Technical Field
[0001] The present invention relates to a core member, a gapped core, and a current sensor that includes the gapped core, and more specifically to a gapped core in which a core is partially or entirely molded using an electrically insulating resin material, and a current sensor that includes the gapped core.
Background Art
[0002] A current sensor is known that is obtained by forming a gap in a core main body, disposing a bus bar so as to pass through a bus bar opening formed on the inner circumference side of the core main body, and disposing a magnetic sensing element in the gap (see, for example, Patent Document 1). With the gapped core for the current sensor disclosed in Patent Document 1, the annular core main body is molded using an electrically insulating resin, and thereafter the core main body is cut together with the resin mold portion by using a dicing blade (disk-shaped grindstone) so as to leave the resin mold portion on the inner circumference side of the core main body, and thereby provide insulation between the core main body and the bus bar.
CITATION LIST
Patent Document
Summary of Invention
Technical Problem
[0005] In recent years, there is a demand for widening the gap width. However, because the dicing blade has a limited thickness, it was not possible to form a gap that is wider than the thickness of the dicing blade.
[0006] Under the circumstances, the inventors of the present invention attempted to form a gap by using two dicing blades. However, when the core main body is cut so as to leave the resin mold portion on the inner circumference side of the core main body in order to provide insulation between the core main body and the bus bar, as shown in FIG. 10, it is possible to cut a core main body 20, but in a resin mold portion 30 on the inner side of the core main body 20, only two slits 16 and 16 are formed. That is, a cut core piece 22 and a resin mold portion 32 that covers the core piece 22 remain connected to the core main body 20 at circled portions B, and there is a problem in that they cannot be removed.
[0007] It is an object of the present invention to provide a core member, a gapped core, and a current sensor in which the gap width of a core main body that is entirely or partially covered by a resin mold portion can be set as appropriate, and insulation between the core main body and a bus bar opening can be achieved.
Solution to Problem
[0008] A core member according to the present invention is a core member configured for a gapped core of a current sensor, said core member including a gap forming region configured for forming a gap therein having a width smaller than the width of the gap forming region, the core member including: an annular core main body having an opening in which a bus bar is disposed; a resin mold portion that entirely or partially covers the core main body, the resin mold portion covering at least a portion of the gap forming region; and a resin bridge portion whose both ends are continuously connected to the resin mold portion, and that is formed between an inner circumference side of the core main body and the bus bar opening, the resin bridge portion including a void that is formed at a position opposing the gap forming region, and extends through the core member in a thickness direction of the core member between the bus bar opening and the core main body or the resin mold portion, the resin bridge portion and the void having a length in a direction extending along the annular direction of the core main body greater than the width of the gap to be formed.
[0009] A gapped core according to the present invention includes a gap that is formed in the core member described above by cutting the core main body in the gap forming region so as to leave the resin bridge portion.
[0010] A gapped core according to the present invention includes: an annular core main body having a gap and an opening in which a bus bar is disposable, the annular core main body including a first end face opposing each other and forming the gap, the first end face including a first side face that extends from the first end face toward a direction opposite to the second end face, and the second end face including a second side face that extends from the second end face toward a direction opposite to the first end face; a first resin mold portion that covers the first side face; a second resin mold portion that covers the second side face; and a resin bridge portion that continuously connects the first resin mold portion and the second resin mold portion on an inner circumference side of the annular main body, the resin bridge portion and the void having a length in a direction extending along the annular direction of the annular core main body being longer than the width of the gap between the first end face and the second end face.
[0011] It is desirable that the resin bridge portion has an internal width that is wider than a width of the gap.
[0012] In the core main body, side faces other than the first end face and the second end face may be entirely covered by a resin mold portion.
[0013] In the core main body, at least the first side face and the second side face may be partially covered by a resin mold portion.
[0014] A current sensor according to the present invention is a current sensor including the gapped core described above, the current sensor including: a bus bar that passes through the opening of the annular core main body of the gapped core at a position on an inner circumference side of the resin bridge portion, and through which an electric current to be measured flows; and a magnetic sensing element that is disposed in the gap, and senses a magnetic field generated in the gap.
