(19)
(11)EP 3 520 481 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 17746115.9

(22)Date of filing:  01.08.2017
(51)International Patent Classification (IPC): 
H04W 36/02(2009.01)
(86)International application number:
PCT/EP2017/069429
(87)International publication number:
WO 2018/059797 (05.04.2018 Gazette  2018/14)

(54)

BUFFER MANAGEMENT FOR WIRELESS NETWORKS DURING HANDOVER

PUFFERVERWALTUNG FÜR DRAHTLOSE NETZWERKE WÄHREND DER ÜBERGABE

GESTION DE TAMPON POUR RÉSEAUX SANS FIL DURANT UN TRANSFERT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 29.09.2016 US 201615280322

(43)Date of publication of application:
07.08.2019 Bulletin 2019/32

(73)Proprietor: Nokia Solutions and Networks Oy
02610 Espoo (FI)

(72)Inventors:
  • PEDERSEN, Klaus, Ingemann
    9000 Aalborg (DK)
  • KOLDING, Troels, Emil
    9270 Klarup (DK)
  • GIMENEZ, Lucas
    9000 Aalborg (DK)
  • SHAH, Ejaz
    Algonquin, Illinois 60102 (US)

(74)Representative: Nokia EPO representatives 
Nokia Technologies Oy Karakaari 7
02610 Espoo
02610 Espoo (FI)


(56)References cited: : 
EP-A2- 0 808 034
US-A1- 2008 267 131
US-A1- 2012 155 431
WO-A1-2015/127987
US-A1- 2011 026 494
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] This description relates to communications, and in particular, to a buffer management for wireless networks.

    BACKGROUND



    [0002] A communication system may be a facility that enables communication between two or more nodes or devices, such as fixed or mobile communication devices. Signals can be carried on wired or wireless carriers.

    [0003] An example of a cellular communication system is an architecture that is being standardized by the 3rd Generation Partnership Project (3GPP). A recent development in this field is often referred to as the long-term evolution (LTE) of the Universal Mobile Telecommunications System (UMTS) radio-access technology. E-UTRA (evolved UMTS Terrestrial Radio Access) is the air interface of 3GPP's Long Term Evolution (LTE) upgrade path for mobile networks. In LTE, base stations or access points (APs), which are referred to as enhanced Node AP (eNBs), provide wireless access within a coverage area or cell. In LTE, mobile devices, user devices or mobile stations are referred to as user equipments (UEs).

    [0004] A handover may be performed for a user device from a source cell to a target cell. In some cases, data buffered at the source cell may be forwarded to the target cell.

    [0005] Document US 2012/155431 A1 discloses a base station apparatus which includes a first buffer for storing downlink data of a terminal, a handover agent for, when the terminal performs a handover, performing scheduling on data which is stored in the first buffer and which belongs to at least one terminal including the terminal that performs the handover so that an interruption time of the at least one terminal is reduced in order to forward the data to a target base station, and a communication unit for transmitting the data according to a scheduling result of the handover agent.

    [0006] Moreover, document US 2008/267131 A1 discloses a pre-synchronization method during a handover procedure in which a source base station chooses a signature for a user equipment to use in a target base station for RACH access and instructs the user equipment to perform RACH access and return to the current base station before a handover command is issued by the source base station. This causes parallel execution of the UL synchronization process with the context transfer process among the two base stations (i.e. source and target), thereby reducing handover interruption time.

    [0007] Furthermore, document US 2011/026494 A1 discloses a method for performing a handover which avoids packet loss. At the time of a handover from a first to a second wireless communication network, when the start of the preparation of the handover from the first to the second network is determined, data is transmitted through the first wireless communication network and stored for a predetermined time. The stored data is transmitted through the second wireless communication network following the handover. Hence, during a predetermined time, data that could get lost due to the handover is stored (while it is transmitted via the first wireless communication network), and the stored data is transmitted after the handover to the second communication network, thereby avoiding a (possible) packet loss.

    [0008] In addition, document WO2015127987 A1 discloses a handover method which avoids interruption in data services for a mobile station, MS. In particular, the method includes performing a synchronized and random access procedure-less, RACH-less, handover including: receiving, by a user device (MS) from a source base station, BS, a handover command including at least a handover time field that identifies a time to perform a synchronized handover to a target BS, performing, by the user device without using a random access procedure, a handover from the source BS to the target BS at the time identified by the handover time field, and sending a handover completion message from the user device to the target BS.

    [0009] Moreover, document EP0808034 A2 discloses a method for handover control in a satellite based telecommunications system. A base station determines when a handover will be necessary. Once determined, the base station generates a handover scheduling command which includes a scheduled handover time representing a time in the future at which the handover will occur. The handover scheduling command is transmitted over the first channel to the mobile station. Upon receipt of the handover scheduling command, the mobile station performs steps necessary to establish a second communications link over a second channel, prior to the scheduled handover time. At the scheduled handover time, the mobile and base stations have established the second communications link on the second channel. To establish the second channel the mobile station calculations of the second channels frequency, timing offset and power level. By using a scheduled handover process, the mobile and base stations avoid the production of interference and breaks within a conversation transmitted therebetween.

    SUMMARY



    [0010] The invention is defined in the claims.

    [0011] In particular, a method, a source base station and a computer-readable storage medium are defined in respective independent claims 1, 12 and 15.

    [0012] The details of one or more examples of implementations are set forth in the accompanying drawings and the description below. Other features will be apparent from the description and drawings, and from the claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0013] 

    FIG. 1 is a block diagram of a wireless network according to an example implementation.

    FIG. 2 is a flow chart illustrating operation of a cell, base station or other network device(s) according to an example implementation.

    FIG. 3 is a diagram illustrating operation of a wireless system according to an example implementation.

    FIG. 4 is a block diagram of a node or wireless station (e.g., network device, base station/access point or mobile station/user device/UE) according to an example implementation.


    DETAILED DESCRIPTION



    [0014] FIG. 1 is a block diagram of a wireless network 130 according to an example implementation. In the wireless network 130 of FIG. 1, user devices 131, 132, 133 and 135, which may also be referred to as mobile stations (MSs) or user equipment (UEs), may be connected (and in communication) with a base station (BS) 134, which may also be referred to as an access point (AP), an enhanced Node B (eNB) or a network node. At least part of the functionalities of an access point (AP), base station (BS) or (e)Node B (eNB) may be also be carried out by any node, server or host which may be operably coupled to a transceiver, such as a remote radio head. BS (or AP) 134 is associated with and provides wireless coverage (or wireless services) within a cell 136, including to user devices 131, 132, 133 and/or 135. Although only four user devices are shown as being connected or attached to BS 134, any number of user devices may be provided. BS 134 is also connected to a core network 150 via a S1 interface 151. This is merely one simple example of a wireless network, and others may be used.

    [0015] By way of illustrative example, wireless network 130 may include multiple BSs. For example, a BS 144, which is associated with and provides wireless services or coverage within cell 146, may be connected to (and provide wireless services to) one or more of user devices 131, 132, 133 and/or 135. Although not shown, BS 144 is also connected to core network 150. BS 134 (associated with and providing wireless services for cell 136) is connected with BS 144 (associated with and providing wireless services for cell 146) via a BS-to-BS interface (e.g., which may be referred to as an X2 interface), shown as line 153, for example.

    [0016] A user device (user terminal, user equipment (UE) or mobile station) may refer to a portable computing device that includes wireless mobile communication devices operating with or without a subscriber identification module (SIM), including, but not limited to, the following types of devices: a mobile station (MS), a mobile phone, a cell phone, a smartphone, a personal digital assistant (PDA), a handset, a device using a wireless modem (alarm or measurement device, etc.), a laptop and/or touch screen computer, a tablet, a phablet, a game console, a notebook, and a multimedia device, as examples. It should be appreciated that a user device may also be a nearly exclusive uplink only device, of which an example is a camera or video camera loading images or video clips to a network.

    [0017] By way of illustrative example, the various example implementations or techniques described herein may be applied to various user devices, such as machine type communication (MTC) user devices, enhanced machine type communication (eMTC) user devices, Internet of Things (IoT) user devices, and/or narrowband IoT user devices. IoT may refer to an ever-growing group of objects that may have Internet or network connectivity, so that these objects may send information to and receive information from other network devices. For example, many sensor type applications or devices may monitor a physical condition or a status, and may send a report to a server or other network device, e.g., when an event occurs. Machine Type Communications (MTC, or Machine to Machine communications) may, for example, be characterized by fully automatic data generation, exchange, processing and actuation among intelligent machines, with or without intervention of humans.

