(19)
(11)EP 3 514 617 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.04.2020 Bulletin 2020/18

(21)Application number: 19152416.4

(22)Date of filing:  17.01.2019
(51)International Patent Classification (IPC): 
G02F 1/35(2006.01)
G02B 6/10(2006.01)

(54)

APPARATUSES AND METHODS FOR LOW ENERGY DATA MODULATION

VORRICHTUNGEN UND VERFAHREN ZUR NIEDERENERGETISCHEN DATENMODULATION

APPAREILS ET PROCÉDÉS DE MODULATION DE DONNÉES À FAIBLE ÉNERGIE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 22.01.2018 US 201862620094 P
18.04.2018 US 201815956610

(43)Date of publication of application:
24.07.2019 Bulletin 2019/30

(73)Proprietor: Honeywell International Inc.
Morris Plains, NJ 07950 (US)

(72)Inventors:
  • PUCKETT, Matthew Wade
    Morris Plains, NJ New Jersey 07950 (US)
  • KRUEGER, Neil A.
    Morris Plains, NJ New Jersey 07950 (US)

(74)Representative: Houghton, Mark Phillip 
Patent Outsourcing Limited Cornerhouse 1 King Street
Bakewell Derbyshire DE45 1DZ
Bakewell Derbyshire DE45 1DZ (GB)


(56)References cited: : 
US-A1- 2002 150 334
US-A1- 2017 317 471
US-A1- 2010 322 559
US-B1- 8 295 654
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] Electro-optical modulators convert data in the electrical domain to modulated data in the optical domain. This is desirable when one or more channels of high speed, or broadband data, need to be transmitted between two locations. However, conventional electro-optical modulators, e.g. using ring resonators or Mach-Zehnder interferometers, require relatively high energy to perform such conversion due to the inability to reduce the size of such conventional modulators. When many electro-optical modulators are used, e.g. in parallel, energy consumption may increase geometrically.

    [0002] Although it is always desirable to reduce energy consumption, it is particularly desirable to do so in low temperature systems. Some energy used for modulation may be dissipated as heat which can detrimentally affect the performance of low temperature circuits.

    [0003] Quantum computers using low temperature circuits require many high bandwidth data connections, e.g. using optical signals. Quantum computers are typically operated at very low temperatures, e.g. at cryogenic temperatures approaching zero Kelvin. Dissipated heat can detrimentally affect the stability, and thus the performance, of a quantum computer. Therefore, there is a need to for electro-optical modulators that operate with diminished energy levels.

    [0004] US20170317471A1 discloses an optical device including a first waveguide configured to guide a light wave along a longitudinal axis; a first grating at least partially formed in the first waveguide, the first grating arranged away from the longitudinal axis in a first direction; and a second grating at least partially formed in the first waveguide, the second grating arranged away from the longitudinal axis in a second direction; wherein the second direction is different from the first direction.

    [0005] US8295654 discloses a device containing a first electro-optical waveguide comprising at least one first grating, a second electro-optical waveguide comprising at least one second grating, a plurality of electrodes disposed adjacent to the first grating and configured to impose an electric field through the first electro-optical waveguide to modify spectra of the first grating, a fiber amplifier configured to propagate a laser radiation between the first electro-optical waveguide and the second electro-optical waveguide, and at least two circulators associated with the fiber amplifier and the first electro-optical waveguide and the second electro-optical waveguide and configured to provide unidirectional propagation of the laser radiation along the fiber amplifier.

    [0006] US20100322559A1 discloses a planar optical waveguide element in which an optical waveguide comprises a core, and a gap portion that is positioned in a center of a width direction of the core so as to extend in a propagation direction of guided light, and that has a lower refractive index than that of the core; and wherein the core comprises two areas that are separated by the gap portion, and a single mode optical waveguide, in which a single mode is propagated span crossing these two areas, is formed.

    [0007] US20020150334A1 discloses an optical code division multiple access (OCDMA) coder:decoder grating. A modulated refractive index profile that makes up the OCDMA coder:decoder grating incorporates changes in polarity between OCDMA chips by discrete phase shifts, thereby to provide bipolar coding through phase modulation. For non-return-to-zero modulation, each grating section is either in phase with, or has a predetermined phase shift relative to, the preceding grating section, depending on whether the OCDMA signature has a change in polarity between chips. Return-to-zero modulation is also possible.

    SUMMARY



    [0008] A method is provided. The method comprises: injecting an optical carrier signal into an unbent optical waveguide between two reflectors, where the distance between two reflectors in the center of the two reflectors is substantially zero and the two reflectors undergo substantially a π phase shift where the two reflectors are adjacent; creating standing waves between the two reflectors in the center, and a single resonance due to constructive interference; applying a varying electric field across the unbent optical waveguide centered between two reflectors and extending a length less than or equal to a combined length of the two reflectors; and generating a modulated carrier signal at at least one of an input and an output of the unbent optical waveguide between the two reflectors.

    DRAWINGS



    [0009] Understanding that the drawings depict only exemplary embodiments and are not therefore to be considered limiting in scope, the exemplary embodiments will be described with additional specificity and detail through the use of the accompanying drawings, in which:

    Figure 1A illustrates a block diagram of one embodiment of a transmittance electro-optical modulation system including a modified Bragg resonator;

    Figure 1B illustrates a block diagram of an embodiment of a reflectance electro-optical modulation system including a modified Bragg resonator;

    Figure 1C illustrates a block diagram of another embodiment of a reflectance electro-optical modulation system including a modified Bragg resonator;

    Figure 2 illustrates a diagram of one embodiment of a modified Bragg resonator modulator;

    Figure 3 illustrates a plot of a transmission spectrum of one embodiment of between a first input and an output of a modified Bragg resonator modulator;

    Figure 4A illustrates plots of one embodiment of transmission spectra between an input and an output of a modified Bragg resonator modulator;

    Figure 4B illustrates plots of one embodiment of reflection spectra at an input of a modified Bragg resonator modulator;

    Figure 5A-1 illustrates a plan view of one embodiment of a modified Bragg resonator;

    Figure 5A-2 illustrates a plot of one embodiment of a reflection spectrum for a first modified Bragg resonator;

    Figure 5B-1 illustrates a plan view of another embodiment of a modified Bragg resonator;

    Figure 5B-2 illustrates a plot of one embodiment of a reflection spectrum for a second modified Bragg resonator;

    Figure 6 illustrates an exemplary method of operation of a modified Bragg resonator;

    Figure 7 illustrates an exemplary method of making modified Bragg resonator;

    Figure 8A illustrates one embodiment of a grating assisted coupler; and

    Figure 8B illustrates one embodiment of a polished butt coupler.



    [0010] In accordance with common practice, the various described features are not drawn to scale but are drawn to emphasize specific features relevant to the exemplary embodiments. Reference characters denote like elements throughout figures and text.

    DETAILED DESCRIPTION



    [0011] In the following detailed description, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific illustrative embodiments. However, it is to be understood that other embodiments may be utilized and that structural, mechanical, and electrical changes may be made. Furthermore, the method presented in the drawing figures and the specification is not to be construed as limiting the order in which the individual steps may be performed. The following detailed description is, therefore, not to be taken in a limiting sense.