[0015] In the gapped core, an attachment portion for attaching the bus bar and/or the magnetic sensing element may be formed in the resin bridge portion.
[0016] A method for manufacturing a gapped core according to the present invention is a method for manufacturing the gapped core according to the present invention including: a step of preparing the core member described above wherein the core member has a first cutting portion and a second cutting portion to create the gap in the resin mold portion at the position opposing the gap forming region when the first cutting portion and the second cutting portion are subjected to cutting; and a step of cutting the core member along the first cutting portion and the second cutting portion from the outer circumference side of the core member to the void to thereby create a first end face and a second end face, respectively, and to form a gap between the first end face and the second end face in the core main body, so that a resin is not applied to the first end face and the second end face of the core member, wherein the resin bridge portion remains connected to the resin mold portion on an inner circumference side of the core main body.
Advantageous Effects of Invention
[0017] With the core member according to the present invention, a gapped core can be obtained by forming a resin bridge portion having a void on the inner circumference side of the core main body, and cutting the core main body so as to not cut and leave the resin bridge portion, and the resin bridge portion can provide insulation between the core main body and the inner circumference side of the core main body. Because the core main body is cut at two locations: the first cutting portion and the second cutting portion, the width of the gap to be formed can be set as appropriate by adjusting the spacing between the first cutting portion and the second cutting portion.
[0018] Also, the resin bridge portion is formed at a position opposing the cutting portion of the core main body. The resin bridge portion functions as a reinforcement, and thus there is also an advantage of preventing the core main body from deformation during and after cutting of the core main body.
Brief Description of Drawings
[0019]
FIG. 1 is a plan view of a core member in which a resin mold portion is formed on a core main body.
FIG. 2 is an enlarged view of the vicinity of a resin bridge portion of the core member.
FIG. 3 is a cross-sectional view taken along the line A-A shown in FIG. 2.
FIG. 4 is an enlarged view showing a step of forming a gap in the core member.
FIG. 5 is an enlarged view showing a step of forming a gap, which is performed after the step shown in FIG. 4.
FIG. 6 is an enlarged view of the vicinity of a gap of a gapped core.
FIG. 7 is a plan view of a current sensor according to an embodiment of the preset invention.
FIG. 8 is an enlarged view of the vicinity of a resin bridge portion of a core member according to another embodiment of the present invention.
FIG. 9 is an enlarged view of the vicinity of a resin bridge portion of a core member according to a still another embodiment of the present invention.
FIG. 10 is a reference diagram showing an attempt of forming a gap in a core main body of Patent Document 1 in which a resin mold portion has been formed.
Description of Embodiments
[0020] Hereinafter, a core member 10, a gapped core 50, and a current sensor 60 according to an embodiment of the present invention will be described with reference to the drawings.
[0021] FIG. 1 is a plan view of a core member 10 according to an embodiment of the present invention. FIG. 2 is an enlarged view of the vicinity of a resin bridge portion 40 of the core member 10. FIG. 3 is a cross-sectional view taken along the line A-A shown in FIG. 2. As shown in the diagrams, the core member 10 is formed by covering an annular core main body 20 by a resin mold portion 30, and is a component before a gap is formed. A gapped core 50 is produced by forming a gap 21 in the core member 10. A current sensor 60 is obtained by disposing a bus bar 62 and a magnetic sensing element 63 in the gapped core 50.
[0022] The core main body 20 can be made from a magnetic material. Examples include a wound iron core in which a thin sheet of magnetic material is wound, a laminated iron core in which annular thin sheets of magnetic material are laminated, and a dust core obtained by compression molding a magnetic material powder.
[0023] The resin mold portion 30 is made from an electrically insulating resin. The resin mold portion 30 can be formed, for example, in a mold step of placing the core main body 20 in a die, and injecting a molten resin, through insert molding so as to be integrated with the core main body 20. At the center of the resin mold portion 30, a bus bar opening 12 through which a bus bar 62 is inserted, which will be described with reference to FIG. 7, is formed.