    [0018] Also, in an example implementation, a user device or UE may be a UE/user device with ultra reliable low latency communications (URLLC) applications. A cell (or cells) may include a number of user devices connected to the cell, including user devices of different types or different categories, e.g., including the categories of MTC, NB-IoT, URLLC, or other UE category.

    [0019] In LTE (as an example), core network 150 may be referred to as Evolved Packet Core (EPC), which may include a mobility management entity (MME) which may handle or assist with mobility/handover of user devices between BSs, one or more gateways that may forward data and control signals between the BSs and packet data networks or the Internet, and other control functions or blocks.

    [0020] The various example implementations may be applied to a wide variety of wireless technologies, wireless networks, or wireless devices, such as LTE, LTE-A, 5G, cmWave, and/or mmWave band networks, IoT, MTC, eMTC, URLLC, etc., or any other wireless network or wireless technology. These example networks or technologies are provided only as illustrative examples, and the various example implementations may be applied to any wireless technology/wireless network.

    [0021] According to an illustrative example of FIG. 1, a user device 132 may be moving left to right. Based on a measurement report sent by the user device 132 to a source cell 136 (source BS 134), a handover of the user device 132 may be triggered from the source cell 136 to a target cell 146. At some point, data stored in data (or transmit) buffer at the source cell 136/source BS 134 for the user device 132 may be transferred or forwarded via X2 interface 153 to the target cell 146/target BS 144, so that the target cell may forward such data to the user device 132 after handover. According to an example implementation, some challenges or questions exist as to how much of the data stored in the data buffer of the source cell 136 should be transmitted to the user device 132 after a handover decision has been made, and/or when and how much of the stored data in the data buffers at the source cell 136/source BS 134 should be transferred/forwarded via X2 interface 153 to the target cell 146/target BS 144. Therefore, according to an example implementation, data buffers, such as the data buffers at source cell 136/source BS 134 may be managed in order to reduce data interruption time after handover. The cells and BSs shown in FIG. 1 is merely an illustrative example.

    [0022] Various example implementations may, for example, relate to downlink user-plane buffer handling at a base station or cell for handovers, such as, for example, for synchronous handovers without random access (synchronous RACH-less handovers). Synchronous RACH-less handovers may include a handover in which a user device obtains a timing advance for a target cell without performing random access with the target cell (also known as a RACH-less handover). As an illustrative example of a RACH-less handover, the user device may use the timing advance for the source cell and signal propagation times or delays for signals received from the source cell and the target cell, to estimate or determine the timing advance for the target cell without requiring the user device to perform a random access procedure with the target cell. An example of a RACH-less handover is described at Barbera, S. et al, "Synchronized RACH-less Handover Solution for LTE Heterogeneous Networks". International Symposium on Wireless Communication Systems (ISWCS), Brussels, August 2015, pp. 755-759.

    [0023] According to an example implementation, references to various actions (e.g., making decisions, communicating, determining, storing data, receiving data or signals, transmitting or sending data or signals, notifying, selecting, forwarding,...) performed by a source cell may include these actions being performed by a source BS that provides the source cell. Likewise, references to various actions (e.g., making decisions, communicating, determining, storing data, receiving data or signals, transmitting or sending data or signals, notifying, selecting, forwarding,...) performed by a target cell may include these actions being performed by a target BS that provides the target cell.

    [0024] According to an example implementation of a synchronous handover, the source cell and target cell agree on the time instant (t1) of the handover (a scheduled handover time, t1) of the user device, and the user device may typically be informed in advance of the scheduled handover time (t1). According to an example implementation, until the scheduled handover time, the user device, when scheduled to receive data, continues to receive data from the source cell. At the scheduled handover time, the user device discontinues receiving data or control information from the source cell and begins receiving data and/or control information from the target cell. From a PHY (physical layer) /MAC (media access control layer) perspective, this may suggest that a data interruption time during the handover process is limited to in principle only to a fraction of a transmission time interval (TTI). However, to fully benefit from the synchronous RACH-less handover, proper buffer management and flow switching between the source cell and target cell should be performed. Therefore, various example implementations are described herein relating to data buffer management in order to decrease data interruption time during a handover.

    [0025] According to an example implementation, a handover for a user device from a source cell to target cell may be caused or triggered when a source cell (associated with a source BS) receives a measurement report from the user device that indicates a signal from a target cell has a higher signal strength or signal quality than a signal received from the source cell, as a very simple example.

    [0026] The source cell is the serving cell for the user device prior to the handover, and therefore also the cell having buffered downlink data for the user device, as well as the connection to the core network. The source cell receives the radio resource measurement (RRM) measurement report from the user device, triggering the handover process of the user device to the target cell. The source cell hereafter initiates the handover preparation phase, contacting the target cell, as well as agreeing with the target cell on the time of the handover (scheduled handover time, t1). Once the target cell has accepted the handover request, and the source cell and target cell have agreed on the scheduled handover time for the handover, the source cell transmits a handover command to the user device. Thus, a handover decision is made by the source cell and/or target cell. For example, a source cell may make a decision to perform a handover when the source cell receives a handover confirmation from the target cell that confirms or acknowledges that the target cell has accepted the handover request for the user device. A time of the handover decision may be referred to as time t0, and the subsequent scheduled handover time may be referred to as time t1. According to an example implementation, a handover command sent from the source cell to the user device includes the scheduled handover time (t1).

    [0027] Up until the scheduled handover time (t1) (e.g., including the time between the time of the handover decision (t0) and the scheduled handover time (t1)), the user device continues to receive scheduled data from the source cell. At the scheduled handover time (t1), the user device immediately starts to listen to the target cell, e.g., the user device begins receiving and decoding data from the target cell. However, for the target cell to be able to schedule data to the user device, the target cell needs to have buffered data for downlink transmission to the user device.

    [0028] For cases with intra-site handovers, i.e., handover between a source cell and a target cell on the same BS, at least in some cases, it may be assumed that there is one downlink transmit buffer for the user device in the BS, which may be accessible for both the source cell and target cell (although such details are typically BS implementation specific). Thus, for an intra-site handover, at the time of the handover, the target cell can immediately start to transmit data from the user's downlink transmit buffer in the BS. However, for inter-site handovers (e.g., source cell provided by a source BS, and a target cell provided by a target BS that is different from the source BS) and/or a distributed radio access network (D-RAN) architecture (e.g., which includes many BSs), the buffer management becomes more complicated. Here, for example, at least some of the buffered data in the source cell's BS (the source BS) should be transferred to the target cell, typically sent via the X2 interface 153 with a certain latency. The question is therefore at which point in time shall the source cell start to transfer buffered data to the target cell? And, how much buffered data should be kept in the source cell for transmission to the user device prior to the handover to make sure that the source cell data buffer for the user device does not run empty before the time of the handover?

    [0029] In an example implementation, the term "buffer" (or data buffer or transmit buffer) in a cell or BS may be used as a general term for user-specific (or user device-specific) data buffered in the cell/BS. For the specific case of LTE and/or 5G New Radio, data buffered in the BS/eNB may, for example, be at the radio link control/packet data control protocol (RLC/PDCP) layers, for example. In addition, data related to pending HARQ (Hybrid Automatic Repeat Request) retransmissions may also be buffered at the MAC (media access control) layer, i.e., on a HARQ stop-and-wait (SAW) channel.

    [0030] Thus, buffer management may include determining how much data stored in the data buffer at a source cell should be transmitted to the user device after the handover decision has been made and before the scheduled handover time, and how much of the data stored in the data buffer of the source cell for the user device should be forwarded to the target cell after the handover decision and before the scheduled handover time. For example, if too little data are forwarded from the source cell to the target cell prior to the handover, there may be remaining buffered data in the source cell at the time of the handover, which afterwards should be transferred to the target cell, i.e., subject to the X2 latency (which may increase data interruption at the user device after handover). On the other hand, if too much data are forwarded from the source cell to the target cell prior to the handover, the data buffers at the source cell for the user device may become empty prior to handover, and, thus, preventing the source cell from continuing to send data to the user device, e.g., between the time (t0) that a handover decision is made and the scheduled time (t1) of the handover. In such a case, for example, running the data buffers empty at the source cell may, in some cases, cause a service or data interruption for the user device, but prior to the handover in this case. Also, prematurely (prior to handover) draining the data buffers at the source cell may prevent the source cell from making use of available downlink resources or bandwidth of the source cell-user device channel, which may be an inefficient use of the source cell resources, at least in some cases. The X2 latency may vary from sub-1ms to tens of ms, depending on the backhaul implementation. Therefore, according to an example implementation, it may be desirable to manage the data buffers at a cell or BS (e.g., to manage the data buffers at the source cell/BS and/or the target cell/BS) to reduce a possible data interruption at the user device when a handover is being performed for the user device from a source cell to a target cell.