    [0012] An electro-optical modulator including a modified Bragg resonator is used to overcome the above referenced problem. Embodiments of the electro-optical modulator including a Bragg resonator have at least one advantage. The electro-optical modulator including a modified Bragg resonator requires at least an order of magnitude less energy, on the order of atto Joules, to modulate a bit of data on an optical carrier in comparison to conventional techniques. When a modulator requires less energy to modulate a signal, it is deemed to have higher modulation efficiency.

    [0013] The reduction in energy occurs because the electro-optical modulator including a modified Bragg resonator can be implemented with a smaller 'foot print', for example of having a length on the order of 10 microns. As a result, smaller electrodes - which correspondingly have less capacitance, and thus require a diminished amount of energy for modulation - can be used. Further, reducing the operating wavelength of the modulator can also reduce the energy required for modulation by allowing further miniaturization.

    [0014] The modified Bragg modulator is implemented with non-linear electro-optical material. Depending upon the type of such non-linear electro-optical material and the critical dimension of the lithography used to manufacture the electro-optical modulator including a modified Bragg resonator, an optical source emitting an optical signal with a wavelength (e.g. as low as 1064 nm or 780 nm, or even a lower wavelength) may be used in the corresponding modulation system.

    [0015] "Non-linear electro-optical material" means material having a index of refraction higher than cladding matter used with the non-linear electro-optical material to form an optical waveguide, and where the index of refraction varies with applied electric field across such non-linear electro-optical material. For non-linear electro-optical material that is lithium niobate, the indices of refraction are 2.3 for the ordinary axis and 2.21 for the extraordinary axis. In one embodiment, the non-linear electro-optical material is material having an index of refraction greater than 1.6. Typically, the non-linear electro-optical material can be attached to or deposited on, and patterned on, a substrate, e.g. using semiconductor manufacturing techniques. Such non-linearities of the non-linear electro-optical material may be second order and/or higher order non-linearities. Non-linear electro-optical material includes lithium niobate, lithium tantalate, and electro-polymers.

    [0016] Optical waveguides illustrated herein are formed by patterning lithium niobate. However, alternatively, the optical waveguides may be formed by diffusing material, e.g. titanium, into the lithium niobate.

    [0017] The present invention may be used in frequency comb generators and other apparatuses such as electro-optic switches and electro-optic modulators. In one embodiment, an electro-optical modulator including a modified Bragg resonator is formed by a non-linear electro-optical material (having a relatively high index of refraction) on an insulator (having a relatively lower index of refraction). For example, the index of refraction for an insulator that is silicon dioxide is 1.444 at a wavelength of 1.55 microns.

    [0018] Figure 1A illustrates a block diagram of one embodiment of a transmittance electro-optical modulation system including a modified Bragg resonator (transmittance modulation system) 100A. The transmittance electro-optical modulation system including a modified Bragg resonator 100A comprises a modulator with a modified Bragg resonator (modified Bragg resonator modulator) 104 including a first input 103, a second input 106, and an output 108. The transmittance modulation system operates on transmittance principles because a modulated optical signal 109 is transmitted from a port (the output 108) of the modified Bragg resonator modulator 104 that is different from the port (the first input 103) of the modified Bragg resonator modulator 104 into which an optical carrier signal 102A is provided.

    [0019] The first input 103 is configured to be coupled to an optical source 102, e.g. a LASER such as a vertical-cavity surface emitting LASER or a distributed feedback (DFB) laser, which generates an optical carrier signal 102A having a relatively low phase noise. The optical carrier signal 102A has a frequency which is substantially the same as a resonant frequency of the modified Bragg resonator modulator 104. The modified Bragg resonator modulator 104 will be subsequently described.

    [0020] The second input 106 is configured to receive an electrical data signal 101 to be modulated on the optical carrier signal 102A. The electrical data signal 101 are applied to the modified Bragg resonator modulator 104 in a manner subsequently discussed. The modified Bragg resonator modulator 104 generates, with the optical carrier signal 102A and the electrical data signal 101, a modulated optical signal 109 that is provided at the output 108.

    [0021] Optionally, the modified Bragg resonator modulator 104 is placed within a cooling system 105, e.g. used to cool other components, for example Josephson junctions, of a quantum computer. Although not shown as such, the optical source 102 and/or the source of the electrical data signal (not shown) coupled to the second input 106 may also be placed within the cooling system 105.

    [0022] Figure 1B illustrates a block diagram of an embodiment of a reflectance electro-optical modulation system including a modified Bragg resonator (first reflectance modulation system) 100B. The first reflectance modulation system 100B is similar to the transmittance modulation system 100A, except for the following. An optical circulator 113 is inserted between the optical source 102 and the modified Bragg resonator modulator 104. The optical circulator 113 receives the optical carrier signal 102A at a first port 113a of the optical circulator 113, and provides a modulated output signal 110 at a second port 113b of the optical circulator 113. The third port 113c of the optical circulator 113 is coupled to the first input 103 of the modified Bragg resonator modulator 104.

    [0023] The first reflectance modulation system 100B operates on reflection principles because a modulated optical signal 110 is transmitted from a port (the first input 103) of the modified Bragg resonator modulator 104 that is the same port (the first input 103) into which the optical carrier signal 102A is provided. Finally, the other port (the output 108) of the modified Bragg resonator modulator 104 is terminated by an optical termination 107 which either absorbs or otherwise dissipates optical energy emitted from the other port. The optical termination 107 is coupled to the output 108 of the modified Bragg resonator modulator 104. The optical termination 107 may be, for example, a spiral waveguide that emits the light ejected from the other port of the modified Bragg resonator modulator 104. The optical termination 107 may be within or not within the cooling system 105. In one embodiment, the optical termination 107 is co-fabricated (or integrated), e.g. on a substrate, with the modified Bragg resonator modulator 104.

    [0024] Figure 1C illustrates a block diagram of another embodiment of a reflectance electro-optical modulation system including a modified Bragg resonator (second reflectance modulation system) 100C. The second reflectance modulation system 100C is similar to the first reflectance modulation system 100B except that the modified Bragg resonator modulator 104 is more easily co-fabricated (or integrated) with an optical directional coupler 112 than an optical circulator 113. The optical directional coupler 112 is used in lieu of the optical circulator 113 in the first reflectance modulation system 100B. The optical directional coupler 112 is easier to integrate monolithically with the modified Bragg resonator modulator 104.

    [0025] The first port 112a of the optical directional coupler 112 is coupled to the optical source 102 and is configured to receive the optical carrier signal 102A. The second port 112b of the optical directional coupler 112 is coupled to the first input 103. The third port 112c of the optical directional coupler is coupled to a second optical termination 114. A modulated optical signal 110 is coupled out of the fourth port 112d of the optical directional coupler; thus, the fourth port 112d serves as an output of the second reflectance modulator 100C. The coupling coefficients of the directional coupler 112 can be designed so that a relatively high percentage of optical energy reflected by the modified Bragg resonator modulator 104 is coupled to the fourth port 112d, and a relatively small percentage of optical energy from the optical carrier signal 102A is coupled to the second optical termination 114. Optionally, in addition to the examples expressly set forth herein, one or more of the components of each of the illustrated electro-optical modulation systems including a modified Bragg resonator may be integrated together, e.g. on a single substrate.

