    [0034] In a preferred embodiment the level of non-reciprocity includes a value quantifying the mismatch between the transmission and reception antenna patterns of the at least one of the pair of further communication devices and information indicative of a distance measure based on which this value was calculated. Based on this information it can easily and efficiently be determined whether the interference condition is satisfied.

    [0035] In a particular preferred embodiment the transmission and reception antenna patterns of the at least one of the pair of further communication devices are described based on AWVs, and the value quantifying the mismatch is computed by a distance measure between these vectors, in particular the Euclidean distance.

    [0036] Step 303 refers to the interference alignment processing itself. In this step, the communication device determines whether at least one beamformer is available that satisfies a defined interference condition. In other words, in this step a beamformer is selected, if possible, which can be used to communicate with another device over the already occupied link such that interferences leaking towards the further communication device occupying the link is kept below a tolerable level.

    [0037] Depending on the setup of the involved communication devices the interference condition may be in closed form. However, in other setups the interference condition can also be more complex requiring convex solvers to determine if the condition is satisfied. The interference condition is based on the estimated channel characteristics and the non-reciprocity mismatch information obtained from the other communication device. Thereby, not only the estimated channel characteristics between the first communication device and the further communication device are taken into account but also an uncertainty in this estimation depending on the a mismatch between the reception and transmission patterns of said further communication device.

    [0038] Hence, interference alignment according to the present disclosure takes into account that a relevant interference may be encountered on a receive beam even if an interference on the transmission beam is predicted to be irrelevant. Thereby, a decision of whether a link can be re-utilized is based on a more realistic estimation, since reciprocity of the transmission and reception patterns is generally not given. Other potential causes of errors in the estimation of the channel characteristics, due to the first communication device e.g., hardware limitations or limitations in the number of measurements which can be performed, can be straightforwardly incorporated in the solution.

    [0039] If one or more beamformer can be determined that satisfy the interference condition, it is decided at step 304 to reuse 305 the link occupied by the further communication devices. If no beamformer can be determined that satisfies the interference condition, spatial reuse is not feasible and the interference alignment processing restarts 306 in order to determine if spatial reuse is possible in the next transmission opportunity. In one embodiment, in case IA is not feasible, the first communication device will defer communication for at least the duration of the link occupancy. Afterwards IA or simple channel access mechanisms may be performed.

    [0040] In an embodiment, determining whether at least one of the beamformers satisfies the interference condition may include comparing the value of a worst case interference with a threshold value defining the highest tolerable interference. The threshold can be predefined, for instance in a standard, or set individually by one of the pair of further communication devices occupying the primary link.

    [0041] In a preferred embodiment the threshold can be transmitted along with the flow control signals exchanged between the pair of further communication devices and could be based on channel quality between the pair of further communicating devices and the intended modulation and coding scheme to be utilized between these.

    [0042] Alternatively, the threshold may be derived from specific information transmitted by at least one of the further communication devices.

    [0043] In the following, with reference to Fig. 5 and 6, the communication method illustrated above will be explained in detail with regard to the exemplary communication system depicted in Fig. 1. Fig. 5 shows in a schematic diagram the processing performed by the first communication device according to the communication method of the present disclosure and Fig. 6 shows the corresponding processing performed by the second communication device. To simplify the illustration in mathematical equations, the first communication device 10 is referred to as A2, the second communication device 20 is referred to as B2 and the further communication devices 30, 40 are referred to as A1 and B1 respectively. A1 and B1 are the primary link devices, and A2 and B2 are the spatial reuse devices. Also for ease of exposition, the mathematical formulations are presented for the case of one antenna array at each device. However these can be easily extended to the more general cases of multiple antennas at any of the devices. Some of the implications of possible extensions are pointed out in this description.

    [0044] In the following it is assumed that the two pairs of devices have already conducted some kind of beamforming training between themselves, i.e., A1 with B1 and A2 with B2 in order to establish one or a set of candidate analog beams which will be used in the communication between themselves. This procedure is performed without taking into account the presence of any other devices, except for the one trained. Hence, the training between A1 and B1 is considered interference free from A2 or B2, whereas the training between A2 and B2 is agnostic of the interference from A1 and B1. Such beamforming training is standard and hence not be explained in detail herein. The candidate sets of beams at A2 and B2 determined during such training will be referred to as SA2 and SB2 . Finally, it shall be noted that the roles of A1, B1, A2 and B2 have been chosen for description purposes only. It goes without saying that the roles can be interchanged.

    [0045] In the scenario of Fig. 5, A1 and B1 are the first devices using radio resource for the primarily link. Flow control messages (RTS/CTS) are being exchanged between the two devices in order to determine if the link is free, followed by a transmission opportunity in which the actual data is exchanged.

    [0046] On the other hand, A2 and B2 attempt to re-utilize the channel of A1 and B1 during the same TxOP, on the condition that A2 and B2 are not interfering with the primary link devices A1 and B1. For that, at least A2 comprises an interference alignment module according to the present disclosure and performs the interference alignment accordingly.