    [0031] FIG. 2 is a block diagram illustrating operation of a cell or base station (e.g., source cell or source base station) according to an example implementation. Operation 210 includes making a decision to perform a handover of a user device from a source cell to a target cell at a scheduled handover time. Operation 220 includes determining, by a source base station associated with the source cell, an estimated data rate for transmitting data from the source cell to the user device between a time of the handover decision and the scheduled handover time. Operation 230 includes determining, based on the estimated data rate and a difference between the time of the handover decision and the scheduled handover time, a portion of data stored in a data buffer associated with the source cell for the user device to be forwarded from the source cell to the target cell before the scheduled handover time. And, operation 240 includes forwarding, from the source cell to the target cell before the scheduled handover time, the portion of data stored in the data buffer for the user device.

    [0032] According to an example implementation of the method of FIG. 2, the making a decision to perform a handover may include: receiving a measurement report that reports a signal value for at least the target cell; communicating, by the source base station associated with the source cell with a target base station associated with the target cell, to make a decision to perform a handover of the user device from the source cell to the target cell and to determine the scheduled handover time for the handover; and sending, to the user device, a handover command indicating the scheduled handover time for the user device to perform the handover from the source cell to the target cell.

    [0033] According to an example implementation of the method of FIG. 2, the determining the estimated data rate is performed based on at least one of the following: channel quality information (e.g., CQI) received by the source cell from the user device; stored information related to previous handovers between the source cell and the target cell; a number of available resources or resource blocks that are available to be used by to transmit data from the source cell to the user device; a quality of service (QoS) or priority of transmissions from the source cell to the user device; and a guaranteed bit rate requirement for the user device.

    [0034] According to an example implementation of the method of FIG. 2, the determining a portion of data stored in a data buffer associated with the source cell to be forwarded to the target cell may include determining a first amount of data (M1) to be forwarded to the target cell by performing the following: determining, based on the estimated data rate, a second amount of data (M2) that can be transmitted from the source cell to the user device between the time of the handover decision and the scheduled handover time; and determining the first amount of data (M1) to be forwarded from the source cell to the target cell as an amount of data stored in the data buffer in excess of the second amount of data (M2).

    [0035] According to an example implementation of the method of FIG. 2, the determining the second amount of data (M2) is performed according to the following: M2 = (t1 - t0)*R, where t0 is the time of the handover decision, t1 is the scheduled handover time, R is the estimated data rate, and M2 is the second amount of data that can be transmitted by the source cell to the user device before the scheduled handover time.

    [0036] According to an example implementation of the method of FIG. 2, the method may further include: transmitting, from the source cell to the user device, the second amount of data (M2) between the time of the handover decision and the scheduled handover time.

    [0037] According to an example implementation of the method of FIG. 2, the determining the first amount of data (M1) to be forwarded to the target cell is performed according to the following: M1 = T-M2, where T is the total amount of data stored in the data buffer associated with the source cell for the user device, and M2 is the second amount of data that can be transmitted by the source cell to the user device before the scheduled handover time.

    [0038] According to an example implementation of the method of FIG. 2, beginning at or after the time of the handover decision (t0), the first amount of data (M1) stored in the data buffer is forwarded from the source cell to the target cell.

    [0039] According to an example implementation of the method of FIG. 2, the method may further include: selecting, by the source base station, at least some of the data stored in the data buffer associated with the source cell to be forwarded from the source cell to the target cell, wherein the selected data to be forwarded to the target cell has a latency deadline that is after (t1+delta_t), where t1 is the scheduled handover time and delta_t is the estimated time required for the target cell to transmit the selected data to the user device.

    [0040] According to an example implementation of the method of FIG. 2, the handover of the user device is a synchronous random access (RACH)-less handover.

    [0041] According to an example implementation of the method of FIG. 2, the method further includes notifying, from the source cell to the target cell, a status of a hybrid ARQ (HARQ) retransmission buffer associated with the source cell for the user device; and forwarding, from the source cell to the target cell, data in the HARQ retransmission buffer associated with the source cell after the handover of the user device from the source cell to the target cell.

    [0042] FIG. 3 is a diagram illustrating operation of a wireless system according to an example implementation. In FIG. 3, a handover of user device 132 may be performed from source cell 136 to target cell 146.

    Operation 1: At or near time t0 (e.g., a time when a handover decision is made), when the source cell and target cell have agreed on the time (t1) of the synchronous RACH or RACH-less handover, the source cell 136 performs the following actions, e.g., of one or more of (or even all of) operations 2-10.:

    Operation 2: A handover command is sent from the source cell 136 to the user device 132 (including information of time t1, which is the scheduled handover time).

    Operation 3: At or before time t0, a handover decision, admission control and a handover time (t1) are determined or negotiated between the source cell 136 and target cell 146. For example, source cell 136 (e.g., based on a handover confirmation received from target cell 146 confirming that target cell 146 will accept the requested handover of the user device 132 to target cell 146) may make a decision to handover the user device 132 to the target cell 146.

    Operation 4: The source cell 136 sends a handover command to the user device 132 including the scheduled handover time (t1).

    Operation 5: The source cell estimates the guaranteed amount of data (M) and the downlink transmission data rate, R, that it can provide or guarantee for the user device 132, e.g., before the time t1 or for the time between time t0 and time t1. The source cell 136 may estimate the downlink transmission data rate, R, that it can provide or guarantee for the user device 132 for which a handover is being performed from the source cell 136 to the target cell 146. The source cell may estimate or determine this guaranteed data rate (R) based on, e.g., CQI (channel quality information) reports from the user device 132, stored statistics related to previous handover events between source cell 136 and the target cell 146, user device capability, as well as knowledge of how many radio resources (e.g., physical resource blocks or PRBs) the source cell can provide, reserve or guarantee to use for scheduling the user device (e.g., which may include or take into account quality of service (QoS) prioritization estimations, cell load condition and other user device requirements). For example, the source cell 136 may determine the radio resources (e.g., PRBs) that the source cell 136 can guarantee to use for scheduling of the user device may take into account or may be based on the related QoS attributes for the users/user devices that the source cell 136 is currently serving. If the data flow for the user device is associated with a Guaranteed BitRate (GBR) requirement as one of the QoS parameters, the source cell may, for example, assume R (the data rate)=GBR.

    Operation 6: On or after time t0, the source cell 136 forwards the data that is stored in the data buffers of the source cell 136 for the user device 132 that is in excess of M to the target cell 146. The source cell 136 may know or determine (or have information indicating) that it can on average schedule a data amount of M=(t1-t0)xR to the user device 132 prior to the handover time at t1, or during the time period between t0 and t1.

    Operation 7: The target cell 146 receives and buffers the received data/service data units (SDUs).

    Operation 8: the user device 132 receives the M amount of data from the source cell, e.g., at a data rate R until the scheduled handover time t1.

    Operation 9: A handover of the user device 132 is performed to target cell 146 at time t1. The source cell 136 stops scheduling and transmitting data to the user device 132 at or after the handover time t1. The user device 132 now (at time t1 or after t1) begins listening to target cell 146 (e.g., user device 132 begins receiving and decoding data and/or control information from the target cell 146), and user device now (at or after time t1) ceases listening (e.g., receiving and/or decoding data and/or control information from source cell 136) to source cell 136.

    Operation 10: At or after time t1, the target cell 146 begins scheduling and transmitting data to the user device 132.



    [0043] According to an example implementation, e.g., based on operations 5-10, the data buffer at the source cell 136 for user device 132 may be empty (or nearly empty or very close to empty) at the time of the handover (t1). The target cell 146 will have data (e.g., data in excess of M) to immediately begin scheduling to the user device 132 at or just after the time of the handover (time t1), e.g., which may, for example, result in virtually zero (or at least a reduced) data interruption time for the handover of user device 132, for example.