    [0026] Figure 2 illustrates a diagram of one embodiment of a modified Bragg resonator modulator 204. The modified Bragg resonator modulator 204 comprises a non-linear electro-optical material 220 having a first side on an insulator 224A. The non-linear electro-optical material 220 having a first side on an insulator 224A form an unbent optical waveguide. The insulator 224A may be silicon dioxide or another insulator. Optionally, a second insulator (shown in subsequent as 700H in Figure 7) e.g. silicon dioxide, may be disposed on the non-linear electro-optical material 220; however, the second insulator need not be used. Optionally, the insulator 224A is formed on a substrate 225, e.g. a handle wafer. The substrate 225 may be made from a material such as silicon, lithium niobate, silicon dioxide, calcium fluoride, magnesium oxide, or other materials.

    [0027] Two opposite edges (a first edge 228A and a second edge 228B) are perpendicular to the first side of the electro-optical material 220. Proximate to both the first edge 228A and the second edge 228B (opposite of the first edge 228A) of the non-linear electro-optical material 220 are respectively a first electrode 220A and a second electrode 220B. The first electrode 220A and the second electrode 220B are the second input 106 illustrated in Figures 1A-C.

    [0028] Optionally, one of the first electrode 220A and the second electrode 220B may be coupled to ground and an electrical data signal 101 that is single ended may be provided to the other electrode. Alternatively, a first conductor of an electrical data signal 101 that is differential may be coupled to the first electrode 220A, and a second conductor corresponding to an electrical data signal 101 that is differential may be coupled to the second electrode 220B.

    [0029] A Bragg pattern is formed on the first edge 228A and the second edge 228B of the non-linear electro-optical material 220. The first edge 228A and the second edge 228B respectively have periodic surfaces 221A, 221B, e.g. linear surfaces, that are substantially parallel and proximate to a first edge 223A of the first electrode 220A and a first edge 223B of the second electrode 220B. Optionally, the second insulator may also be formed with the same Bragg pattern as the non-linear optical material 220 as shown in Figure 2.

    [0030] A first gap 229A and a second gap 229B are respectively the lateral distances between the first edge 228A and the second edge 228B and respectively the first electrode 220A and the second electrode 220B (or edges thereof respectively closest to the first edge 228A and the second edge 228B). Because the first edge 228A and the second edge 228B vary due to the Bragg grating, there may be a first average gap and a second average gap respectively for the first gap 229A and the second gap 229B, where the average gaps are the average of the gap at each point along respectively the first edge 228A and the second edge 228B.

    [0031] The periodicity of the Bragg pattern determines the center frequency of a band stop frequency range in a transmission path from the first input 203 to the output 208 of the modified Bragg resonator modulator 204. The first input 203 (which may also be referred to more generally herein as an 'input') and the output 208 as used herein shall be defined as follows. The first input 203 is defined by a first edge of non-linear electro-optical material 220 that is substantially perpendicular to the substrate 225, e.g. along line AA. The output 208 is defined by a second edge of non-linear electro-optical material 220 that is substantially perpendicular to the substrate 225, e.g. along line BB. The first edge and the second edge are substantially parallel and opposite one another.

    [0032] A modified Bragg resonator means a Bragg resonator having Bragg gratings that undergo substantially a π phase shift substantially at the center of the Bragg resonator grating(s) where two gratings abut. A Bragg grating is a form of a reflector. Due to constructive interference, the π phase shift creates a band pass resonance at the center frequency of the band stop frequency range and creates a resonance with a spatial distribution confined to a central portion (e.g. around the subsequently described first center and second center where the π phase shift occurs) of a coupled reflector, e.g. grating, system. The Q of the band pass resonance can be adjusted by varying the number of grating periods in the modified Bragg resonator modulator 204. The Q of the band pass resonance is also dependent upon the loss of the gratings. In one embodiment, the Q factor of the modified Bragg resonator modulator 204 is 20,000.

    [0033] The illustrated modified Bragg resonator 205 is a planar modified Bragg resonator comprising the nonlinear optical material 220, the first insulator 224A, and optionally the second insulator. For the illustrated modified Bragg resonator 205, substantially midway along each of the edges 228A, 228B (between the first input 203 and the output 208) of the non-linear electro-optical material 220, the Bragg pattern undergoes substantially a π phase shift where two gratings abut.

    [0034] Figure 3 illustrates a plot of a transmission spectrum of one embodiment of between the first input and the output of a modified Bragg resonator modulator 300. A band stop frequency range 333 and a high Q band pass resonance 331 are illustrated in Figure 3.

    [0035] For the different embodiments of the modified Bragg resonator modulators described herein, the optical source 102 emits an optical carrier signal 102A having a frequency nearly equal to the high Q band pass resonance 331 for a first electric field applied across the first electrode 220A and the second electrode 220B, and thus the non-linear electro-optical material 220.

    [0036] An electrical signal, e.g. a data signal, of varying voltage is applied across the first electrode 220A and the second electrode 220B. Thus, a varying electromagnetic field is applied across the non-linear electro-optical material 220 by the first electrode 220A and the second electrode 220B. The change of index of refraction of the non-linear electro-optical material 220 varies proportionally with the change in electric field across the first electrode 220A and the second electrode 220B. When the index of refraction varies, the center frequency of the narrow band pass resonance also varies, moving either closer to the carrier signal or farther away.

    [0037] Figure 4A illustrates plots of one embodiment of transmission spectra between an input and an output of a modified Bragg resonator modulator 400A. The first transmission spectrum 441A and the second transmission spectrum 441A' result respectively from the first electric field and a second electric field being applied across the first electrode 220A and the second electrode 220B. Figure 4B illustrates plots of one embodiment of reflection spectra at an input of a modified Bragg resonator modulator 400B. The first reflection spectrum 441B and the second transmission spectrum 441B' result respectively from the first electric field and the second electric field being applied across the first electrode 220A and the second electrode 220B.

    [0038] For reflectance modulation systems, including a modified Bragg resonator, when the electric field is varied from the first electric field to the second electric field, a dynamic range of power reflected at the input of the modified Bragg resonator 205 is substantially greater than a corresponding dynamic range for a comparable transmission modulation system including modified Bragg resonator. Because reflectance modulation systems, including a modified Bragg resonator, have a substantially greater dynamic range than a comparable transmission modulation system including modified Bragg resonator, the reflectance modulation systems, including a modified Bragg resonator, have a substantially greater modulation index than a comparable transmission modulation system including modified Bragg resonator. Thus, the reflectance modulation systems, including a modified Bragg resonator, desirably consume less energy than a comparable transmission modulation system including modified Bragg resonator.

    [0039] Figure 5A-1 illustrates a plan view of one embodiment of a modified Bragg resonator (first modified Bragg resonator) 505A. The first modified Bragg resonator 505A is not apodized. The first embodiment of the modified Bragg resonator 505A is patterned with Bragg grating on each of a first edge 528A and a second edge 528B. In one embodiment, the period of each grating of the Bragg gratings along the first edge 528A and the second edge 528B is about 500nm.