    [0047] The interference alignment processing starts with A2 estimating the channel between itself and the device B1 of the primary link devices, by "listening to" the link negotiations of A1 and B1. Thereby, A2 estimates the channel from B1 at all its antenna elements i.e., hmeas = HA2B1 WB1,T, where WB1,T is the transmit AWV with which B1 communicates with A1 and HA2B1 is the full channel matrix from each antenna element of B1 to each antenna element of A2. A possible method to obtain hmeas is by performing angle of arrival estimations and applying the known antenna geometry at A1. B2 does not necessarily need to listen to B1, as the latter will be in receive mode, thus it will create no interference. A2, however, needs to listen to B1 and estimate hmeas in order to be able to control the interference towards B1.

    [0048] After the estimation of the channel, A2 acquires and decodes in this scenario mismatch information regarding the largest mismatch between the AWVs of the transmission and reception patterns used by the receiving primary link device. Furthermore, the distance measure, based on which this mismatch was calculated, should be known or acquired as additional information. In this preferred embodiment, B1 is capable of evaluating the mismatch data and transmitting the mismatch data to A2 for further processing. The distance function, based on which the largest mismatch is computed can for instance be the Euclidean distance i.e.,

    For this distance measure, the mismatch between the transmit and receive patterns is then represented by:

    It shall be noted that any differentiable measure, which satisfies the common three distance axioms may be used in the alternative. Subsequently, A2 determines beamformers that, when applied directly or digitally combined, satisfy a defined interference condition. That is, beamformers that satisfy this condition have an interference level at the receiving device of the primary link devices (B1, in this scenario) smaller than a certain threshold, for all possible transmit channels from A2 to B1 whose distance measure to hmeas is smaller than a mismatch value. In this example, this value depends on the non-reciprocity mismatch and a channel norm.

    [0049] The mismatch is determined based on information provided by B1. In a preferred embodiment, the information includes a maximal mismatch value between transmission and reception antenna weight vectors of B1 and a distance measure according to which this was calculated. Preferably, the information is transmitted along with the CTS-Signal transmitted by B1 in response to an RTS.

    [0050] A2 uses this information to choose an appropriate beamformer (analog and possible digital) which avoids interference to B1, considering the case of the worst mismatch, depending on non-reciprocity mismatch information and channel strength.

    [0051] The worst case interference (WI), which is created by A2 to B1 can be determined by:

    where hA2,meas = HA2B1WB1,T. In (1), hA2,NR =

    is the unknown true channel from each antenna element of A2 to the entire antenna array of B1, which is receiving with the analog beam WB1,R.

    [0052] In a preferred embodiment, the function based on which the mismatch is evaluated can be defined as

    where as norm it is chosen

    However other definitions are possible for both the function and the norm definitions. Non-reciprocity mismatches at the A2 device or uncertainties in the estimated channel can be handled by appropriately choosing the mismatch function to incorporate the new mismatch information. This can then be straightforwardly incorporated in the mismatch value in (1) without essentially changing the proposed approach.

    [0053] If only one antenna array is available at each user, the interference condition can be expressed in closed form, for some analog beams in SA2, by imposing that there exists some non-negative λ such that:

    is positive semidefinite,
    where

    and I denotes an identity matrix of appropriate dimensions.

    [0054] To avoid trial over non-negative values for λ, optimum λ can be found in the case of one antenna array at each user by replacing the optimum value of the worst case interference (WI) equation, denoted

    in the constraint and imposing that equality holds, for this. The optimum of the worst case interference (WI) equation may be written as:



    [0055] In a preferred embodiment, analog antenna weight vectors are available from a previous training, so that some of the above computations can be performed offline reducing computational time. A similar condition to the one above can be derived and imposed if multiple PAAs are present at B2. If multiple RF chains are available at A2 the existence of finer beamformers can be tested, such that the worst interference is considered simultaneously with additional requirements on the quality of the SR link to be formed e.g., imposing that a minimum MCS can be satisfied. Finer beamformers refers to a combination of the existing analog beams in SA2, however, digitally precoded.

    [0056] Finally, A2 chooses among the beams determined as outlined above one or more beams to either communicate with B2 on the spatial reuse link or to perform further training, if required. Preferably, A2 sends an RTS to B2. using the best beam which respects the interference condition from candidate set SA2.

    [0057] With reference to Fig. 6 the processing of the second communication device B2 will be explained in greater detail. Since B2 is in receive mode in this scenario, B2 creates no interference to A1 or B1. Hence, B2 is only determining how much interference is leaked form A1 or B1 to any beam of the candidate set SB2 .

    [0058] B2 can estimate the effective interference from A1, which it experiences on one or more of the analog beams, in the candidate set SB2 by measuring the effective channels

    where WB2,R,i
    is the i-th AWV in the candidate set SB2 and HB2A1 is the channel between each antenna sub-element of A1 to each antenna element of B2 and WA1,T is the transmitting analog beam employed by device A1 in the communication with B1.

    [0059] Subsequently, B2 estimates whether a communication with A2 is possible, e.g., by checking if the expected SINR on one of the candidates for the communication with A2 is sufficiently large.

    [0060] Finally, B2 signals to A2 either that communication is possible on the current beam configuration and the current SNR in order to decide on the MCS to be used, or that further training is required.