[0024] A gap 21 is formed in the core member 10 by cutting the core main body 20 as shown in FIGS. 4 to 7, which will be described later. In a gap forming region C that is a region where the gap 21 is to be formed, as shown in FIGS. 1 to 3, a resin bridge portion 40 is formed whose both ends are continuously connected to the resin mold portion 30 on the inner circumference side of the core main body 20, and that has a void 42 extending through the core main body 20 in a thickness direction of the core main body 20 between the inner circumference side of the core main body 20 and the bus bar opening 12. The resin bridge portion 40 and the void 42 are formed at a position opposing the gap forming region C. For example, the resin bridge portion 40 can be formed by providing a protrusion that corresponds to the void 42 on the inner surface of the die.
[0025] The thickness of the resin bridge portion 40 is greater than or equal to a minimum thickness (about 1 mm) for obtaining insulation property.
[0026] The internal width of the resin bridge portion 40, or in other words, the length of the void 42 in a direction extending along the core main body 20 is desirably wider than the width of the gap 21 to be formed. The reason will be given later.
[0027] As shown in FIGS. 1 to 3, in the core member 10 in which the resin mold portion 30 including the resin bridge portion 40 has been formed in the core main body 20, a gap 21 (see FIG. 6) is formed in the gap forming region C. The gap 21 can be formed by cutting the core member 10 using two dicing blades 70 and 71 (disk-shaped grindstone).
[0028] To be specific, as shown in FIG. 4, the core member 10 is cut by moving the dicing blades 70 and 71 along a first cutting portion 14 and a second cutting portion 15 that are at positions opposing the void 42 of the resin bridge portion 40 toward the void 42 from the outer circumference side of the core member 10 so as to form slits (cutting step). The spacing between the dicing blades 70 and 71 is adjusted to the width of the gap 21. That is, the width of the gap 21 can be set to a desired width as long as it is within the gap forming region C.
[0029] Then, the cutting step is continued until the dicing blades 70 and 71 reach the void 42 as shown in FIG. 5. As a result, a core piece 22 and a resin mold portion 32 that covers the core piece 22 are completely separated from the core member 10. As shown in FIG. 6, by removing the core piece 22 and the resin mold portion 32, a gap 21 is formed, and a gapped core 50 is thereby produced. At this time, because the resin bridge portion 40 is not cut, the resin bridge portion 40 will serve as an insulating member that provides insulation between the core main body 20 and a bus bar 62, which will be described later.
[0030] In the cutting step, cutting may be performed by simultaneously moving the two dicing blades 70 and 71 toward the core member 10. Alternatively, cutting may be performed twice using one dicing blade. Of course, if it is possible to prepare a dicing blade having a thickness that corresponds to the width of the gap 21 to be formed, the gap 21 can be formed by performing cutting once using the dicing blade.
[0031] Because the internal width of the resin bridge portion 40, or in other words, the length of the void 42 in the right left direction extending along the core main body 20 is set to be greater than the width of the gap 21, when the core member 10 is cut, the first cutting portion 14 and the second cutting portion 15 reliably reach the void 42. Accordingly, the core piece 22 and the resin mold portion 32 covering the core piece 22 can be reliably separated from the core member 10.
[0032] As described above, according to the present invention, the width of the gap 21 to be formed can be changed by adjusting the width of the void 42 formed in the resin bridge portion 40, the distance between the cutting portions 14 and 15, or in other words, the spacing between the dicing blades 70 and 71 as appropriate. Accordingly, it is unnecessary to prepare a dicing blade having a thickness that corresponds to the width of the gap 21 to be formed, and it is possible to form a gap 21 having a greater width than the thickness of the dicing blade.
[0033] Furthermore, as a result of forming the resin bridge portion 40 at a position opposing the cutting portions of the core main body 20, the resin bridge portion 40 functions as a reinforcement, and thus it is possible to prevent deformation of the core main body 20 such as enlargement of the formed gap 21 during and after cutting of the core main body 20.
[0034] Also, because the width of the gap 21 to be formed can be changed by changing the spacing between dicing blades 70 and 71, processing is possible in which only the width of the gap 21 to be formed is changed while using the same core members 10. Also, the resin mold portion 30 can be molded using the same die.