    [0044] According to an example implementation, at or after time t1, the source cell 136 may also inform the target cell 146 with the status (e.g., presence or not of HARQ retransmission data awaiting retransmission, and/or indication of an amount/quantity of retransmission data in the buffer) of the HARQ Transmission Buffer of the source cell 136 since there may be some pending data in HARQ retransmission buffer of the source cell for the user device 132 that is awaiting retransmission to the user device 132. Since the user device 132 at time t1 switches to target cell 146, user device 132 no longer listens to (e.g., no longer receives and decodes data from) source cell 136 and hence any outstanding packets in HARQ retransmission buffer of source cell should be forwarded to the target cell 146, and then forwarded by the target cell to the user device after the target cell 146 receives the status of HARQ retransmission buffer from the source cell 136. Thus, for example, after time t1 (time of handover), the target cell 146 may receive a status of the HARQ retransmission buffer of the source cell 136 (e.g., indicating presence or an amount of HARQ retransmission data at source cell 136 for the user device 132), and then receive the HARQ retransmission data that is forwarded from the source cell 136. The target cell 146 may then begin retransmitting such HARQ retransmission data to the user device 132.

    [0045] In another example implementation, the source cell 136 may be configured to report the value of M, or R and to and t1, to the core network (CN (e.g., such as to a serving gateway), such that the core network may ensure that no more data than the source cell 136 can transmit before the time (t1) of the handover are forwarded to the source cell 136, e.g., between the handover decision and the scheduled handover time. The CN may also use this information to forward data in excess of M to the target cell 146.

    [0046] In yet another example implementation, the decisions of when or how to start forwarding data from the source cell 136 to the target cell 146 may be based on QoS latency parameters for the users' data flow (e.g., based on a protocol data unit (PDU) discard timer information, or L2 latency requirements). For this example implementation, the source cell1 36 should start to forward all buffered data with a latency deadline that is longer than t1+delta_t, where delta_t is the estimated time it takes for the target cell 146 (once it receives any forwarded data from the source cell 136) to successfully transmit data in the downlink to the user device 132.

    [0047] The value of delta_t may either be a configurable network parameter, or delta_t may be provided (e.g., signalled) directly from the target cell 146 to the source cell 136.

    [0048] According to an example implementation, when the network (e.g., BSs or core network) decides on a time of the handover t1, the value of t1 may be set such that there is sufficient time for the user device processing times, X2 latencies, etc., such that t1-t0 is larger than those delays.

    [0049] Various example implementations may offer improved buffer management performance, and may assist in reducing downlink data interruption time for a user device that is subject to a synchronous inter-site handover.

    [0050] According to an example implementation, at least one processor and at least one memory including computer instructions, when executed by the at least one processor, cause the apparatus to: make a decision to perform a handover of a user device from a source cell to a target cell at a scheduled handover time; determine, by a source base station associated with the source cell, an estimated data rate for transmitting data from the source cell to the user device between a time of the handover decision and the scheduled handover time; determine, based on the estimated data rate and a difference between the time of the handover decision and the scheduled handover time, a portion of data stored in a data buffer associated with the source cell for the user device to be forwarded from the source cell to the target cell before the scheduled handover time; and forward, from the source cell to the target cell before the scheduled handover time, the portion of data stored in the data buffer for the user device.

    [0051] According to an example implementation of the apparatus, causing the apparatus to make a decision to perform a handover causes the apparatus to: receive a measurement report that reports a signal value for at least the target cell; communicate, by the source base station associated with the source cell with a target base station associated with the target cell, to make a decision to perform a handover of the user device from the source cell to the target cell and to determine the scheduled handover time for the handover; and send, to the user device, a handover command indicating the scheduled handover time for the user device to perform the handover from the source cell to the target cell.

    [0052] According to an example implementation of the apparatus, causing the apparatus to determine the estimated data rate is performed based on at least one of the following: channel quality information received by the source cell from the user device; stored information related to previous handovers between the source cell and the target cell; a number of available resources or resource blocks that are available to be used by to transmit data from the source cell to the user device; a quality of service (QoS) or priority of transmissions from the source cell to the user device; and a guaranteed bit rate requirement for the user device.

    [0053] According to an example implementation of the apparatus, causing the apparatus to determine a portion of data stored in a data buffer associated with the source cell to be forwarded to the target cell includes causing the apparatus to determine a first amount of data (M1) to be forwarded to the target cell by causing the apparatus to perform the following: determine, based on the estimated data rate, a second amount of data (M2) that can be transmitted from the source cell to the user device between the time of the handover decision and the scheduled handover time; and determine the first amount of data (M1) to be forwarded from the source cell to the target cell as an amount of data stored in the data buffer in excess of the second amount of data (M2).

    [0054] According to an example implementation of the apparatus, causing the apparatus to determine the second amount of data (M2) is performed according to the following: M2 = (t1 - t0)*R, where t0 is the time of the handover decision, t1 is the scheduled handover time, R is the estimated data rate, and M2 is the second amount of data that can be transmitted by the source cell to the user device before the scheduled handover time.

    [0055] According to an example implementation of the apparatus, the apparatus further causes the apparatus to: transmit, from the source cell to the user device, the second amount of data (M2) between the time of the handover decision and the scheduled handover time.

    [0056] According to an example implementation of the apparatus, causing the apparatus to determine the first amount of data (M1) to be forwarded to the target cell is performed according to the following: M1 = T-M2, where T is the total amount of data stored in the data buffer associated with the source cell for the user device, and M2 is the second amount of data that can be transmitted by the source cell to the user device before the scheduled handover time.

    [0057] According to an example implementation of the apparatus, beginning at or after the time of the handover decision, the first amount of data (M1) stored in the data buffer is forwarded from the source cell to the target cell.

    [0058] According to an example implementation of the apparatus, and further causing the apparatus to: select, by the source base station, at least some of the data stored in the data buffer associated with the source cell to be forwarded from the source cell to the target cell, wherein the selected data to be forwarded to the target cell has a latency deadline that is after (t1+delta_t), where t1 is the scheduled handover time and delta_t is the estimated time required for the target cell to transmit the selected data to the user device.

    [0059] According to an example implementation of the apparatus, the handover of the user device is a synchronous random access (RACH)-less handover.

    [0060] According to an example implementation of the apparatus, and further causing the apparatus to: notify, from the source cell to the target cell, a status of a hybrid ARQ (HARQ) retransmission buffer associated with the source cell for the user device; and forward, from the source cell to the target cell, data in the HARQ retransmission buffer associated with the source cell after the handover of the user device from the source cell to the target cell.

    [0061] According to an example implementation, a non-transitory computer-readable storage medium includes instructions stored thereon that, when executed by at least one processor, are configured to cause a computing system to at least: make a decision to perform a handover of a user device from a source cell to a target cell at a scheduled handover time; determine, by a source base station associated with the source cell, an estimated data rate for transmitting data from the source cell to the user device between a time of the handover decision and the scheduled handover time; determine, based on the estimated data rate and a difference between the time of the handover decision and the scheduled handover time, a portion of data stored in a data buffer associated with the source cell for the user device to be forwarded from the source cell to the target cell before the scheduled handover time; and forward, from the source cell to the target cell before the scheduled handover time, the portion of data stored in the data buffer for the user device.

    [0062] FIG. 4 is a block diagram of a wireless station (e.g., AP or user device) 400 according to an example implementation. The wireless station 400 may include, for example, one or two RF (radio frequency) or wireless transceivers 402A, 402B, where each wireless transceiver includes a transmitter to transmit signals and a receiver to receive signals. The wireless station also includes a processor or control unit/entity (controller) 404 to execute instructions or software and control transmission and receptions of signals, and a memory 406 to store data and/or instructions.

    [0063] Processor 404 may also make decisions or determinations, generate frames, packets or messages for transmission, decode received frames or messages for further processing, and other tasks or functions described herein. Processor 404, which may be a baseband processor, for example, may generate messages, packets, frames or other signals for transmission via wireless transceiver 402 (402A or 402B). Processor 404 may control transmission of signals or messages over a wireless network, and may control the reception of signals or messages, etc., via a wireless network (e.g., after being down-converted by wireless transceiver 402, for example). Processor 404 may be programmable and capable of executing software or other instructions stored in memory or on other computer media to perform the various tasks and functions described above, such as one or more of the tasks or methods described above. Processor 404 may be (or may include), for example, hardware, programmable logic, a programmable processor that executes software or firmware, and/or any combination of these. Using other terminology, processor 404 and transceiver 402 together may be considered as a wireless transmitter/receiver system, for example.