    [0061] Fig. 7 shows a flow chart of the individual stages of the spatial reuse processing in the above outlined scenario according to the present disclosure.

    [0062] At stage 1, 401, A1 transmits RTS to B1 and at the same time, B2 sweeps the analog beams of the candidate set SB2. to measure any interference on the candidate beams leaking from A1. Subsequently, B2 chooses the least interfered sector or sectors from the candidate set SB2.

    [0063] At stage 2, 402, B1 responds to the RTS from A1 with CTS. A2 measures the channel characteristics hmeas = HA2B1wB1,T and ∥HB1A2

    [0064] Further, A2 determines and selects the analog beams

    in such a manner that an interference condition is respected. This determination, in particular, the calculation of the interference condition, depends on the individual setup of the involved devices.

    [0065] Under the assumption that (1) best candidate analog beams SA2 and SB2 between A2 and B2 have been determined, (2) A1, A2, B1, B2 each only comprise one phased antenna array, and (3) CSI from beamformed A1 to beamformed B2 as well as CSI from beamformed B1 to all antenna elements at A2 are available, the interference constraint under mismatch is defined as:



    [0066] In this case the mismatch can then be approximated by:

    where ∥HA2B12 is the sum of powers successively received at each antenna element of A2, where

    is the maximum eigenvalue of the matrix



    [0067] The approximation makes it possible to determine the interference condition without having access to the individual elements HA2B1 and wB1,T., which are typically not available. In other cases, for instance when B1 comprises multiple phase antenna arrays convex solvers might have to be applied on the A2 side in order to determine a more complex interference condition.

    [0068] Next, at stage 3, 403, if there exists a wA2,T such that the above constraint is respected, A2 selects this beam and sends RTS to B2, wherein B2 listens on the beam from SB2 that it has determined in stage 1 to be the least interfered with.

    [0069] In a preferred embodiment A2 may send successively on all beams RTS, if more than one analog beams respect the interference condition.

    [0070] Finally, at stage 4, 404, B2 replies with CTS preferably including the index of the best beam and the corresponding signal-to-interference-plus-noise ratio which is based on the received signal from A2 and the received interference from A1.

    [0071] If no wA2,T could be found respecting the interference condition, spatial reuse at that particular TxOP is not feasible, at least not without the risk of substantially interfering with the primary link. The interference alignment processing may then be restarted with the detection of RTS/CTS signals for another TxOP.

    [0072] In summary, the communication device and method disclosed herein provide a practical solution to spatial reuse in mm-wave domain. The solution is suited for mm-wave communication and in particular avoids the drawbacks of prior art regarding full CSI estimation. The additional signaling required for the communication device and method can be easily integrated in future IEEE802.11 standards or 5G mm-wave related standards without introducing any large overhead to the protocol. Preferably, the additional signaling can simply appended to the flow control messages exchanged before each transmission opportunity.

    [0073] The invention is defined by the independent claims. Preferred embodiments of the invention are stipulated in the dependent claims. While several embodiments and/or examples have been disclosed in this description, the subject matter for which protection is sought is strictly and solely limited by the scope of the appended claims.

    [0074] In the claims, the word "comprising" does not exclude other elements or steps, and the indefinite article "a" or "an" does not exclude a plurality. A single element or other unit may fulfill the functions of several items recited in the claims. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.

    [0075] In so far as embodiments of the disclosure have been described as being implemented, at least in part, by software-controlled data processing apparatus, it will be appreciated that a non-transitory machine-readable medium carrying such software, such as an optical disk, a magnetic disk, semiconductor memory or the like, is also considered to represent an embodiment of the present disclosure. Further, such a software may also be distributed in other forms, such as via the Internet or other wired or wireless telecommunication systems.

    [0076] The elements of the disclosed devices, apparatus and systems may be implemented by corresponding hardware and/or software elements, for instance appropriated circuits. A circuit is a structural assemblage of electronic components including conventional circuit elements, integrated circuits including application specific integrated circuits, standard integrated circuits, application specific standard products, and field programmable gate arrays. Further a circuit includes central processing units, graphics processing units, and microprocessors which are programmed or configured according to software code. A circuit does not include pure software, although a circuit includes the above-described hardware executing software.


    Claims

    1. An interference alignment module for use in a communication device (10) for communicating with another communication device (20) over a link (50) that is utilized at the substantially same time and with the substantially same frequency resource by a pair of further communication devices (30, 40), said communication device (10) comprising one or more antenna arrays (11, 12) with which beamforming can be performed and a control circuitry (17) configured to apply beamformers to control beamforming by the one or more antenna arrays (11, 12),
    the interference alignment module comprising an interference alignment circuitry (18) configured to
    determine whether at least one of the beamformers satisfies an interference condition such that a level of interference leaked to the further communication devices (30, 40) by said communication device (10) is below a defined threshold, and, if available, selecting the at least one beamformer for communicating with the other communication device (20),
    characterized in that the interference condition is based on channel characteristics between said communication device (10) and at least one of the further communication devices (30, 40) and non-reciprocity mismatch, the non-reciprocity mismatch being a measure indicative of a mismatch of a transmission pattern and a reception pattern of at least one further communication device of said pair of further communication devices (30, 40).
     