    [0040] A first center 526A, where two Bragg gratings abut, of first Bragg gratings on the first side 528A undergoes substantially a π phase shift. A second center 526B, where two Bragg gratings abut, of a second Bragg grating on the second side 528B undergoes substantially a π phase shift. Each Bragg grating has a modulation depth 550. As will be shown, the modulation depth 550 can vary by Bragg grating.

    [0041] The first modified Bragg resonator 505A has a minimum width 552, and a maximum width that is the sum of the minimum width 552 and the modulation depth 550. The average depth is one half of the sum of the minimum width 552 and the maximum width. Figure 5A-2 illustrates a plot of one embodiment of a reflection spectrum for the first modified Bragg resonator 500A-2 that is not apodized; the reflection spectrum occurs when a first electric field is applied across the electrodes 220A, 220B. The modified Bragg resonator 505A has a first reflectance resonance 541A with a relatively low Q.

    [0042] Figure 5B-1 illustrates a plan view of another embodiment of a modified Bragg resonator (second modified Bragg resonator) 505B. The second modified Bragg resonator 505B is similar to the first modified Bragg resonator 505A, except that the shapes of the Bragg gratings on the first edge 528A and the second edge 528B have been apodized to reduce modulation depth proximate to the centers of both Bragg gratings where the substantially π phase shifts occur. The reduction in modulation depth of the Bragg grating reduces scattering loss of the Bragg gratings, which enhances the Q of the second modified Bragg resonator. Still, each of the Bragg grating undergoes substantially a π phase shift at the corresponding centers 526A, 526B; at each center two Bragg gratings abut.

    [0043] Figure 5B-2 illustrates a plot of one embodiment of a reflection spectrum for the second modified Bragg resonator 500B-2 that is apodized; the reflection spectrum occurs when a first electric field is applied across the electrodes 220A, 220B. The apodized Bragg gratings have lower loss, and as a result of the second modified Bragg resonator 505B has a second reflectance resonance 541B with a Q higher than the Q of the first reflectance resonance 541A of the first modified Bragg resonator 505A. As a result, the modulation index of the second modified Bragg resonator 505B with apodization is greater than the modulation efficiency of the first modified Bragg resonator 505A.

    [0044] In one embodiment, apodization of the Bragg gratings can be performed by changing the modulation depth linearly or non-linearly (e.g. with a generalized polynomial function). In another embodiment, the apodization of the Bragg gratings on the first edge 528A and the second edge 528B commences at the input 203 and output 208 of the modified Bragg resonator 205; alternatively, the apodization commences at a distance displaced from the input 203 and output 208 so that not all Bragg gratings are apodized. Apodization distance means the distance from where apodization commences on an edge (e.g. the first edge 528A or the second edge 528B) to the center 526A, 526B (e.g. where the π phase shifts occurs) of the corresponding edge. In a further embodiment, the two apodization distances on one edge are equal, and the apodization distances on the two edges 528A, 528B are equal. The maximum apodization distance is the distance from the centers 526A, 526B to respectively the input 203 and the output 208 of the modified Bragg resonator. However, as will be subsequently described, a shorter apodization distance may be preferable. In yet another embodiment, the modulation depth 550 can be zero at the center;

    [0045] Other techniques for increasing the Q, and thus the modulation index, of a modified Bragg resonator, e.g. made from lithium niobate, include performing high temperature annealing just below the Curie temperature of the non-linear electro-optical material 220. Such annealing causes the edges 228A, 228B to reflow and become smoother, reducing insertion loss and increasing Q. When annealing at high temperatures (e.g. about 1130C), depending upon how brittle the non-linear electro-optical material 220 is, at least the substrate 225 may have to have a temperature coefficient of expansion (TCE) similar to the TCE of the non-linear electro-optical material 220; for non-linear electro-optical material 220 that is lithium niobate, a substrate 225 of magnesium oxide or calcium fluoride may be used because magnesium oxide and calcium fluoride have TCE substantially equal to the TCE of lithium niobate.

    [0046] The length of the optical resonance (along the axis running from the input 203 to the output 208) in the modified Bragg resonator, and thus the length of the first electrode 220A and second electrodes 220B parallel to the same axis, can be desirably reduced using one of the following techniques. Reduction of such length desirably reduces electrode capacitance, and thus the amount of energy required to perform modulation. The techniques to reduce the length of the optical resonance include:
    1. a. using a shorter apodization distance from the center of each Bragg grating towards each end, i.e. the input 203 and output 208, of the modified Bragg resonator, e.g. reduced from 8 guided wavelengths to 4 guided wavelengths, thereby providing further reduction to the length of the optical resonance;
    2. b. reducing the maximum width of the modified Bragg resonator from approximately 0.6 to approximately 0.1-0.2 free-space wavelengths;
    3. c. increasing the maximum modulation depth of the grating, e.g. from approximately 0.2 to approximately 0.4 free-space wavelengths; and
    4. d. reducing the wavelength of the optical carrier signal 102A and the high Q band pass resonance 331, e.g. from 1550nm to 1064nm or 780nm.
    Elements a.-c. also increase grating strength. Element d. increases grating strength if the length of the modified Bragg resonator is held constant. Further, the change in the refractive index for a given change in electric field, e.g. voltage, across the electrodes and a shift of the resonance in the frequency domain can both be increased by reducing the first average gap and the second average gap. In one embodiment, the first average gap and the second average gape are each six microns, but this can be reduced to four microns or lower. The electric field generated by the application of voltage across the first electrode 220A and the second electrodes 220B must overlap spatially with the majority of the electric field of the optical resonance.

    [0047] Figure 6 illustrates an exemplary method of operation of a modified Bragg resonator 600. To the extent the method 600 shown in Figure 6 is described herein as being implemented in the devices shown in Figures 1A through 5, it is to be understood that other embodiments can be implemented in other ways. The blocks of the flow diagrams have been arranged in a generally sequential manner for ease of explanation; however, it is to be understood that this arrangement is merely exemplary, and it should be recognized that the processing associated with the methods (and the blocks shown in the Figures) can occur in a different order (for example, where at least some of the processing associated with the blocks is performed in parallel and/or in an event-driven manner).

    [0048] Optionally, in block 660, provide cooling to an unbent optical waveguide between two reflectors. In one embodiment, the unbent optical waveguide is a planar optical waveguide. For example, provide cooling to between about 0K and about 273K, near 0K, between about 0K and about 4.2K, or between about 63K and about 73.2K. An example of such an unbent optical waveguide is illustrated in Figure 2 and correspondingly describe above.

    [0049] In block 661, inject an optical carrier signal into an unbent optical waveguide between two reflectors, where the distance between two reflectors in the center of the two reflectors is zero and the two reflectors undergo a π phase shift where the two reflectors are adjacent. The previously illustrated Bragg gratings are distributed implementations of the two reflectors. Optionally, the reflectors are Bragg gratings, however, alternatively they can be mirrors.