[0035] FIG. 6 is an enlarged view of the vicinity of the formed gap 21 and the resin bridge portion 40. As shown in the diagram, in the core main body 20, a first end face 23 and a second end face 26 that opposes the first end face 23 are formed by the first cutting portion 14 and the second cutting portion 15, and a gap 21 is formed by the first end face 23 and the second end face 26. Also, in the core main body 20, a first side face 24 that extends from the first end face 23 toward a direction opposite to the second end face 26 is covered by a resin mold portion (first resin mold portion 34). Likewise, a second side face 27 that extends from the second end face 26 toward a direction opposite to the first end face 23 is covered by a resin mold portion (second resin mold portion 35). The first resin mold portion 34 and the second resin mold portion 35 are continuously connected by the resin bridge portion 40 on the inner circumference side of the core main body 20. The resin bridge portion 40 has a surface as molded, and thus there is no trace of cutting by a dicing blade as in Patent Document 1. Also, because a resin is not applied to the first end face 23 and the second end face 36 of the core main body 20, after a gap has been formed in the core main body in advance, it is possible to make a distinction with a gapped core that has been resin molded.
[0036] As shown in FIG. 7, in the core 50 in which the gap 21 has been formed, a bus bar 62 is disposed so as to pass through the bus bar opening 12, and a magnetic sensing element 63 such as a Hall element is disposed in the gap 21. In this way, a current sensor 60 is obtained. By causing an electric current to be measured to flow through the bus bar 62, a change in a magnetic field generated in the gap 21 can be measured by the magnetic sensing element 63. At this time, due to the presence of the resin bridge portion 40 between the bus bar 62 and the gap 21 of the core main body 20, insulation between the bus bar 62 and the gap 21 can be achieved by the resin bridge portion 40.
[0037] In the embodiment described above, the core main body 20 is entirely covered by the resin mold portion 30. However, as shown in FIG. 8, the resin mold portion 30 may be configured to partially cover at least positions corresponding to the first cutting portion 14 and the second cutting portion 15, and the periphery thereof in the core main body 20. In the diagram, dash dot lines indicate examples of the cutting portions 14 and 15.
[0038] In FIG. 1 and other diagrams, the resin mold portion 30 is also formed between the void 42 and the core main body 20. However, the core main body 20 may be exposed at this position such that a portion of the core main body 20 serves as a wall that directly forms the void 42.
[0039] Furthermore, as shown in FIG. 8, in the resin bridge portion 40, it is also possible to form an attachment portion 44 for attaching a bus bar, and an attachment portion 45 for attaching a magnetic sensing element.
[0040] In the embodiment described above, the resin bridge portion 40 is formed so as to protrude from the same side as the gap forming region C of the core main body 20. However, as shown in FIG. 9, the resin bridge portion 40 may be formed so as to connect two opposing sides across the gap forming region C. By continuously connecting the two opposing sides with the resin bridge portion 40 as described above, not only insulation between the bus bar and the core main body 20 can be achieved, but also the effect of suppressing deformation such as enlargement of the gap 21 in the core main body 20 during and after cutting of the core main body 20 can be enhanced because the resin bridge portion 40 functions as a reinforcement.
[0041] The foregoing description is presented to illustrate the present invention. Accordingly, it should not be construed as limiting the invention recited in the appended claims or narrowing the scope of the claims. Also, the constituent elements of the present invention are not limited to those shown in the embodiment described above, and various types of modifications can be made within the technical scope of the claims.
[0042] For example, the shapes of the core main body 20, the resin mold portion 30, and the resin bridge portion 40, the width of the gap 21 formed, and the like are not limited to those shown in the embodiment described above.