    2. The interference alignment module according to claim 1, wherein the interference alignment circuitry (18) is further configured to determine the channel characteristics by detecting flow control signals that are exchanged over the link between the pair of further communication devices (30, 40), and/or to apply one or more receive beamformers to determine the channel characteristics between a transmitting device of the pair of further communication devices (30, 40) and said communication device (10), in particular wherein
    the interference alignment circuitry (18) is configured to obtain the channel characteristics and the non-reciprocity mismatch without requiring exact channel coefficients from each individual antenna element of the further communicating device.
     
    3. The interference alignment module according to claim 1 or 2, wherein the interference alignment circuitry (18) is further configured to determine the channel characteristics of a transmitting device of the pair of further communication devices (30, 40) and said communication device (10) based on beamforming training units and/or a channel estimation sequences included in flow control signals exchanged over the link (50) between the pair of further communication devices (30, 40), in particular wherein the non-reciprocity mismatch depends on a difference between transmission and reception antenna patterns of at least one of the pair of further communication devices (30, 40).
     
    4. The interference alignment module according to any one of claims 1 to 3, wherein the interference alignment circuitry (18) is further configured to determine the non-reciprocity mismatch of at least one of the pair of further communication devices (30, 40) by receiving mismatch information provided by at least one of the pair of further communication devices (30, 40).
     
    5. The interference alignment module according to claim 4, wherein the mismatch information includes a level of non-reciprocity of the transmission and reception antenna patterns of the pair of further communication devices (30, 40).
     
    6. The interference alignment module according to claim 4, wherein the mismatch information includes a value quantifying the mismatch between the transmission and reception antenna patterns of the at least one of the pair of further communication devices (30, 40) and information indicative of a distance measure based on which this value was calculated.
     
    7. The interference alignment module according to any one of claims 4 to 6, wherein the mismatch information is included in flow control signals exchanged between the pair of further communication devices (30, 40).
     
    8. The interference alignment module according to claim 6, wherein the transmission and reception antenna patterns of the at least one of the pair of further communication devices (30, 40) are defined based on antenna weighting vectors, and the value quantifying the mismatch is computed by a distance measure between these vectors, in particular the Euclidean distance.
     
    9. The interference alignment module according to any one of claims 1 to 8, wherein the interference alignment circuitry (18) is further configured to calculate a value for a worst case interference based on the channel characteristics and the non-reciprocity mismatch of the at least one of the pair of further communication devices (30, 40) in order to determine if the interference condition is satisfied, in particular wherein the determination whether at least one beamformer satisfies the interference condition includes comparing the value of the worst case interference with a threshold value defining the highest tolerable interference.
     
    10. The interference alignment module according to any one of claims 1 to 9, wherein the defined threshold is predefined.
     
    11. The interference alignment module according to any one of claims 1 to 9, wherein the defined threshold value is set individually by one of the pair of further communication devices (30, 40), in particular wherein the defined threshold is either transmitted along with the flow control signals exchanged between the pair of further communication devices (30, 40) or is determined by the modulation and coding scheme utilized in the communication between the pair of further communications devices (30, 40), and/or wherein the interference alignment circuitry (18) is further configured to derive the defined threshold from specific information received from at least one of the further communication devices (30, 40), or wherein the interference alignment circuitry is further configured to transmit to the second communication device flow information with the at least one beamformer.
     
    12. A communication device (10) comprising:

    an interference alignment module according to any one of claims 1 to 11;

    one or more antenna arrays (11, 12) with which beamforming can be performed; and

    a control unit (17) configured to apply beamformers to control beamforming by the one or more antenna arrays (11, 12).


     
    13. A communication method for a communication device (10) communicating with another communication device (20) over a link (50) that is utilized at the substantially same time and with the substantially same frequency resource by a pair of further communication devices (30, 40), said communication device (10) comprising one or more antenna arrays (11, 12) with which beamforming can be performed and a control circuitry (17) configured to apply beamformers to control beamforming by the one or more antenna arrays (11,12), the communication method comprising:

    determining whether at least one of the beamformers satisfies an interference condition such that a level of interference leaked to the further communication devices by said communication device (10) is below a defined threshold, and, if available, selecting the at least one beamformer for communicating with the other communication device,

    characterized in that the interference condition is based on channel characteristics between said communication device (10) and at least one of the further communication devices (30, 40) and non-reciprocity mismatch, the non-reciprocity mismatch being a measure indicative of a mismatch of a transmission pattern and a reception pattern of at least one further communication device of said pair of further communication devices (30, 40).


     
    14. A computer program comprising instructions which, when the program is executed by a computer, cause the computer to carry out the steps of the method according to claim 13.
     
    15. A communication system comprising a first communication device (10) according to claim 12 and a second communication device (20) and a pair of further communication devices (30, 40), wherein at least one further communication device of the pair of further communication devices (30, 40) comprises:

    one or more antenna arrays having different transmission and reception antenna patterns, and

    circuitry configured to

    evaluate a non-reciprocity mismatch between the transmission and reception antenna patterns, and

    transmit a value indicative of a level of non-reciprocity of the transmission and reception antenna patterns to the other further communication device.