    [0050] In block 662, create standing waves between the two reflectors in the center, and a single resonance due to constructive interference. The resonance wavelength for two reflectors (undergoing a π phase shift where the two reflectors are adjacent) is Λ (grating period) 2 neff (effective index of refraction). For example, the resonance wavelength for at least two Bragg grating (undergoing a π phase shift where the two reflectors are adjacent) corresponds to the Bragg grating period. The quality factor, or Q, of the resonance, depends upon the reflectivity of the reflectors. In block 664, apply a varying electric field, e.g. to electrodes, across the unbent optical waveguide between two reflectors. In one embodiment, the varying electric field is applied centered between the two reflectors and extends a length less than or equal to a combined length of the two reflectors. For example, the combined length (as illustrated in Figure 2) is the length along the non-linear electro-optical material 220 between axes AA and BB. In block 667, generate a modulated carrier signal at at least one of an input and an output of the unbent optical waveguide between the two reflectors.

    [0051] Figure 7 illustrates an exemplary method of making modified Bragg resonator 700. To the extent the method 700 shown in Figure 7 is described herein as being implemented in the devices shown in Figures 1A through 5, it is to be understood that other embodiments can be implemented in other ways. The blocks of the flow diagrams have been arranged in a generally sequential manner for ease of explanation; however, it is to be understood that this arrangement is merely exemplary, and it should be recognized that the processing associated with the methods (and the blocks shown in the Figures) can occur in a different order (for example, where at least some of the processing associated with the blocks is performed in parallel and/or in an event-driven manner).

    [0052] In block 770, provide a non-linear electro-optical material 700C on (e.g. bonded to or deposited on) a first insulator 700B (e.g. silicon dioxide) on a substrate 700A (e.g. a silicon substrate) (provide non-linear electro-optical material on an insulator on a substrate). In block 771, a first photoresist 700D is deposited on the non-linear electro-optical material 700C, and patterned, e.g. by exposing a portion of the first photoresist 700D with deep ultra violet, electron beam, and/or X-ray lithography and removing either the exposed or unexposed portion of the first photoresist 700D to pattern the electro-optical material 700C (pattern first photoresist to define the non-linear electro-optical material). Photoresist as used herein shall include resist used in electron beam, deep ultra violet, and/or X-ray lithography. Photoresist described herein may be deposited by spin or spray coating. The patterning of the electro-optical material 700C defines reflectors, e.g. Bragg gratings, (apodized or not) on what will subsequently be the edges of the remaining portion of non-linear electro-optical material 700C. As a result, a portion of the non-linear electro-optical material 700C is exposed, e.g. accessible, through an opening in the first photoresist 700D which has been patterned (i.e. where the first photoresist 700D has been removed).

    [0053] In block 772, deposit a mask on non-linear electro-optical material 700C and the first photoresist 700D. The mask 700E may be a metal or another layer of photoresist. For example, if the mask 700E is metal, then optionally it may be deposited by physical vapor deposition, over the first photoresist 700D and the exposed portion of the non-linear electro-optical material 700C. In block 773, perform first lift off; the first photoresist 700D is removed, e.g. chemically removed, thus lifting off and removing the mask 700E above the first photoresist 700D.

    [0054] In block 774, etch the non-linear electro-optical material 700C. The portion of the non-linear electro-optical material 700C not covered by the mask 700E is removed, e.g. by etching such as reactive ion etching. This forms what is known as a "ridge waveguide." Although block 774 illustrates that all of the non-linear electro-optical material 700C not covered by the mask has been removed, this need not be the case.

    [0055] Alternatively, only a portion of the non-linear electro-optical material 700C is removed. This forms what is known as a "ribbed waveguide." Thus, each electrode could be subsequently formed on non-linear electro-optical material 700C and/or the first insulator 700B.

    [0056] Subsequently, in block 775, remove the remaining portion of the mask material. The remaining portion of the mask material 700E is removed, e.g. by etching such as chemical etching. Optionally, in this block or elsewhere during the method, anneal the patterned non-linear electro-optical material 700C as described elsewhere.

    [0057] In block 776, a second photoresist 700F is deposited on the non-linear electro-optical material 700C and first insulator 700B, and patterned, e.g. by exposing a portion of the second photoresist 700F with deep ultra violet, electron beam, or X-ray lithography and removing either the exposed or unexposed portion of the second photoresist 700F (pattern the second photoresist to define electrodes). The patterning defines regions of the first insulator 700B where the aforementioned first electrode 220A and the second electrode 220B will be deposited. In one embodiment, at least two portions of the first insulator 700B are exposed where second photoresist 700F has been removed.

    [0058] In block 777, deposit a first conductor 700G (for example a metal like gold, silver, or copper), e.g. by physical vapor deposition, over the remaining second photoresist 700F and an at least one exposed portion of the first insulator 700B. In block 778, perform second lift off; the second photoresist 700F is removed, e.g. chemically removed, thus lifting off and removing the first conductor 700G above the second photoresist 700F. The remaining first conductor 700G over the first insulator 700B forms the aforementioned first electrode 220A and the second electrode 220B.

    [0059] Optionally, in block 779, deposit a second insulator 700H, e.g. with low pressure or plasma enhanced chemical vapor deposition, over the first conductor 700G, the first insulator 700B, and the non-linear electro-optical material 700C. In one embodiment, the first insulator 700B and the second insulator 700H are the same material, e.g. silicon dioxide. The index of refraction of the non-linear electro-optical material 700C is relatively larger than the index of refraction of each of the first insulator 700B and the second insulator 700H; thus the first insulator 700B (and the second insulator 700H when used) confine the optical signal within the non-linear electro-optical material 700C. The second insulator 700H also protects the non-linear electro-optical material 700C. Particularly if the first insulator 700B and the second insulator 700H have similar indices of refraction, then symmetric optical modes will propagate in the modified Bragg resonator.

    [0060] In block 780, deposit a third photoresist 700I over the second insulator 700H, and pattern, e.g. by exposing a portion of the third photoresist 700I with deep ultra violet, electron beam, or X ray lithography and removing either the exposed or unexposed portion of the third photoresist 700I (pattern third photo resist to define contacts). The patterning defines regions of the second insulator 700H where contacts to the electrodes will be deposited.

    [0061] In block 782, remove at least one portion of exposed second insulator 700H, e.g. by etching such as reactive ion etching. In block 784, the remaining third photoresist 700I is removed, e.g. chemically removed.

    [0062] In block 786, deposit a fourth photoresist 700J over the second insulator 700H, and pattern the fourth photoresist 700J, e.g. by exposing a portion of the fourth photoresist 700J with deep ultra violet, electron beam, or X ray lithography and removing either the exposed or unexposed portion of the fourth photoresist 700J (pattern fourth photo resist to define bond pads). Each bond pad is electrically coupled to an electrode by a contact. In one embodiment, at least two portions first conductor 700G (and optionally of the second insulator 700H) are exposed, e.g. accessible, through the remaining fourth photoresist 700J.

    [0063] In block 788, deposit a second conductor 700K on the fourth photoresist 700J, at least one portion of exposed first conductor 700G, and optionally the second insulator 700H. The second conductor may be a metal such as gold, aluminum, or copper, and may be deposited by physical vapor deposition. Optionally, the first conductor 700G and the second conductor 700K are the same material. In block 790, perform third lift off; the fourth photoresist 700J is removed, e.g. chemically removed, thus lifting off and removing the second conductor 700K above the fourth photoresist 700J. The remaining second conductor 700K on the first conductor 700G and/or on the optional second insulator 700H forms a first contact and a second contact respectively to the aforementioned first electrode 220A and the second electrode 220B.