    [0064] In addition, referring to FIG. 4, a controller (or processor) 408 may execute software and instructions, and may provide overall control for the station 400, and may provide control for other systems not shown in FIG. 4, such as controlling input/output devices (e.g., display, keypad), and/or may execute software for one or more applications that may be provided on wireless station 400, such as, for example, an email program, audio/video applications, a word processor, a Voice over IP application, or other application or software.

    [0065] In addition, a storage medium may be provided that includes stored instructions, which when executed by a controller or processor may result in the processor 404, or other controller or processor, performing one or more of the functions or tasks described above.

    [0066] According to another example implementation, RF or wireless transceiver(s) 402A/402B may receive signals or data and/or transmit or send signals or data. Processor 404 (and possibly transceivers 402A/402B) may control the RF or wireless transceiver 402A or 402B to receive, send, broadcast or transmit signals or data.

    [0067] The embodiments are not, however, restricted to the system that is given as an example, but a person skilled in the art may apply the solution to other communication systems. Another example of a suitable communications system is the 5G concept. It is assumed that network architecture in 5G will be quite similar to that of the LTE-advanced. 5G is likely to use multiple input - multiple output (MIMO) antennas, many more base stations or nodes than the LTE (a so-called small cell concept), including macro sites operating in cooperation with smaller stations and perhaps also employing a variety of radio technologies for better coverage and enhanced data rates.

    [0068] It should be appreciated that future networks will most probably utilise network functions virtualization (NFV) which is a network architecture concept that proposes virtualizing network node functions into "building blocks" or entities that may be operationally connected or linked together to provide services. A virtualized network function (VNF) may comprise one or more virtual machines running computer program codes using standard or general type servers instead of customized hardware. Cloud computing or data storage may also be utilized. In radio communications this may mean node operations may be carried out, at least partly, in a server, host or node operationally coupled to a remote radio head. It is also possible that node operations will be distributed among a plurality of servers, nodes or hosts. It should also be understood that the distribution of labour between core network operations and base station operations may differ from that of the LTE or even be non-existent.

    [0069] Implementations of the various techniques described herein may be implemented in digital electronic circuitry, or in computer hardware, firmware, software, or in combinations of them. Implementations may be implemented as a computer program product, i.e., a computer program tangibly embodied in an information carrier, e.g., in a machine-readable storage device or in a propagated signal, for execution by, or to control the operation of, a data processing apparatus, e.g., a programmable processor, a computer, or multiple computers. Implementations may also be provided on a computer readable medium or computer readable storage medium, which may be a non-transitory medium. Implementations of the various techniques may also include implementations provided via transitory signals or media, and/or programs and/or software implementations that are downloadable via the Internet or other network(s), either wired networks and/or wireless networks. In addition, implementations may be provided via machine type communications (MTC), and also via an Internet of Things (IOT).

    [0070] The computer program may be in source code form, object code form, or in some intermediate form, and it may be stored in some sort of carrier, distribution medium, or computer readable medium, which may be any entity or device capable of carrying the program. Such carriers include a record medium, computer memory, read-only memory, photoelectrical and/or electrical carrier signal, telecommunications signal, and software distribution package, for example. Depending on the processing power needed, the computer program may be executed in a single electronic digital computer or it may be distributed amongst a number of computers.

    [0071] Furthermore, implementations of the various techniques described herein may use a cyber-physical system (CPS) (a system of collaborating computational elements controlling physical entities). CPS may enable the implementation and exploitation of massive amounts of interconnected ICT devices (sensors, actuators, processors microcontrollers,...) embedded in physical objects at different locations. Mobile cyber physical systems, in which the physical system in question has inherent mobility, are a subcategory of cyber-physical systems. Examples of mobile physical systems include mobile robotics and electronics transported by humans or animals. The rise in popularity of smartphones has increased interest in the area of mobile cyber-physical systems. Therefore, various implementations of techniques described herein may be provided via one or more of these technologies.

    [0072] A computer program, such as the computer program(s) described above, can be written in any form of programming language, including compiled or interpreted languages, and can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit or part of it suitable for use in a computing environment. A computer program can be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a communication network.

    [0073] Method steps may be performed by one or more programmable processors executing a computer program or computer program portions to perform functions by operating on input data and generating output. Method steps also may be performed by, and an apparatus may be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application-specific integrated circuit).

    [0074] Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer, chip or chipset. Generally, a processor will receive instructions and data from a read-only memory or a random access memory or both. Elements of a computer may include at least one processor for executing instructions and one or more memory devices for storing instructions and data. Generally, a computer also may include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto-optical disks, or optical disks. Information carriers suitable for embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks. The processor and the memory may be supplemented by, or incorporated in, special purpose logic circuitry.

    [0075] To provide for interaction with a user, implementations may be implemented on a computer having a display device, e.g., a cathode ray tube (CRT) or liquid crystal display (LCD) monitor, for displaying information to the user and a user interface, such as a keyboard and a pointing device, e.g., a mouse or a trackball, by which the user can provide input to the computer. Other kinds of devices can be used to provide for interaction with a user as well; for example, feedback provided to the user can be any form of sensory feedback, e.g., visual feedback, auditory feedback, or tactile feedback; and input from the user can be received in any form, including acoustic, speech, or tactile input.

    [0076] Implementations may be implemented in a computing system that includes a back-end component, e.g., as a data server, or that includes a middleware component, e.g., an application server, or that includes a front-end component, e.g., a client computer having a graphical user interface or a Web browser through which a user can interact with an implementation, or any combination of such back-end, middleware, or front-end components. Components may be interconnected by any form or medium of digital data communication, e.g., a communication network. Examples of communication networks include a local area network (LAN) and a wide area network (WAN), e.g., the Internet.

    [0077] The invention is defined by the claims.


    Claims

    1. A method, performed by a source base station associated with a source cell, comprising:

    making (210) a decision to perform a handover of a user device from the source cell to a target cell at a scheduled handover time;

    determining (220) an estimated data rate for transmitting data from the source cell to the user device between a time of the handover decision and the scheduled handover time;

    determining (230), based on the estimated data rate and a difference between the time of the handover decision and the scheduled handover time, a portion of data stored in a data buffer associated with the source cell for the user device to be forwarded from the source cell to the target cell before the scheduled handover time; and

    forwarding (240), from the source cell to the target cell before the scheduled handover time, the portion of data stored in the data buffer for the user device.


     
    2. The method of claim 1 wherein the making a decision to perform a handover comprises:

    receiving a measurement report that reports a signal value for at least the target cell;

    communicating, by the source base station associated with the source cell with a target base station associated with the target cell, to make a decision to perform a handover of the user device from the source cell to the target cell and to determine the scheduled handover time for the handover; and

    sending, to the user device, a handover command indicating the scheduled handover time for the user device to perform the handover from the source cell to the target cell.


     
    3. The method of claim 1 wherein the determining the estimated data rate is performed based on at least one of the following:

    channel quality information received by the source cell from the user device;

    stored information related to previous handovers between the source cell and the target cell;

    a number of available resources or resource blocks that are available to be used by to transmit data from the source cell to the user device;

    a quality of service, QoS, or priority of transmissions from the source cell to the user device; and

    a guaranteed bit rate requirement for the user device.


     
    4. The method of claim 1 wherein the determining a portion of data stored in a data buffer associated with the source cell to be forwarded to the target cell comprises determining a first amount of data (M1) to be forwarded to the target cell by performing the following:

    determining, based on the estimated data rate, a second amount of data (M2) that can be transmitted from the source cell to the user device between the time of the handover decision and the scheduled handover time; and

    determining the first amount of data (M1) to be forwarded from the source cell to the target cell as an amount of data stored in the data buffer in excess of the second amount of data (M2).


     
    5. The method of claim 4 wherein the determining the second amount of data (M2) is performed according to the following:
    M2 = (t1 - t0)*R, where t0 is the time of the handover decision, t1 is the scheduled handover time, R is the estimated data rate, and M2 is the second amount of data that can be transmitted by the source cell to the user device before the scheduled handover time.
     
    6. The method of claim 4 and further comprising:
    transmitting, from the source cell to the user device, the second amount of data (M2) between the time of the handover decision and the scheduled handover time.
     