     


    Ansprüche

    1. Störabgleichmodul zur Verwendung in einer Kommunikationsvorrichtung (10) zum Kommunizieren mit einer anderen Kommunikationsvorrichtung (20) über einen Link (50), der zu der im Wesentlichen selben Zeit und mit der im Wesentlichen selben Frequenzressource durch ein Paar zusätzlicher Kommunikationsvorrichtungen (30, 40) genutzt wird, wobei die Kommunikationsvorrichtung (10) Folgendes umfasst: ein oder mehrere Antennenarrays (11, 12), mit denen Strahlformung durchgeführt werden kann, und eine Steuerschaltung (17), die ausgelegt ist zum Anwenden von Strahlformern zum Steuern der Strahlformung durch das eine oder die mehreren Antennenarrays (11, 12),
    wobei das Störabgleichmodul eine Störabgleichschaltung (18) umfasst, die ausgelegt ist zum Bestimmen, ob mindestens einer der Strahlformer eine Störbedingung erfüllt, sodass ein Pegel von Störung, die durch die Kommunikationsvorrichtung (10) zu den zusätzlichen Kommunikationsvorrichtungen (30, 40) geleckt wird, unter einer vordefinierten Schwelle liegt, und, falls verfügbar, Auswählen des mindestens einen Strahlformers zum Kommunizieren mit der anderen Kommunikationsvorrichtung (20),
    dadurch gekennzeichnet, dass die Störbedingung auf Kanalcharakteristiken zwischen der Kommunikationsvorrichtung (10) und mindestens einer der zusätzlichen Kommunikationsvorrichtungen (30, 40) und Nichtreziprozität-Diskrepanz basiert, wobei die Nichtreziprozität-Diskrepanz ein Maß ist, das eine Diskrepanz eines Übertragungsmusters und eines Empfangsmusters von mindestens einer zusätzlichen Kommunikationsvorrichtung des Paares zusätzlicher Kommunikationsvorrichtungen (30, 40) angibt.
     
    2. Störabgleichmodul nach Anspruch 1, wobei die Störabgleichschaltung (18) ferner ausgelegt ist zum Bestimmen der Kanalcharakteristiken durch Detektieren von Flusssteuersignalen, die über den Link zwischen dem Paar zusätzlicher Kommunikationsvorrichtungen (30, 40) ausgetauscht werden, und/oder Anwenden eines oder mehrerer Empfangsstrahlformer, um die Kanalcharakteristiken zwischen einer übertragenden Einrichtung des Paares zusätzlicher Kommunikationsvorrichtungen (30, 40) und der Kommunikationsvorrichtung (10) zu bestimmen, insbesondere wobei
    die Störabgleichschaltung (18) ausgelegt ist zum Erhalten der Kanalcharakteristiken und der Nichtreziprozität-Diskrepanz, ohne exakte Kanalkoeffizienten von jedem einzelnen Antennenelement der zusätzlichen kommunizierenden Vorrichtung zu benötigen.
     
    3. Störabgleichmodul nach Anspruch 1 oder 2, wobei die Störabgleichschaltung (18) ferner ausgelegt ist zum Bestimmen der Kanalcharakteristiken einer übertragenden Einrichtung des Paares zusätzlicher Kommunikationsvorrichtungen (30, 40) und der Kommunikationsvorrichtung (10) basierend auf Strahlformungstrainingseinheiten und/oder Kanalschätzungssequenzen, die in Flusssteuersignalen enthalten sind, die über den Link (50) zwischen dem Paar zusätzlicher Kommunikationsvorrichtungen (30, 40) ausgetauscht werden, insbesondere wobei die Nichtreziprozität-Diskrepanz von einer Differenz zwischen Übertragungs- und Empfangsantennenmustern von mindestens einer des Paares zusätzlicher Kommunikationsvorrichtungen (30, 40) abhängt.
     
    4. Störabgleichmodul nach einem der Ansprüche 1 bis 3, wobei die Störabgleichschaltung (18) ferner ausgelegt ist zum Bestimmen der Nichtreziprozität-Diskrepanz von mindestens einer des Paares zusätzlicher Kommunikationsvorrichtungen (30, 40) durch Empfangen von Diskrepanzinformationen, die durch mindestens eine des Paares zusätzlicher Kommunikationsvorrichtungen (30, 40) bereitgestellt werden.
     
    5. Störabgleichmodul nach Anspruch 4, wobei die Diskrepanzinformationen einen Grad der Nichtreziprozität der Übertragungs- und Empfangsantennenmuster des Paares zusätzlicher Kommunikationsvorrichtungen (30, 40) beinhalten.
     
    6. Störabgleichmodul nach Anspruch 4, wobei die Diskrepanzinformationen einen Wert, der die Diskrepanz zwischen den Übertragungs- und Empfangsantennenmustern der mindestens einen des Paares zusätzlicher Kommunikationsvorrichtungen (30, 40) quantifiziert, und Informationen, die ein Abstandsmaß angeben, basierend auf dem dieser Wert berechnet wurde, beinhalten.
     