List of Reference Numerals
[0043]
- 10
- Core Member
- 20
- Core Main Body
- 21
- Gap
- 23
- First End Face
- 24
- First Side Face
- 25
- Second End Face
- 26
- Second Side Face
- 30
- Resin Mold Portion
- 34
- First Resin Mold Portion
- 35
- Second Resin Mold Portion
- 40
- Resin Bridge Portion
- 42
- Void
- 50
- Gapped Core
- 60
- Current Sensor
- C
- Gap Forming Region
1. Acore member (10) configured for a gapped core (50) of a current sensor (60), said core member including a gap forming region (C) configured for forming a gap (21) therein having a width smaller than the width of the gap forming region (C), the core member (10) comprising:
an annular core main body (20) having an opening (12) in which a bus bar (62) is disposable;
a resin mold portion (30) that entirely or partially covers the core main body (20), the resin mold portion (30) covering at least a portion of the gap forming region (C); and
a resin bridge portion (40) whose both ends are continuously connected to the resin mold portion (30), and that is formed between an inner circumference side of the core main body (20) and the bus bar opening (12), the resin bridge portion (40) including a void (42) that is formed at a position opposing the gap forming region (C), and extends through the core member (10) in a thickness direction of the core member (10) between the bus bar opening (12) and the core main body (20),
the resin bridge portion (40) and the void (42) having a length in a direction extending along the annular direction of the core main body greater than the width of the gap (21) to be formed.
2. A gapped core (50) comprising:
an annular core main body (20) having a gap (21) and an opening (12) in which a bus bar (62) is disposable, the annular core main body (20) including
a first end face (23) and a second end face (26) opposing each other and forming the gap (21), the first end face (23) including a first side face (24) that extends from the first end face (23) toward a direction opposite to the second end face (26), and the second end face (26) including a second side face (27) that extends from the second end face (26) toward a direction opposite to the first end face (23);
a first resin mold portion (34) that covers the first side face (24);
a second resin mold portion (35) that covers the second side face (27); and
a resin bridge portion (40) that continuously connects the first resin mold portion (34) and the second resin mold portion (35) on an inner circumference side of the annular core main body (20), such that a resin is not applied to the first end face (23) and the second end face (26) of the core main body (20) which resin bridge portion (40) further has a void (42) midway on said inner circumference side of the core main body (20),
the resin bridge portion (40) and the void (42) having a length in a direction extending along the annular direction of the annular core main body (20) being longer than the width of the gap (21) between the first end face (23) and the second end face (26).
3. The gapped core according to claim 2,
wherein, in the core main body (20), side faces (24) and (27) other than the first end face (23), and the second end face (26) are entirely covered by a resin mold portion (30).
4. The gapped core according to claim 2,
wherein, in the core main body (20), at least the first side face (24) and the second side face (27) are partially covered by a resin mold portion (30).
5. A current sensor (60) including the gapped core (50) according to any one of claims 2 to 4, the current sensor (60) comprising:
a bus bar (62) that passes through the opening (12) of the annular core main body (20) of the gapped core (50) at a position on the inner circumference side of the resin bridge portion (40), and through which an electric current to be measured flows; and
a magnetic sensing element (63) that is disposed in the gap (21), and senses a magnetic field generated in the gap (21).
6. The current sensor according to claim 5,
wherein, in the gapped core (50), an attachment portion (44) configured for attaching the bus bar (62) and an attachment portion (45) configured for attaching the magnetic sensing element (63) is formed in the resin bridge portion (40).
7. A method for manufacturing the gapped core (50) as defined in claim 2, the method comprising:
a step of preparing the core member (10) as defined in claim 1 wherein the core member (10) has a first cutting portion (14) and a second cutting portion (15) to create the gap (21) in the resin mold portion (30) at the position opposing the gap forming region (C) when the first cutting portion (14) and the second cutting portion (15) are subjected to cutting; and
a step of cutting the core member (10) along the first cutting portion (14) and the second cutting portion (15) from the outer circumference side of the core member (10) to the void (42) to thereby create a first end face (23) and a second end face (26), respectively, and to form a gap (21) between the first end face (23) and the second end face (26) in the core main body (20), so that a resin is not applied to the first end face (23) and the second end face (26) of the core member (20),
wherein the resin bridge portion (40) remains connected to the resin mold portion (30) on an inner circumference side of the core main body (20).