    7. The method of claim 4 wherein the determining the first amount of data (M1) to be forwarded to the target cell is performed according to the following:
    M1 = T-M2, where T is the total amount of data stored in the data buffer associated with the source cell for the user device, and M2 is the second amount of data that can be transmitted by the source cell to the user device before the scheduled handover time.
     
    8. The method of claim 4 wherein, beginning at or after the time of the handover decision, the first amount of data (M1) stored in the data buffer is forwarded from the source cell to the target cell.
     
    9. The method of claim 4 and further comprising:
    selecting, by the source base station, at least some of the data stored in the data buffer associated with the source cell to be forwarded from the source cell to the target cell, wherein the selected data to be forwarded to the target cell has a latency deadline that is after (t1+delta_t), where t1 is the scheduled handover time and delta_t is the estimated time required for the target cell to transmit the selected data to the user device.
     
    10. The method of claim 1 wherein the handover of the user device is a synchronous random access, RACH, -less handover.
     
    11. The method of claim 1 and further comprising:

    notifying, from the source cell to the target cell, a status of a hybrid ARQ, HARQ, retransmission buffer associated with the source cell for the user device; and

    forwarding, from the source cell to the target cell, data in the HARQ retransmission buffer associated with the source cell after the handover of the user device from the source cell to the target cell.


     
    12. A source base station associated with a source cell comprising at least one processor and at least one memory including computer instructions, which when executed by the at least one processor, cause the source base station associated with the source cell to:

    make a decision to perform a handover of a user device from a source cell to a target cell at a scheduled handover time;

    determine, by a source base station associated with the source cell, an estimated data rate for transmitting data from the source cell to the user device between a time of the handover decision and the scheduled handover time;

    determine, based on the estimated data rate and a difference between the time of the handover decision and the scheduled handover time, a portion of data stored in a data buffer associated with the source cell for the user device to be forwarded from the source cell to the target cell before the scheduled handover time; and

    forward, from the source cell to the target cell before the scheduled handover time, the portion of data stored in the data buffer for the user device.


     
    13. The source base station associated with the source cell of claim 12 wherein causing the source base station associated with the source cell to determine the estimated data rate is performed based on at least one of the following:

    channel quality information received by the source cell from the user device;

    stored information related to previous handovers between the source cell and the target cell;

    a number of available resources or resource blocks that are available to be used by to transmit data from the source cell to the user device;

    a quality of service, QoS, or priority of transmissions from the source cell to the user device; and

    a guaranteed bit rate requirement for the user device.


     
    14. The source base station associated with the source cell of claim 12 wherein causing the source base station associated with the source cell to determine a portion of data stored in a data buffer associated with the source cell to be forwarded to the target cell comprises causing the source base station associated with the source cell to determine a first amount of data (M1) to be forwarded to the target cell by causing the source base station associated with the source cell to perform the following:

    determine, based on the estimated data rate, a second amount of data (M2) that can be transmitted from the source cell to the user device between the time of the handover decision and the scheduled handover time; and

    determine the first amount of data (M1) to be forwarded from the source cell to the target cell as an amount of data stored in the data buffer in excess of the second amount of data (M2).


     
    15. A non-transitory computer-readable storage medium comprising instructions stored thereon that, when executed by at least one processor of a source base station associated with a source cell, are configured to cause the source base station associated with the source cell to at least:

    make a decision to perform a handover of a user device from the source cell to a target cell at a scheduled handover time;

    determine, by the source base station associated with the source cell, an estimated data rate for transmitting data from the source cell to the user device between a time of the handover decision and the scheduled handover time;

    determine, based on the estimated data rate and a difference between the time of the handover decision and the scheduled handover time, a portion of data stored in a data buffer associated with the source cell for the user device to be forwarded from the source cell to the target cell before the scheduled handover time; and

    forward, from the source cell to the target cell before the scheduled handover time, the portion of data stored in the data buffer for the user device.


     


    Ansprüche

    1. Verfahren, das durch eine einer Quellzelle zugeordneten Quellbasisstation durchgeführt wird, umfassend:

    Treffen (210) einer Entscheidung, eine Übergabe eines Benutzergerätes von der Quellzelle an eine Zielzelle zu einem geplanten Übergabezeitpunkt durchzuführen;

    Bestimmen (220) einer geschätzten Datenrate für die Übertragung von Daten von der Quellzelle zu dem Benutzergerät zwischen einem Zeitpunkt der Übergabeentscheidung und dem geplanten Übergabezeitpunkt;

    Bestimmen (230), basierend auf der geschätzten Datenrate und einer Differenz zwischen dem Zeitpunkt der Übergabeentscheidung und dem geplanten Übergabezeitpunkt, eines Teils der Daten, die in einem Datenpuffer gespeichert sind, der der Quellzelle für das Benutzergerät zugeordnet ist, um vor dem geplanten Übergabezeitpunkt von der Quellzelle zu der Zielzelle weitergeleitet zu werden; und

    Weiterleiten (240) des Teils der Daten, die in dem Datenpuffer für das Benutzergerät gespeichert sind, von der Quellzelle zu der Zielzelle vor dem geplanten Übergabezeitpunkt.


     
    2. Verfahren nach Anspruch 1, wobei das Treffen einer Entscheidung zum Durchführen einer Übergabe umfasst:

    Empfangen eines Messberichts, der zumindest für die Zielzelle einen Signalwert berichtet;

    Kommunizieren, durch die der Quellenzelle zugeordnete Quellbasisstation mit einer der Zielzelle zugeordneten Zielbasisstation, um eine Entscheidung zu treffen, eine Übergabe des Benutzergerätes von der Quellenzelle zu der Zielzelle durchzuführen und den geplanten Übergabezeitpunkt für die Übergabe zu bestimmen; und

    Senden eines Übergabebefehls an das Benutzergerät, der den geplanten Übergabezeitpunkt angibt, zu dem das Benutzergerät die Übergabe von der Quellzelle zu der Zielzelle durchführen soll.


     
    3. Verfahren nach Anspruch 1, wobei das Bestimmen der geschätzten Datenrate basierend auf Kanalqualitätsinformationen, die von der Quellzelle vom Benutzergerät empfangen werden;
    gespeicherten Informationen, die sich auf frühere Übergaben zwischen der Quellzelle und der Zielzelle beziehen;
    einer Anzahl verfügbarer Ressourcen oder Ressourcenblöcke, die für die Übertragung von Daten von der Quellzelle zu dem Benutzergerät verwendet werden können;
    einer Dienstgüte, QoS oder Priorität der Übertragungen von der Quellzelle zu dem Benutzergerät; und
    eine garantierte Bitratenanforderung für das Benutzergerät Durchgeführt werden.
     
    4. Verfahren nach Anspruch 1, wobei das Bestimmen eines Teils der Daten, die in einem der Quellzelle zugeordneten Datenpuffer gespeichert sind und zu der Zielzelle weitergeleitet werden sollen, das Bestimmen einer ersten Datenmenge (M1) umfasst, die zu der Zielzelle weitergeleitet werden soll, indem Folgendes durchgeführt wird:

    Bestimmen, basierend auf der geschätzten Datenrate, einer zweiten Datenmenge (M2), die zwischen dem Zeitpunkt der Übergabeentscheidung und dem geplanten Übergabezeitpunkt von der Quellzelle an das Benutzergerät übertragen werden kann; und

    Bestimmen der ersten Datenmenge (M1), die von der Quellzelle zu der Zielzelle als eine Datenmenge weitergeleitet werden soll, die im Datenpuffer gespeichert ist und die zweite Datenmenge (M2) übertrifft.


     
    5. Verfahren nach Anspruch 4, wobei das Bestimmen der zweiten Datenmenge (M2) gemäß dem Folgenden durchgeführt wird:
    M2 = (t1 - t0)*R, wobei t0 der Zeitpunkt der Übergabeentscheidung, t1 der geplante Übergabezeitpunkt, R die geschätzte Datenrate und M2 die zweite Datenmenge ist, die von der Quellzelle vor dem geplanten Übergabezeitpunkt an das Benutzergerät übertragen werden kann.
     
    6. Verfahren nach Anspruch 4, und ferner umfassend:
    Übertragen der zweiten Datenmenge (M2) von der Quellzelle zu dem Benutzergerät zwischen dem Zeitpunkt der Übergabeentscheidung und dem geplanten Übergabezeitpunkt.
     