    7. Störabgleichmodul nach einem der Ansprüche 4 bis 6, wobei die Diskrepanzinformationen in Flusssteuersignalen enthalten sind, die zwischen dem Paar zusätzlicher Kommunikationsvorrichtungen (30, 40) ausgetauscht werden.
     
    8. Störabgleichmodul nach Anspruch 6, wobei die Übertragungs- und Empfangsantennenmuster der mindestens einen des Paares zusätzlicher Kommunikationsvorrichtungen (30, 40) basierend auf Antennengewichtungsvektoren definiert sind und der Wert, der die Diskrepanz quantifiziert, durch ein Abstandsmaß zwischen diesen Vektoren, insbesondere den euklidischen Abstand, berechnet wird.
     
    9. Störabgleichmodul nach einem der Ansprüche 1 bis 8, wobei die Störabgleichschaltung (18) ferner ausgelegt ist zum Berechnen eines Werts für eine schlimmstmögliche Störung basierend auf den Kanalcharakteristiken und der Nichtreziprozität-Diskrepanz der mindestens einen des Paares zusätzlicher Kommunikationsvorrichtungen (30, 40), um zu bestimmen, ob die Störbedingung erfüllt ist, insbesondere wobei die Bestimmung, ob mindestens ein Strahlformer die Störbedingung erfüllt, Vergleichen des Werts der schlimmstmöglichen Störung mit einem Schwellenwert, der die höchste tolerierbare Störung definiert, beinhaltet.
     
    10. Störabgleichmodul nach einem der Ansprüche 1 bis 9, wobei die definierte Schwelle vordefiniert ist.
     
    11. Störabgleichmodul nach einem der Ansprüche 1 bis 9, wobei der definierte Schwellenwert einzeln durch eine des Paares zusätzlicher Kommunikationsvorrichtungen (30, 40) gesetzt wird, insbesondere wobei die definierte Schwelle entweder zusammen mit den Flusssteuersignalen, die zwischen dem Paar zusätzlicher Kommunikationsvorrichtungen (30, 40) ausgetauscht werden, übertragen wird oder durch das Modulations- und Codierungsschema, das bei der Kommunikation zwischen dem Paar zusätzlicher Kommunikationsvorrichtungen (30, 40) genutzt wird, bestimmt wird, und/oder wobei die Störabgleichschaltung (18) ferner ausgelegt ist zum Ableiten der definierten Schwelle aus spezifischen Informationen, die von mindestens einer der zusätzlichen Kommunikationsvorrichtungen (30, 40) empfangen werden, oder wobei die Störabgleichschaltung ferner ausgelegt ist zum Übertragen von Flussinformationen mit dem mindestens einen Strahlformer zu der zweiten Kommunikationsvorrichtung.
     
    12. Kommunikationsvorrichtung (10), die Folgendes umfasst:

    ein Störabgleichmodul nach einem der Ansprüche 1 bis 11;

    ein oder mehrere Antennenarrays (11, 12), mit denen Strahlformung durchgeführt werden kann; und

    eine Steuereinheit (17), die ausgelegt ist zum Anwenden von Strahlformern zum Steuern der Strahlformung durch das eine oder die mehreren Antennenarrays (11, 12).


     
    13. Kommunikationsverfahren für eine Kommunikationsvorrichtung (10), die mit einer anderen Kommunikationsvorrichtung (20) über einen Link (50), der zu der im Wesentlichen selben Zeit und mit der im Wesentlichen selben Frequenzressource durch ein Paar zusätzlicher Kommunikationsvorrichtungen (30, 40) genutzt wird, kommuniziert, wobei die Kommunikationsvorrichtung (10) Folgendes umfasst: ein oder mehrere Antennenarrays (11, 12), mit denen Strahlformung durchgeführt werden kann, und eine Steuerschaltung (17), die ausgelegt ist zum Anwenden von Strahlformern zum Steuern der Strahlformung durch das eine oder die mehreren Antennenarrays (11, 12),
    wobei das Kommunikationsverfahren Folgendes umfasst:

    Bestimmen, ob mindestens einer der Strahlformer eine Störbedingung erfüllt, sodass ein Pegel von Störung, die durch die Kommunikationsvorrichtung (10) zu den zusätzlichen Kommunikationsvorrichtungen geleckt wird, unter einer vordefinierten Schwelle liegt, und, falls verfügbar, Auswählen des mindestens einen Strahlformers zum Kommunizieren mit der anderen Kommunikationsvorrichtung,

    dadurch gekennzeichnet, dass die Störbedingung auf Kanalcharakteristiken zwischen der Kommunikationsvorrichtung (10) und mindestens einer der zusätzlichen Kommunikationsvorrichtungen (30, 40) und Nichtreziprozität-Diskrepanz basiert, wobei die Nichtreziprozität-Diskrepanz ein Maß ist, das eine Diskrepanz eines Übertragungsmusters und eines Empfangsmusters von mindestens einer zusätzlichen Kommunikationsvorrichtung des Paares zusätzlicher Kommunikationsvorrichtungen (30, 40) angibt.


     
    14. Computerprogramm, das Anweisungen umfasst, die, wenn das Programm durch einen Computer ausgeführt wird, veranlassen, dass der Computer die Schritte des Verfahrens nach Anspruch 13 ausführt.
     