1. Kernelement (10), das für einen Kern mit Spalt (50) eines Stromsensors (60) konfiguriert ist, wobei das Kernelement einen Spaltausbildungsbereich (C) einschließt, der zum Ausbilden eines Spalts (21) darin mit einer geringeren Breite als der Breite des Spaltausbildungsbereichs (C) konfiguriert ist, wobei das Kernelement (10) umfasst:
einen ringförmigen Kernhauptkörper (20) mit einer Öffnung (12), in der eine Stromschiene (62) angeordnet werden kann;
einen Harzformabschnitt (30), der den Kernhauptkörper (20) ganz oder teilweise bedeckt, wobei der Harzformabschnitt (30) mindestens einen Abschnitt des Spaltausbildungsbereichs (C) bedeckt; und
einen Harzbrückenabschnitt (40), dessen beide Enden durchgängig mit dem Harzformabschnitt (30) verbunden sind und der zwischen einer inneren Umfangsseite des Kernhauptkörpers (20) und der Stromschienenöffnung (12) ausgebildet ist, wobei der Harzbrückenabschnitt (40) einen Hohlraum (42) einschließt, der an einer Position gegenüber dem Spaltausbildungsbereich (C) ausgebildet ist und sich durch das Kernelement (10) in einer Dickenrichtung des Kernelements (10) zwischen der Stromschienenöffnung (12) und dem Kernhauptkörper (20) erstreckt,
wobei der Harzbrückenabschnitt (40) und der Hohlraum (42) in einer Richtung, die sich entlang der Ringrichtung des Kernhauptkörpers erstreckt, eine Länge aufweisen, die größer ist als die Breite des auszubildenden Spalts (21).
2. Kern mit Spalt (50), umfassend:
einen ringförmigen Kernhauptkörper (20) mit einem Spalt (21) und einer Öffnung (12), in der eine Stromschiene (62) angeordnet werden kann, wobei der ringförmige Kernhauptkörper (20) Folgendes einschließt:
eine erste Endfläche (23) und eine zweite Endfläche (26), die einander gegenüberliegen und den Spalt (21) ausbilden, wobei die erste Endfläche (23) eine erste Seitenfläche (24) einschließt, die sich von der ersten Endfläche (23) in eine der zweiten Endfläche (26) entgegengesetzte Richtung erstreckt, und die zweite Endfläche (26) eine zweite Seitenfläche (27) einschließt, die sich von der zweiten Endfläche (26) in eine der ersten Endfläche (23) entgegengesetzte Richtung erstreckt;
einen ersten Harzformabschnitt (34), der die erste Seitenfläche (24) bedeckt;
einen zweiten Harzformabschnitt (35), der die zweite Seitenfläche (27) bedeckt; und
einen Harzbrückenabschnitt (40), der den ersten Harzformabschnitt (34) und den zweiten Harzformabschnitt (35) auf einer inneren Umfangsseite des ringförmigen Kernhauptkörpers (20) durchgängig verbindet, sodass kein Harz auf die erste Endfläche (23) und die zweite Endfläche (26) des Kernhauptkörpers (20) aufgebracht wird, wobei der Harzbrückenabschnitt (40) ferner einen Hohlraum (42) in der Mitte auf der inneren Umfangsseite des Kernhauptkörpers (20) aufweist,
wobei der Harzbrückenabschnitt (40) und der Hohlraum (42) in einer Richtung, die sich entlang der Ringrichtung des ringförmigen Kernhauptkörpers (20) erstreckt, eine Länge aufweisen, die größer ist als die Breite des Spalts (21) zwischen der ersten Endfläche (23) und der zweiten Endfläche (26).
3. Kern mit Spalt nach Anspruch 2,
wobei in dem Kernhauptkörper (20) Seitenflächen (24) und (27), die nicht die erste Endfläche (23) und die zweite Endfläche (26) sind, vollständig von einem Harzformabschnitt (30) bedeckt sind.
4. Kern mit Spalt nach Anspruch 2,
wobei in dem Kernhauptkörper (20) mindestens die erste Seitenfläche (24) und die zweite Seitenfläche (27) teilweise von einem Harzformabschnitt (30) bedeckt sind.