    [0064] Optionally, the upper and lower cladding layers formed by the first insulator 700B and the optional second insulator 700H are each about 2 microns thick, and the non-linear electro-optic waveguide, formed by the non-linear electro-optical material is about 1 micron wide and about 300 to 700 nanometers thick; however material dimensions may differ from the foregoing. In another embodiment, the first insulator 700B and the optional second insulator greater than 500nm (e.g. 2 microns), and the non-linear electro-optical material is greater than 200 nm (e.g. 600-700 microns) thick.

    [0065] As discussed above, a reflectance modulation system is susceptible to internal reflections, e.g. at device interfaces. To diminish such reflections, e.g. between the circulator 113 and the modulator with a modified Bragg resonator modulator 104 in one of the aforementioned reflectance systems, a grating assisted coupler can be employed. Figure 8A illustrates one embodiment of a grating assisted coupler 800A. The illustrated grating assisted coupler 800 is formed by a first optical waveguide 892, e.g. an optical fiber waveguide, orthogonally coupled to a corresponding second optical waveguide 894, e.g. a planar optical waveguide, at a cleaved portion 896 of a substrate 225 and the second optical waveguide 894. However, the first optical waveguide 892 need not be orthogonally coupled to the corresponding second optical waveguide 894; the angle between these two waveguides may range from substantially zero (i.e. just greater than zero) to ninety degrees. Reflections 898 from the second optical waveguide 894 on the substrate 225 are directed away from the first optical waveguide 892, thus diminishing undesirable reflections within the first optical waveguide 892, and the corresponding reflectance electro-optical modulation system. The two waveguides should be oriented to one another so that specular reflections do not enter either waveguide.

    [0066] Alternatively, a polished butt coupler can be utilized in lieu of a grating assisted coupler. Figure 8B illustrates one embodiment of a polished butt coupler 800B. A cleaved end of a first optical waveguide 892, e.g. an optical fiber waveguide, is coupled to a cleaved portion of the substrate 225 and a cleaved portion of a second optical waveguide 894, e.g. a planar optical waveguide. Reflections 898 from the second optical waveguide 894 on the substrate 225 are directed orthogonally away from the first optical waveguide 892, thus diminishing reflections within the first optical waveguide 892, and the corresponding reflectance electro-optical modulation system.

    [0067] Terms of relative position as used in this application are defined based on a plane parallel to, or in the case of the term coplanar - the same plane as, the conventional plane or working surface of a device, layer, wafer, or substrate, regardless of orientation. The term "horizontal" or "lateral" as used in this application are defined as a plane parallel to the conventional plane or working surface of a device, layer, wafer, or substrate, regardless of orientation. The term "vertical" refers to a direction perpendicular to the horizontal. Terms such as "on," "side" (as in "sidewall"), "higher," "lower," "over," "top," and "under" are defined with respect to the conventional plane or working surface being on the top surface of a device, layer, wafer, or substrate, regardless of orientation. The term "coplanar" as used in this application is defined as a plane in the same plane as the conventional plane or working surface of a device, layer, wafer, or substrate, regardless of orientation.

    [0068] A number of examples defined by the following claims have been described. Nevertheless, it will be understood that various modifications to the described examples may be made without departing from the scope of the claimed invention. Therefore, it is manifestly intended that this invention be limited only by the appended claims.

    [0069] Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement, which is calculated to achieve the same purpose, may be substituted for the specific embodiments shown. Therefore, it is manifestly intended that this invention be limited only by the appended claims.


    Claims

    1. A modulator, comprising:

    a substrate (225);

    a first insulator (224A, 700B) on at least a portion of the substrate;

    a non-linear electro-optical material (220, 700C) where a change of an index of refraction of the non-linear electro-optical material varies proportionally with a change in electric field across the non-linear electro-optical material, and having a side on the at least a portion of the first insulator, and a first edge (228A) and a second edge (228B);

    where the first insulator and the non-linear electro-optical material form an unbent optical waveguide having an input (203) and an output (208);

    wherein the first edge has a Bragg grating with substantially a π phase shift substantially in the center (526A) of the Bragg grating;

    wherein the Bragg grating on the first edge has periodic surfaces which are substantially perpendicular to the side of the non-linear optical material;

    wherein the second edge has a Bragg grating with substantially a π phase shift substantially in the center (526B) of the Bragg grating;

    wherein the Bragg grating on the second edge has periodic surfaces which are substantially perpendicular to the side of the non-linear optical material;

    a first electrode (220A) having a side over the substrate and having an edge substantially perpendicular to the periodic surfaces of the Bragg grating on the first edge; and

    a second electrode (220B) having a side over the substrate and having an edge substantially perpendicular to the periodic surfaces of the Bragg grating on the second edge.


     
    2. The modulator of claim 1, wherein the non-linear electro-optical material has another side opposite the side; and further comprising a second insulator (224B, 700H) on the other side.
     
    3. The modulator of claim 1, wherein the non-linear electro-optical material comprises lithium niobate.
     
    4. The modulator of claim 1, wherein at least a portion of each Bragg grating is apodized.
     
    5. The modulator of claim 1, wherein the input is configured to receive an optical carrier signal (102A);
    wherein at least one of the first electrode and the second electrode are configured to receive a data signal (101); and
    wherein the output is configured to provide a modulated optical signal (110).
     
    6. The modulator of claim 1, further comprising an optical circulator (113) having a first port (113a), a second port (113b), and a third port (113c);
    wherein the third port is coupled to the input;
    wherein the first port is configured to receive an optical carrier signal;
    wherein the second port is configured to provide a modulated optical signal;
    wherein at least one of the first electrode and the second electrode are configured to receive a data signal;
    wherein the output is coupled to an optical termination (107) on the substrate; and
    optionally, a cooling system (105) enclosing the substrate, the first insulator, the non-linear electro-optical material, the first electrode, and the second electrode.
     
    7. The modulator of claim 1, further comprising an optical directional coupler (112) comprised of optical waveguide formed over the substrate;
    wherein the optical directional coupler has a first port (112a), a second port (112b), a third port (112c), and a fourth port (112d);
    wherein the second port is coupled to the input;
    wherein a first optical termination on the substrate is coupled to the output;
    wherein a second optical termination on the substrate is coupled to the third port;
    wherein the first port is configured to receive an optical carrier signal;
    wherein the first electrode and the second electrode are configured to receive a data signal;
    wherein the fourth port is configured to provide a modulated optical signal; and
    a cooling system (105) enclosing the substrate, the first insulator, the non-linear electro-optical material, the first electrode, the second electrode, the first optical termination, the second optical termination, and the optical directional coupler.
     
    8. A method of using the modulator of claim 1, the method comprising:

    injecting an optical carrier signal into an unbent optical waveguide between two reflectors, where the distance between two reflectors in the center of the two reflectors is substantially zero and the two reflectors undergo substantially a π phase shift where the two reflectors are adjacent (661);

    creating standing waves between the two reflectors in the center, and a single resonance due to constructive interference (662);

    applying a varying electric field across the unbent optical waveguide centered between two reflectors and extending a length less than or equal to a combined length of the two reflectors (664); and

    generating a modulated carrier signal at least one of an input and an output of the unbent optical waveguide between the two reflectors (667).