    7. Verfahren nach Anspruch 4, wobei das Bestimmen der ersten Datenmenge (M1), die zu der Zielzelle weitergeleitet werden soll, gemäß dem Folgenden durchgeführt wird:
    M1 = T-M2, wobei T die Gesamtdatenmenge ist, die in dem der Quellzelle für das Benutzergerät zugeordneten Datenpuffer gespeichert ist, und M2 die zweite Datenmenge ist, die von der Quellzelle vor dem geplanten Übergabezeitpunkt an das Benutzergerät übertragen werden kann.
     
    8. Verfahren nach Anspruch 4, wobei, beginnend mit oder nach dem Übergabezeitpunkt, die erste im Datenpuffer gespeicherte Datenmenge (M1) von der Quellzelle zu der Zielzelle weitergeleitet wird.
     
    9. Verfahren nach Anspruch 4, und ferner umfassend:
    Auswählen, durch die Basisstation der Quelle, mindestens einiger der Daten, die in dem der Quellzelle zugeordneten Datenpuffer gespeichert sind, um von der Quellzelle zu der Zielzelle weitergeleitet zu werden, wobei die ausgewählten Daten, die zu der Zielzelle weitergeleitet werden sollen, einen Latenzzeitpunkt haben, der nach (t1 + delta_t) liegt, wobei t1 der geplante Übergabezeitpunkt ist und delta_t die geschätzte Zeit ist, die für die Zielzelle erforderlich ist, die ausgewählten Daten an das Benutzergerät zu übertragen.
     
    10. Verfahren nach Anspruch 1, wobei die Übergabe des Benutzergerätes eine synchrone Übergabe ohne wahlfreien Zugriff, (RACH-less handover), ist.
     
    11. Verfahren nach Anspruch 1, und ferner umfassend:

    Benachrichtigen von der Quellzelle zu der Zielzelle über den Status eines der Quellzelle zugeordneten hybriden ARQ-, HARQ-, Wiederübertragungspuffers für das Benutzergerät; und

    Weiterleiten von der Quellzelle zu der Zielzelle von Daten in dem der Quellzelle zugeordneten HARQ-Wiederübertragungspuffer nach der Übergabe des Benutzergeräts von der Quellzelle zu der Zielzelle.


     
    12. Quellbasisstation, die einer Quellzelle zugeordnet ist, umfassend mindestens einen Prozessor und mindestens einen Speicher mit Computerbefehlen, die, wenn sie durch den mindestens einen Prozessor ausgeführt werden, die der Quellzelle zugeordnete Quellbasisstation dazu veranlassen:

    eine Entscheidung zu treffen, eine Übergabe eines Benutzergerätes von einer Quellzelle an eine Zielzelle zu einem geplanten Übergabezeitpunkt durchzuführen;

    durch eine der Quellzelle zugeordnete Quellbasisstation eine geschätzte Datenrate für die Übertragung von Daten von der Quellzelle an das Benutzergerät zwischen einem Zeitpunkt der Übergabeentscheidung und dem geplanten Übergabezeitpunkt zu bestimmen;

    basierend auf der geschätzten Datenrate und einer Differenz zwischen dem Zeitpunkt der Übergabeentscheidung und dem geplanten Übergabezeitpunkt zu bestimmen, dass ein Teil der Daten, die in einem der Quellzelle für das Benutzergerät zugeordneten Datenpuffer gespeichert sind, vor dem geplanten Übergabezeitpunkt von der Quellzelle zu der Zielzelle weitergeleitet werden; und

    Weiterleiten des Teils der Daten, die in dem Datenpuffer für das Benutzergerät gespeichert ist, von der Quellzelle zu der Zielzelle vor dem geplanten Übergabezeitpunkt.


     
    13. Quellbasisstation, die der Quellzelle nach Anspruch 12 zugeordnet ist, wobei das Veranlassen der der Quellzelle zugeordneten Quellbasisstation, die geschätzte Datenrate zu bestimmen, dass basierend auf:

    Kanalqualitätsinformationen, die von der Quellzelle vom Benutzergerät empfangen werden;

    gespeicherten Informationen, die sich auf frühere Übergaben zwischen der Quellzelle und der Zielzelle beziehen;

    einer Anzahl verfügbarer Ressourcen oder Ressourcenblöcke, die für die Übertragung von Daten von der Quellzelle zu dem Benutzergerät verwendet werden können;

    einer Dienstgüte, QoS oder Priorität der Übertragungen von der Quellzelle zu dem Benutzergerät; und

    eine garantierte Bitratenanforderung für das Benutzergerät durchgeführt werden.


     
    14. Quellbasisstation, die der Quellzelle nach Anspruch 12 zugeordnet ist, wobei das Veranlassen der der Quellzelle zugeordneten Quellbasisstation, einen Teil der Daten zu bestimmen, die in einem der Quellzelle zugeordneten Datenpuffer gespeichert sind, zu der Zielzelle weitergeleitet zu werden, das Veranlassen der der Quellzelle zugeordneten Quellbasisstation umfasst, eine erste Datenmenge (M1) zu bestimmen, die zu der Zielzelle weitergeleitet werden soll, indem die der Quellzelle zugeordnete Quellbasisstation veranlasst wird, Folgendes durchzuführen:

    Bestimmen, basierend auf der geschätzten Datenrate, einer zweiten Datenmenge (M2), die zwischen dem Zeitpunkt der Übergabeentscheidung und dem geplanten Übergabezeitpunkt von der Quellzelle an das Benutzergerät übertragen werden kann; und

    Bestimmen, dass die ersten Datenmenge (M1), die von der Quellzelle zu der Zielzelle als eine Datenmenge weitergeleitet wird, die im Datenpuffer gespeichert ist und die zweite Datenmenge (M2) übertrifft.


     
    15. Nichtflüchtiges computerlesbares Speichermedium, umfassend darauf gespeicherte Befehle, die, wenn sie von mindestens einem Prozessor einer einer Quellzelle zugeordneten Quellbasisstation ausgeführt werden, dazu ausgelegt sind, mindestens die der Quellzelle zugeordnete Quellbasisstation dazu zu veranlassen:

    eine Entscheidung zu treffen, eine Übergabe eines Benutzergerätes von der Quellzelle an eine Zielzelle zu einem geplanten Übergabezeitpunkt durchzuführen;

    durch die der Quellzelle zugeordnete Quellbasisstation eine geschätzte Datenrate für die Übertragung von Daten von der Quellzelle an das Benutzergerät zwischen einem Zeitpunkt der Übergabeentscheidung und dem geplanten Übergabezeitpunkt zu bestimmen;

    basierend auf der geschätzten Datenrate und einer Differenz zwischen dem Zeitpunkt der Übergabeentscheidung und dem geplanten Übergabezeitpunkt zu bestimmen, dass ein Teil der Daten, die in einem Datenpuffer gespeichert sind, der der Quellzelle für das Benutzergerät zugeordnet ist, vor dem geplanten Übergabezeitpunkt von der Quellzelle zu der Zielzelle weitergeleitet werden; und

    Weiterleiten des Teils der Daten, die in dem Datenpuffer für das Benutzergerät gespeichert sind, vor dem geplanten Übergabezeitpunkt von der Quellzelle zu der Zielzelle.


     


    Revendications

    1. Procédé réalisé par une station de base source associée à une cellule source, comprenant :

    la prise (210) d'une décision, de réaliser un transfert d'un dispositif utilisateur depuis la cellule source à une cellule cible à un instant de transfert programmé ;

    la détermination (220) d'un débit de données estimé pour transmettre des données depuis la cellule source au dispositif utilisateur entre un instant de la décision de transfert et l'instant de transfert programmé ;

    la détermination (230), sur la base du débit de données estimé et d'une différence entre l'instant de la décision de transfert et l'instant de transfert programmé, d'une partie de données, stockées dans une mémoire tampon de données associée à la cellule source pour le dispositif utilisateur, destinée à être envoyée depuis la cellule source à la cellule cible avant l'instant de transfert programmé ; et

    l'envoi (240), depuis la cellule source à la cellule cible, avant l'instant de transfert programmé, de la partie de données, stockées dans la mémoire tampon de données pour le dispositif utilisateur.