5. Stromsensor (60), der den Kern mit Spalt (50) nach einem der Ansprüche 2 bis 4 einschließt, wobei der Stromsensor (60) umfasst:
eine Stromschiene (62), die durch die Öffnung (12) des ringförmigen Kernhauptkörpers (20) des Kerns mit Spalt (50) an einer Position auf der inneren Umfangsseite des Harzbrückenabschnitts (40) verläuft und durch die ein zu messender elektrischer Strom fließt; und
ein magnetisches Erfassungselement (63), das in dem Spalt (21) angeordnet ist und ein in dem Spalt (21) erzeugtes Magnetfeld erfasst.
6. Stromsensor nach Anspruch 5,
wobei in dem Kern mit Spalt (50) ein Befestigungsabschnitt (44), der zum Befestigen der Stromschiene (62) konfiguriert ist, und ein Befestigungsabschnitt (45), der zum Befestigen des magnetischen Erfassungselements (63) konfiguriert ist, in dem Harzbrückenabschnitt (40) ausgebildet sind.
7. Verfahren zur Herstellung des Kerns mit Spalt (50) nach Anspruch 2, wobei das Verfahren umfasst:
einen Schritt des Vorbereitens des Kernelements (10) nach Anspruch 1, wobei das Kernelement (10) einen ersten Schneidabschnitt (14) und einen zweiten Schneidabschnitt (15) aufweist, um den Spalt (21) in dem Harzformabschnitt (30) an der Position gegenüber dem Spaltausbildungsbereich (C) zu erzeugen, wenn der erste Schneidabschnitt (14) und der zweite Schneidabschnitt (15) dem Schneiden unterzogen werden; und
einen Schritt des Schneidens des Kernelements (10) entlang des ersten Schneidabschnitts (14) und des zweiten Schneidabschnitts (15) von der äußeren Umfangsseite des Kernelements (10) zu dem Hohlraum (42), um dadurch jeweils eine erste Endfläche (23) und eine zweite Endfläche (26) zu erzeugen und um einen Spalt (21) zwischen der ersten Endfläche (23) und der zweiten Endfläche (26) in dem Kernhauptkörper (20) auszubilden, sodass kein Harz auf die erste Endfläche (23) und die zweite Endfläche (26) des Kernelements (20) aufgebracht wird,
wobei der Harzbrückenabschnitt (40) an einer inneren Umfangsseite des Kernhauptkörpers (20) mit dem Harzformabschnitt (30) verbunden bleibt.
1. Élément de noyau (10) configuré pour un noyau à entrefer (50) d'un capteur de courant (60), ledit élément de noyau incluant une région de formation d'entrefer (C) configurée pour former un entrefer (21) en son sein ayant une largeur inférieure à la largeur de la région de formation d'entrefer (C), l'élément de noyau (10) comprenant :
un corps principal de noyau annulaire (20) ayant une ouverture (12) dans laquelle une barre omnibus (62) peut être disposée ;
une partie de moule en résine (30) qui recouvre entièrement ou partiellement le corps principal de noyau (20), la partie de moule en résine (30) couvrant au moins une partie de la région de formation d'entrefer (C) ; et
une partie de pont en résine (40) dont les deux extrémités sont continuellement reliées à la partie de moule en résine (30), et qui est formée entre un côté de la circonférence intérieure du corps principal de noyau (20) et l'ouverture (12) de la barre omnibus, la partie de pont en résine (40) incluant un vide (42) qui est formé à une position opposée à la région de formation d'entrefer (C), et qui s'étend à travers l'élément de noyau (10) dans une direction d'épaisseur de l'élément de noyau (10) entre l'ouverture (12) de la barre omnibus et le corps principal de noyau (20),
la partie de pont en résine (40) et le vide (42) ayant une longueur dans une direction s'étendant le long de la direction annulaire du corps principal de noyau plus grande que la largeur de l'entrefer (21) à former.