     
    9. The method of claim 8, further comprising providing cooling to the unbent optical waveguide between the two reflectors (660).
     
    10. The method of claim 8, wherein injecting the optical carrier signal into the unbent optical waveguide between the two reflectors comprises injecting the optical carrier signal into the unbent waveguide between at least two Bragg gratings, where the distance between two Bragg gratings in the center of the at least two Bragg gratings is substantially zero and the two Bragg gratings undergo substantially a π phase shift where the two Bragg gratings are adjacent.
     
    11. The apparatus of claim 1, further comprising optionally, a cooling system (105) enclosing the substrate, the first insulator, the non-linear electro-optical material, the first electrode, and the second electrode.
     
    12. The apparatus of claim 2, wherein the first insulator comprises silicon dioxide and the second insulator comprises silicon dioxide.
     


    Ansprüche

    1. Ein Modulator, umfassend:

    ein Substrat (225);

    einen ersten Isolator (224A, 700B) auf mindestens einem Teil des Substrats;

    ein nichtlineares elektrooptisches Material (220, 700C), wobei eine Änderung eines Brechungsindex des nichtlinearen elektrooptischen Materials proportional mit einer Änderung des elektrischen Feldes über dem nichtlinearen elektrooptischen Material variiert, und das eine Seite an dem mindestens einen Teil des ersten Isolators sowie eine erste Kante (228A) und eine zweite Kante (228B) aufweist;

    wobei der erste Isolator und das nichtlineare elektrooptische Material einen ungebogenen optischen Wellenleiter mit einem Eingang (203) und einem Ausgang (208) bilden;

    wobei die erste Kante ein Bragg-Gitter mit im Wesentlichen einer π-Phasenverschiebung im Wesentlichen in der Mitte (526A) des Bragg-Gitters aufweist;

    wobei das Bragg-Gitter periodische Oberflächen an der ersten Kante aufweist, die im Wesentlichen senkrecht zu der Seite des nichtlinearen optischen Materials sind;

    wobei die zweite Kante ein Bragg-Gitter mit im Wesentlichen einer π-Phasenverschiebung im Wesentlichen in der Mitte (526B) des Bragg-Gitters aufweist;

    wobei das Bragg-Gitter periodische Oberflächen an der zweiten Kante aufweist, die im Wesentlichen senkrecht zu der Seite des nichtlinearen optischen Materials sind;

    eine erste Elektrode (220A), die eine Seite über dem Substrat und eine Kante im Wesentlichen senkrecht zu den periodischen Oberflächen des Bragg-Gitters an der ersten Kante aufweist; und

    eine zweite Elektrode (220B), die eine Seite über dem Substrat und eine Kante im Wesentlichen senkrecht zu den periodischen Oberflächen des Bragg-Gitters an der zweiten Kante aufweist.


     
    2. Modulator nach Anspruch 1, wobei das nichtlineare elektrooptische Material eine andere Seite gegenüber der Seite aufweist; und ferner einen zweiten Isolator (224B, 700H) auf der anderen Seite umfassend.
     
    3. Modulator nach Anspruch 1, wobei das nichtlineare elektrooptische Material Lithiumniobat umfasst.
     
    4. Modulator nach Anspruch 1, wobei mindestens ein Teil jedes Bragg-Gitters apodisiert ist.
     
    5. Modulator nach Anspruch 1, wobei der Eingang konfiguriert ist, um ein optisches Trägersignal (102A) zu empfangen;
    wobei mindestens eine der ersten Elektrode und der zweiten Elektrode konfiguriert ist, um ein Datensignal (101) zu empfangen; und
    wobei der Ausgang konfiguriert ist, um ein moduliertes optisches Signal (110) bereitzustellen.
     
    6. Modulator nach Anspruch 1, ferner einen optischen Zirkulator (113) umfassend, der einen ersten Port (113a), einen zweiten Port (113b) und einen dritten Port (113c) aufweist;
    wobei der dritte Port mit dem Eingang gekoppelt ist;
    wobei der erste Port konfiguriert ist, um ein optisches Trägersignal zu empfangen;
    wobei der zweite Port konfiguriert ist, um ein moduliertes optisches Signal bereitzustellen;
    wobei mindestens eine der ersten Elektrode und der zweiten Elektrode konfiguriert ist, um ein Datensignal zu empfangen;
    wobei der Ausgang mit einem optischen Abschluss (107) auf dem Substrat gekoppelt ist; und
    wobei ein Kühlsystem (105) optional das Substrat, den ersten Isolator, das nichtlineare elektrooptische Material, die erste Elektrode und die zweite Elektrode einschließt.
     
    7. Modulator nach Anspruch 1, ferner einen optischen Richtkoppler (112) umfassend, der aus einem optischen Wellenleiter besteht, der über dem Substrat gebildet ist;
    wobei der optische Richtkoppler einen ersten Port (112a), einen zweiten Port (112b), einen dritten Port (112c) und einen vierten Port (112d) aufweist;
    wobei der zweite Port mit dem Eingang gekoppelt ist;
    wobei ein erster optischer Abschluss auf dem Substrat mit dem Ausgang gekoppelt ist;
    wobei ein zweiter optischer Abschluss auf dem Substrat mit dem dritten Port gekoppelt ist;
    wobei der erste Port konfiguriert ist, um ein optisches Trägersignal zu empfangen;
    wobei die erste Elektrode und die zweite Elektrode konfiguriert sind, um ein Datensignal zu empfangen;
    wobei der vierte Port konfiguriert ist, um ein moduliertes optisches Signal bereitzustellen; und
    wobei ein Kühlsystem (105) das Substrat, den ersten Isolator, das nichtlineare elektrooptische Material, die erste Elektrode, die zweite Elektrode, den ersten optischen Abschluss, den zweiten optischen Abschluss und den optischen Richtkoppler einschließt.
     
    8. Verfahren zum Verwenden des Modulators nach Anspruch 1, wobei das Verfahren Folgendes umfasst:

    Einspeisen eines optischen Trägersignals in einen ungebogenen optischen Wellenleiter zwischen zwei Reflektoren, wobei der Abstand zwischen zwei Reflektoren in der Mitte der zwei Reflektoren im Wesentlichen Null ist und die zwei Reflektoren im Wesentlichen eine π-Phasenverschiebung erfahren, wobei die zwei Reflektoren benachbart sind (661);

    Erzeugen stehender Wellen zwischen den zwei Reflektoren in der Mitte und einer einzelnen Resonanz aufgrund einer konstruktiven Interferenz (662);

    Anlegen eines variierenden elektrischen Feldes über den ungebogenen optischen Wellenleiter, der zwischen zwei Reflektoren zentriert ist und sich über eine Länge erstreckt, die kleiner oder gleich einer kombinierten Länge der zwei Reflektoren (664) ist; und

    Erzeugen eines modulierten Trägersignals an mindestens einem von einem Eingang und einem Ausgang des ungebogenen optischen Wellenleiters zwischen den zwei Reflektoren (667).


     
    9. Verfahren nach Anspruch 8, ferner das Bereitstellen von Kühlung an den ungebogenen optischen Wellenleiter zwischen den zwei Reflektoren (660) umfassend.
     