    15. Kommunikationssystem, das eine erste Kommunikationsvorrichtung (10) nach Anspruch 12 und eine zweite Kommunikationsvorrichtung (20) und ein Paar zusätzlicher Kommunikationsvorrichtungen (30, 40) umfasst, wobei die mindestens eine zusätzliche Kommunikationsvorrichtung des Paares zusätzlicher Kommunikationsvorrichtungen (30, 40) Folgendes umfasst:

    ein oder mehrere Antennenarrays mit unterschiedlichen Übertragungs- und Empfangsantennenmustern, und

    eine Schaltung, die ausgelegt ist zum:

    Evaluieren einer Nichtreziprozität-Diskrepanz zwischen den Übertragungs- und Empfangsantennenmustern, und

    Übertragen eines Werts, der einen Grad der Nichtreziprozität der Übertragungs- und Empfangsantennenmuster angibt, zu der anderen zusätzlichen Kommunikationsvorrichtung.


     


    Revendications

    1. Module d'alignement d'interférence destiné à être utilisé dans un dispositif de communication (10) pour la communication avec un autre dispositif de communication (20) par le biais d'une liaison (50) utilisée sensiblement en même temps et avec sensiblement la même ressource en fréquence par une paire de dispositifs de communication additionnels (30, 40), ledit dispositif de communication (10) comprenant un ou plusieurs réseaux d'antennes (11, 12) permettant de réaliser une formation de faisceau et une circuiterie de commande (17) configurée pour appliquer des conformateurs de faisceau pour commander la formation de faisceau par les un ou plusieurs réseaux d'antennes (11, 12),
    le module d'alignement d'interférence comprenant une circuiterie d'alignement d'interférence (18) configurée pour
    déterminer si au moins un des conformateurs de faisceau remplit ou non une condition d'interférence telle qu'un niveau d'interférence ayant fui dudit dispositif de communication (10) vers les dispositifs de communication additionnels (30, 40) est en deçà d'un seuil défini et, s'il est disponible, sélectionner l'au moins un conformateur de faisceau pour la communication avec l'autre dispositif de communication (20),
    caractérisé en ce que la condition d'interférence est basée sur des caractéristiques de canal entre ledit dispositif de communication (10) et au moins un des dispositifs de communication additionnels (30, 40) et une discordance de non-réciprocité, la discordance de non-réciprocité consistant en une mesure indiquant une discordance d'un diagramme d'émission et d'un diagramme de réception d'au moins un dispositif de communication additionnel de ladite paire de dispositifs de communication additionnels (30, 40).
     
    2. Module d'alignement d'interférence selon la revendication 1, dans lequel la circuiterie d'alignement d'interférence (18) est configurée en outre pour déterminer les caractéristiques de canal en détectant des signaux de commande de flux échangés par le biais de la liaison entre la paire de dispositifs de communication additionnels (30, 40), et/ou pour appliquer un ou plusieurs conformateurs de faisceau en réception pour déterminer les caractéristiques de canal entre un dispositif émetteur de la paire de dispositifs de communication additionnels (30, 40) et ledit dispositif de communication (10), plus particulièrement dans lequel
    la circuiterie d'alignement d'interférence (18) est configurée pour obtenir les caractéristiques de canal et la discordance de non-réciprocité sans nécessiter de coefficients de canal exacts auprès de chaque élément d'antenne individuel du dispositif communicant additionnel.
     
    3. Module d'alignement d'interférence selon la revendication 1 ou 2, dans lequel la circuiterie d'alignement d'interférence (18) est configurée en outre pour déterminer les caractéristiques de canal d'un dispositif émetteur de la paire de dispositifs de communication additionnels (30, 40) et dudit dispositif de communication (10) sur la base d'unités d'apprentissage de formation de faisceau et/ou de séquences d'estimation de canal contenues dans des signaux de commande de flux échangés par le biais de la liaison (50) entre la paire de dispositifs de communication additionnels (30, 40), plus particulièrement dans lequel la discordance de non-réciprocité est fonction d'une différence entre des diagrammes d'antenne d'émission et de réception d'au moins un de la paire de dispositifs de communication additionnels (30, 40).
     
    4. Module d'alignement d'interférence selon l'une quelconque des revendications 1 à 3, dans lequel la circuiterie d'alignement d'interférence (18) est configurée en outre pour déterminer la discordance de non-réciprocité d'au moins un de la paire de dispositifs de communication additionnels (30, 40) en recevant des informations de discordance fournies par au moins un de la paire de dispositifs de communication additionnels (30, 40).
     
    5. Module d'alignement d'interférence selon la revendication 4, dans lequel les informations de discordance comportent un niveau de non-réciprocité des diagrammes d'antenne d'émission et de réception de la paire de dispositifs de communication additionnels (30, 40) .
     
    6. Module d'alignement d'interférence selon la revendication 4, dans lequel les informations de discordance comportent une valeur quantifiant la discordance entre les diagrammes d'antenne d'émission et de réception de l'au moins un de la paire de dispositifs de communication additionnels (30, 40) et des informations indiquant une mesure de distance sur la base de laquelle cette valeur a été calculée.
     