2. Noyau à entrefer (50) comprenant :
un corps principal de noyau annulaire (20) présentant un entrefer (21) et une ouverture (12) dans laquelle une barre omnibus (62) peut être disposée, le corps principal de noyau annulaire (20) incluant
une première face d'extrémité (23) et une deuxième face d'extrémité (26) s'opposant l'une à l'autre et formant l'entrefer (21), la première face d'extrémité (23) incluant une première face latérale (24) qui s'étend de la première face d'extrémité (23) vers une direction opposée à la deuxième face d'extrémité (26), et la deuxième face d'extrémité (26) incluant une deuxième face latérale (27) qui s'étend de la deuxième face d'extrémité (26) vers une direction opposée à la première face d'extrémité (23) ;
une première partie de moule en résine (34) qui recouvre la première face latérale (24) ;
une deuxième partie de moule en résine (35) qui recouvre la deuxième face latérale (27) ; et
une partie de pont en résine (40) qui relie continuellement la première partie de moule en résine (34) et la deuxième partie de moule en résine (35) sur un côté de la circonférence intérieure du corps principal de noyau annulaire (20), de sorte qu'une résine n'est pas appliquée sur la première face d'extrémité (23) et la deuxième face d'extrémité (26) du corps principal de noyau (20), cette partie de pont en résine (40) ayant en outre un vide (42) à mi-chemin sur ledit côté de la circonférence intérieure du corps principal de noyau (20),
la partie de pont en résine (40) et le vide (42) ayant une longueur dans une direction s'étendant le long de la direction annulaire du corps principal de noyau annulaire (20) plus longue que la largeur de l'entrefer (21) entre la première face d'extrémité (23) et la deuxième face d'extrémité (26).
3. Noyau à entrefer selon la revendication 2,
dans lequel, dans le corps principal de noyau (20), des faces latérales (24) et (27) autres que la première face d'extrémité (23) et la deuxième face d'extrémité (26) sont entièrement recouvertes par une partie de moule en résine (30).
4. Noyau à entrefer selon la revendication 2,
dans lequel, dans le corps principal de noyau (20), au moins la première face latérale (24) et la deuxième face latérale (27) sont partiellement recouvertes par une partie de moule en résine (30).
5. Capteur de courant (60) incluant le noyau à entrefer (50) selon l'une quelconque des revendications 2 à 4, le capteur de courant (60) comprenant :
une barre omnibus (62) qui traverse l'ouverture (12) du corps principal de noyau annulaire (20) du noyau à entrefer (50) à une position sur le côté de la circonférence intérieure de la partie de pont en résine (40), et à travers laquelle circule un courant électrique à mesurer ; et
un élément de détection magnétique (63) disposé dans l'entrefer (21) et qui détecte un champ magnétique généré dans l'entrefer (21).
6. Capteur de courant selon la revendication 5,
dans lequel, dans le noyau à entrefer (50), une partie de fixation (44) configurée pour fixer la barre omnibus (62) et une partie de fixation (45) configurée pour fixer l'élément de détection magnétique (63) sont formées dans la partie de pont en résine (40).
7. Procédé de fabrication du noyau à entrefer (50) selon la revendication 2, le procédé comprenant :
une étape de préparation de l'élément de noyau (10) selon la revendication 1, dans lequel l'élément de noyau (10) comporte une première partie de coupe (14) et une deuxième partie de coupe (15) pour créer l'entrefer (21) dans la partie de moule en résine (30) à la position opposée à la région de formation d'entrefer (C) lorsque la première partie de coupe (14) et la deuxième partie de coupe (15) sont soumises à la coupe ; et
une étape de coupe de l'élément de noyau (10) le long de la première partie de coupe (14) et de la deuxième partie de coupe (15) à partir du côté de la circonférence extérieure de l'élément de noyau (10) jusqu'au vide (42) pour créer ainsi une première face d'extrémité (23) et une deuxième face d'extrémité (26), respectivement, et former un entrefer (21) entre la première face d'extrémité (23) et la deuxième face d'extrémité (26) dans le corps principal de noyau (20), de sorte qu'une résine n'est pas appliquée sur la première face d'extrémité (23) et la deuxième face d'extrémité (26) de l'élément de noyau (20),
dans lequel la partie de pont en résine (40) reste reliée à la partie de moule en résine (30) sur un côté de la circonférence intérieure du corps principal de noyau (20).