    10. Verfahren nach Anspruch 8, wobei das Einspeisen des optischen Trägersignals in den ungebogenen optischen Wellenleiter zwischen den zwei Reflektoren das Einspeisen des optischen Trägersignals in den ungebogenen Wellenleiter zwischen mindestens zwei Bragg-Gittern umfasst, wobei der Abstand zwischen zwei Bragg-Gittern in der Mitte der mindestens zwei Bragg-Gitter im Wesentlichen Null ist und die zwei Bragg-Gitter im Wesentlichen eine π-Phasenverschiebung erfahren, wenn die zwei Bragg-Gitter benachbart sind.
     
    11. Vorrichtung nach Anspruch 1, ferner optional ein Kühlsystem (105) umfassend, das das Substrat, den ersten Isolator, das nichtlineare elektrooptische Material, die erste Elektrode und die zweite Elektrode einschließt.
     
    12. Vorrichtung nach Anspruch 2, wobei der erste Isolator Siliciumdioxid umfasst und der zweite Isolator Siliciumdioxid umfasst.
     


    Revendications

    1. Modulateur, comprenant :

    un substrat (225) ;

    un premier isolant (224A, 700B) sur au moins une partie du substrat ;

    un matériau électro-optique non linéaire (220, 700C) où une variation d'indice de réfraction du matériau électro-optique non linéaire varie proportionnellement à une variation de champ électrique à travers le matériau électro-optique non linéaire et ayant un côté sur au moins une partie du premier isolant, ainsi qu'un premier bord (228A) et un second bord (228B) ;

    où le premier isolant et le matériau électro-optique non linéaire forment un guide d'ondes optique non plié ayant une entrée (203) et une sortie (208) ;

    dans lequel le premier bord comporte un réseau de Bragg avec sensiblement un déphasage de π sensiblement au centre (526A) du réseau de Bragg ;

    dans lequel le réseau de Bragg présente sur le premier bord des surfaces périodiques qui sont sensiblement perpendiculaires au côté du matériau optique non linéaire ;

    dans lequel le second bord comporte un réseau de Bragg avec sensiblement un déphasage de π sensiblement au centre (526B) du réseau de Bragg ;

    dans lequel le réseau de Bragg sur le second bord présente des surfaces périodiques qui sont sensiblement perpendiculaires au côté du matériau optique non linéaire ;

    une première électrode (220A) ayant un côté sur le substrat et ayant un bord sensiblement perpendiculaire aux surfaces périodiques du réseau de Bragg sur le premier bord ; et

    une seconde électrode (220B) ayant un côté sur le substrat et ayant un bord sensiblement perpendiculaire aux surfaces périodiques du réseau de Bragg sur le second bord.


     
    2. Modulateur selon la revendication 1, dans lequel le matériau électro-optique non linéaire comporte un autre côté opposé au côté ; et comprenant en outre un second isolant (224B, 700H) sur l'autre côté.
     
    3. Modulateur selon la revendication 1, dans lequel le matériau électro-optique non linéaire comprend du niobate de lithium.
     
    4. Modulateur selon la revendication 1, dans lequel au moins une partie de chaque réseau de Bragg est apodisée.
     
    5. Modulateur selon la revendication 1, dans lequel l'entrée est conçue pour recevoir un signal de porteuse optique (102A) ;
    dans lequel la première électrode et/ou la seconde électrode est conçue pour recevoir un signal de données (101) ; et
    dans lequel la sortie est conçue pour fournir un signal optique modulé (110).
     
    6. Modulateur selon la revendication 1, comprenant en outre un circulateur optique (113) comportant un premier port (113a), un deuxième port (113b) et un troisième port (113c) ;
    dans lequel le troisième port est couplé à l'entrée ;
    dans lequel le premier port est conçu pour recevoir un signal de porteuse optique ;
    dans lequel le deuxième port est conçu pour fournir un signal optique modulé ;
    dans lequel au moins l'une parmi la première électrode et la seconde électrode est conçue pour recevoir un signal de données ;
    dans lequel la sortie est couplée à une terminaison optique (107) sur le substrat ; et
    éventuellement, un système de refroidissement (105) entourant le substrat, le premier isolant, le matériau électro-optique non linéaire, la première électrode et la seconde électrode.
     
    7. Modulateur selon la revendication 1, comprenant en outre un coupleur directionnel optique (112) constitué d'un guide d'ondes optique formé sur le substrat ;
    dans lequel le coupleur directionnel optique comporte un premier port (112a), un deuxième port (112b), un troisième port (112c) et un quatrième port (112d) ;
    dans lequel le deuxième port est couplé à l'entrée ;
    dans lequel une première terminaison optique sur le substrat est couplée à la sortie ;
    dans lequel une seconde terminaison optique sur le substrat est couplée au troisième port ;
    dans lequel le premier port est conçu pour recevoir un signal de porteuse optique ;
    dans lequel la première électrode et la seconde électrode sont conçues pour recevoir un signal de données ;
    dans lequel le quatrième port est configuré pour fournir un signal optique modulé ; et
    un système de refroidissement (105) entourant le substrat, le premier isolant, le matériau électro-optique non linéaire, la première électrode, la seconde électrode, la première terminaison optique, la seconde terminaison optique et le coupleur directionnel optique.
     
    8. Procédé d'utilisation du modulateur de la revendication 1, le procédé comprenant :

    l'injection d'un signal de porteuse optique dans un guide d'ondes optiques non plié entre deux réflecteurs, la distance entre deux réflecteurs au centre des deux réflecteurs étant sensiblement nulle et les deux réflecteurs subissant sensiblement un déphasage de π là où les deux réflecteurs sont adjacents (661) ;

    la création d'ondes stationnaires entre les deux réflecteurs au centre et d'une seule résonance due à une interférence constructive (662) ;

    l'application d'un champ électrique variable à travers le guide d'ondes optiques non plié, centré entre deux réflecteurs et s'étendant sur une longueur inférieure ou égale à une longueur combinée des deux réflecteurs (664) ; et

    l'émission d'un signal de porteuse modulé au niveau d'au moins une parmi une entrée et une sortie du guide d'ondes optiques non plié entre les deux réflecteurs (667).


     
    9. Procédé selon la revendication 8, comprenant en outre la fourniture d'un refroidissement au guide d'ondes optiques non plié entre les deux réflecteurs (660).
     
    10. Procédé selon la revendication 8, dans lequel l'injection du signal de porteuse optique dans le guide d'ondes optiques non plié entre les deux réflecteurs comprend l'injection du signal de porteuse optique dans le guide d'ondes non plié entre au moins deux réseaux de Bragg, la distance entre deux réseaux de Bragg au centre des au moins deux réseaux de Bragg étant sensiblement nulle et les deux réseaux de Bragg subissant sensiblement un déphasage de π là où les deux réseaux de Bragg sont adjacents.
     
    11. Appareil selon la revendication 1, comprenant en outre, éventuellement, un système de refroidissement (105) entourant le substrat, le premier isolant, le matériau électro-optique non linéaire, la première électrode et la seconde électrode.
     
    12. Appareil selon la revendication 2, dans lequel le premier isolant comprend du dioxyde de silicium et où le deuxième isolant comprend du dioxyde de silicium.
     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description