     
    2. Procédé selon la revendication 1, dans lequel la prise d'une décision de réaliser un transfert comprend :

    la réception d'un rapport de mesure qui rapporte une valeur de signal pour au moins la cellule cible ;

    la communication, par la station de base source associée à la cellule source, avec une station de base cible associée à la cellule cible, pour prendre une décision de réaliser un transfert du dispositif utilisateur depuis la cellule source à la cellule cible et pour déterminer l'instant de transfert programmé pour le transfert ; et

    l'envoi, au dispositif utilisateur, d'une commande de transfert indiquant l'instant de transfert programmé pour le dispositif utilisateur pour réaliser le transfert depuis la cellule source à la cellule cible.


     
    3. Procédé selon la revendication 1, dans lequel la détermination du débit de données estimé est réalisée sur la base d'au moins un de ce qui suit :

    des informations de qualité de canal reçues par la cellule source à partir du dispositif utilisateur ;

    des informations stockées connexes à des transferts précédents entre la cellule source et la cellule cible ;

    un nombre de ressources disponibles ou blocs de ressource qui sont disponibles pour être utilisés pour transmettre des données depuis la cellule source au dispositif utilisateur ;

    une qualité de service, QoS, ou priorité de transmissions depuis la cellule source au dispositif utilisateur ; et

    un exigence de débit binaire garanti pour le dispositif utilisateur.


     
    4. Procédé selon la revendication 1, dans lequel la détermination d'une partie de données, stockées dans une mémoire tampon de données associée à la cellule source, destinée à être envoyée à la cellule cible comprend la détermination d'une première quantité de données (M1) destinée à être envoyée à la cellule cible en réalisant ce qui suit :

    la détermination, sur la base du débit de données estimé, d'une seconde quantité de données (M2) qui peut être transmise depuis la cellule source au dispositif utilisateur entre l'instant de la décision de transfert et l'instant de transfert programmé ; et

    la détermination de la première quantité de données (M1) destinée à être envoyée depuis la cellule source à la cellule cible comme étant une quantité de données, stockées dans la mémoire tampon de données, en excès de la seconde quantité de données (M2).


     
    5. Procédé selon la revendication 4, dans lequel la détermination de la seconde quantité de données (M2) est réalisée selon ce qui suit :
    M2 = (t1 - t0)*R, où t0 est l'instant de la décision de transfert, t1 est l'instant de transfert programmé, R est le débit de données estimé, et M2 est la seconde quantité de données qui peut être transmise par la cellule source au dispositif utilisateur avant l'instant de transfert programmé.
     
    6. Procédé selon la revendication 4, et comprenant en outre :
    la transmission, depuis la cellule source au dispositif utilisateur, de la seconde quantité de données (M2) entre l'instant de la décision de transfert et l'instant de transfert programmé.
     
    7. Procédé selon la revendication 4, dans lequel la détermination de la première quantité de données (M1) destinée à être envoyée à la cellule cible est réalisée selon ce qui suit :
    M1 = T-M2, où T est la quantité totale de données, stockées dans la mémoire tampon de données associée à la cellule source pour le dispositif utilisateur, et M2 est la seconde quantité de données qui peut être transmise par la cellule source au dispositif utilisateur avant l'instant de transfert programmé.
     
    8. Procédé selon la revendication 4, dans lequel, en commençant à ou après l'instant de la décision de transfert, la première quantité de données (M1), stockées dans la mémoire tampon de données, est envoyée depuis la cellule source à la cellule cible.
     
    9. Procédé selon la revendication 4, et comprenant en outre :
    la sélection, par la station de base source, d'au moins certaines des données, stockées dans la mémoire tampon de données associée à la cellule source, destinées à être envoyées depuis la cellule source à la cellule cible, dans lequel les données sélectionnées destinées à être envoyées à la cellule cible ont une échéance de latence qui est après (t1+delta_t), où t1 est l'instant de transfert programmé et delta_t est le temps estimé requis pour que la cellule cible transmette les données sélectionnées au dispositif utilisateur.
     
    10. Procédé selon la revendication 1, dans lequel le transfert du dispositif utilisateur est un transfert sans accès aléatoire synchrone, RACH.
     
    11. Procédé selon la revendication 1, et comprenant en outre :

    la notification, depuis la cellule source à la cellule cible, d'un état d'une mémoire tampon de retransmission ARQ hybride, HARQ, associée à la cellule source pour le dispositif utilisateur ; et

    la transmission, depuis la cellule source à la cellule cible, de données dans la mémoire tampon de retransmission HARQ associée à la cellule source après le transfert du dispositif utilisateur depuis la cellule source à la cellule cible.


     
    12. Station de base source associée à une cellule source, comprenant au moins un processeur et au moins une mémoire incluant des instructions d'ordinateur, qui, lorsqu'elles sont exécutées par l'au moins un processeur, font en sorte que la station de base source associée à la cellule source :

    prenne une décision de réaliser un transfert d'un dispositif utilisateur depuis une cellule source à une cellule cible à un instant de transfert programmé ;

    détermine, par une station de base source associée à la cellule source, un débit de données estimé pour transmettre des données depuis la cellule source au dispositif utilisateur entre un instant de la décision de transfert et l'instant de transfert programmé ;

    détermine, sur la base du débit de données estimé et d'une différence entre l'instant de la décision de transfert et l'instant de transfert programmé, une partie de données, stockées dans une mémoire tampon de données associée à la cellule source pour le dispositif utilisateur, destinée à être envoyée depuis la cellule source à la cellule cible avant l'instant de transfert programmé ; et

    envoie, depuis la cellule source à la cellule cible avant l'instant de transfert programmé, la partie de données, stockées dans la mémoire tampon de données pour le dispositif utilisateur.


     
    13. Station de base source associée à la cellule source selon la revendication 12, dans laquelle le fait de faire en sorte que la station de base source associée à la cellule source détermine le débit de données estimé est réalisé sur la base d'au moins un de ce qui suit :

    des informations de qualité de canal reçues par la cellule source à partir du dispositif utilisateur ;

    des informations stockées connexes à des transferts précédents entre la cellule source et la cellule cible ;

    un nombre de ressources disponibles ou blocs de ressource qui sont disponibles pour être utilisés par pour transmettre des données depuis la cellule source au dispositif utilisateur ;

    une qualité de service, QoS, ou priorité de transmissions depuis la cellule source au dispositif utilisateur ; et

    une exigence de débit binaire garanti pour le dispositif utilisateur.


     
    14. Station de base source associée à la cellule source selon la revendication 12, dans laquelle le fait de faire en sorte que la station de base source associée à la cellule source détermine une partie de données, stockées dans une mémoire tampon de données associée à la cellule source, destinée à être envoyée à la cellule cible comprend le fait de faire en sorte que la station de base source associée à la cellule source détermine une première quantité de données (M1) destinée à être envoyée à la cellule cible en faisant en sorte que la station de base source associée à la cellule source réalise ce qui suit :

    déterminer, sur la base du débit de données estimé, une seconde quantité de données (M2) qui peut être transmise depuis la cellule source au dispositif utilisateur entre l'instant de la décision de transfert et l'instant de transfert programmé ; et

    déterminer la première quantité de données (M1) destinée à être envoyée depuis la cellule source à la cellule cible comme étant une quantité de données, stockées dans la mémoire tampon de données, en excès de la seconde quantité de données (M2).


     
    15. Support de stockage non transitoire lisible par ordinateur comprenant des instructions, stockées sur celui-ci, qui, lorsqu'elles sont exécutées par au moins un processeur d'une station de base source associée à une cellule source, sont configurées pour faire en sorte que la station de base source associée à la cellule source au moins :

    prenne une décision de réaliser un transfert d'un dispositif utilisateur depuis la cellule source à une cellule cible à un instant de transfert programmé ;

    détermine, par la station de base source associée à la cellule source, un débit de données estimé pour transmettre des données depuis la cellule source au dispositif utilisateur entre un instant de la décision de transfert et l'instant de transfert programmé ;

    détermine, sur la base du débit de données estimé et d'une différence entre l'instant de la décision de transfert et l'instant de transfert programmé, une partie de données, stockées dans une mémoire tampon de données associée à la cellule source pour le dispositif utilisateur, destinée à être envoyée depuis la cellule source à la cellule cible avant l'instant de transfert programmé ; et

    envoie, depuis la cellule source à la cellule cible avant l'instant de transfert programmé, la partie de données, stockées dans la mémoire tampon de données pour le dispositif utilisateur.


     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description