    7. Module d'alignement d'interférence selon l'une quelconque des revendications 4 à 6, dans lequel les informations de discordance sont contenues dans des signaux de commande de flux échangés entre la paire de dispositifs de communication additionnels (30, 40).
     
    8. Module d'alignement d'interférence selon la revendication 6, dans lequel les diagrammes d'antenne d'émission et de réception de l'au moins un de la paire de dispositifs de communication additionnels (30, 40) sont définis sur la base de vecteurs de pondération d'antenne, et la valeur quantifiant la discordance est calculée sur la base d'une mesure de distance entre ces vecteurs, plus particulièrement d'une distance euclidienne.
     
    9. Module d'alignement d'interférence selon l'une quelconque des revendications 1 à 8, dans lequel la circuiterie d'alignement d'interférence (18) est configurée en outre pour calculer une valeur pour une interférence dans le cas le plus défavorable sur la base des caractéristiques de canal et de la discordance de non-réciprocité de l'au moins un de la paire de dispositifs de communication additionnels (30, 40) dans le but de déterminer si la condition d'interférence est remplie, plus particulièrement dans lequel la détermination si au moins un conformateur de faisceau remplit ou non la condition d'interférence comporte la comparaison de la valeur de l'interférence dans le cas le plus défavorable à une valeur-seuil définissant l'interférence maximale tolérable.
     
    10. Module d'alignement d'interférence selon l'une quelconque des revendications 1 à 9, dans lequel le seuil défini est prédéfini.
     
    11. Module d'alignement d'interférence selon l'une quelconque des revendications 1 à 9, dans lequel la valeur-seuil définie est établie individuellement par l'un de la paire de dispositifs de communication additionnels (30, 40), plus particulièrement dans lequel le seuil défini est soit émis conjointement avec les signaux de commande de flux échangés entre la paire de dispositifs de communication supplémentaires (30, 40), soit déterminé par le schéma de modulation et de codage utilisé dans la communication entre la paire de dispositifs de communication additionnels (30, 40), et/ou dans lequel la circuiterie d'alignement d'interférence (18) est configurée en outre pour déduire le seuil défini d'informations spécifiques reçues depuis au moins un des dispositifs de communication additionnels (30, 40), ou dans lequel la circuiterie d'alignement d'interférence est configurée en outre pour émettre, à destination du deuxième dispositif de communication, des informations de flux au moyen de l'au moins un conformateur de faisceau.
     
    12. Dispositif de communication (10), comprenant :

    un module d'alignement d'interférence selon l'une quelconque des revendications 1 à 11 ;

    un ou plusieurs réseaux d'antennes (11, 12) permettant de réaliser une formation de faisceau ; et

    une unité de commande (17) configurée pour appliquer des conformateurs de faisceau pour commander la formation de faisceau par les un ou plusieurs réseaux d'antenne (11, 12).


     
    13. Procédé de communication pour un dispositif de communication (10) communiquant avec un autre dispositif de communication (20) par le biais d'une liaison (50) utilisée sensiblement en même temps et avec sensiblement la même ressource en fréquence par une paire de dispositifs de communication additionnels (30, 40), ledit dispositif de communication (10) comprenant un ou plusieurs réseaux d'antennes (11, 12) permettant de réaliser une formation de faisceau et une circuiterie de commande (17) configurée pour appliquer des conformateurs de faisceau pour commander la formation de faisceau par les un ou plusieurs réseaux d'antennes (11, 12),
    le procédé de communication comprenant :

    la détermination si au moins un des conformateurs de faisceau remplit ou non une condition d'interférence telle qu'un niveau d'interférence ayant fui dudit dispositif de communication (10) vers les dispositifs de communication additionnels est en deçà d'un seuil défini et, s'il est disponible, la sélection de l'au moins un conformateur de faisceau pour la communication avec l'autre dispositif de communication,

    caractérisé en ce que la condition d'interférence est basée sur des caractéristiques de canal entre ledit dispositif de communication (10) et au moins un des dispositifs de communication additionnels (30, 40) et une discordance de non-réciprocité, la discordance de non-réciprocité consistant en une mesure indiquant une discordance d'un diagramme d'émission et d'un diagramme de réception d'au moins un dispositif de communication additionnel de ladite paire de dispositifs de communication additionnels (30, 40).


     
    14. Programme d'ordinateur, comprenant des instructions qui, lorsque le programme est exécuté par un ordinateur, amènent l'ordinateur à mettre en œuvre les étapes du procédé selon la revendication 13.
     
    15. Système de communication, comprenant un premier dispositif de communication (10) selon la revendication 12 et un deuxième dispositif de communication (20) et une paire de dispositifs de communication additionnels (30, 40), au moins un dispositif de communication additionnel de la paire de dispositifs de communication additionnels (30, 40) comprenant :

    un ou plusieurs réseaux d'antennes présentant des diagrammes d'antenne d'émission et de réception différents, et

    une circuiterie configurée pour

    évaluer une discordance de non-réciprocité entre les diagrammes d'antenne d'émission et de réception, et

    émettre une valeur indiquant un niveau de non-réciprocité des diagrammes d'antenne d'émission et de réception à destination de l'autre dispositif de communication additionnel.


     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description