(19)
(11)EP 3 527 421 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
05.04.2023 Bulletin 2023/14

(21)Application number: 18825076.5

(22)Date of filing:  21.02.2018
(51)International Patent Classification (IPC): 
B60L 50/50(2019.01)
B60L 3/00(2006.01)
B60L 3/04(2006.01)
B60L 58/40(2019.01)
H02J 7/00(2006.01)
(52)Cooperative Patent Classification (CPC):
B60L 3/0092; B60L 3/04; B60L 3/0046; H02J 7/0031; Y02T 10/70; Y02T 10/7072; Y02T 90/12; Y02T 90/14
(86)International application number:
PCT/KR2018/002127
(87)International publication number:
WO 2019/004558 (03.01.2019 Gazette  2019/01)

(54)

OFF-PREVENTION CIRCUIT OF CONTACTOR

AUS-VERHINDERUNGSSCHALTUNG EINES SCHÜTZES

CIRCUIT DE PRÉVENTION DE DÉSACTIVATION D'UN CONTACTEUR


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 28.06.2017 KR 20170081732

(43)Date of publication of application:
21.08.2019 Bulletin 2019/34

(73)Proprietor: LG Energy Solution, Ltd.
Seoul 07335 (KR)

(72)Inventors:
  • YOON, Ho Byung
    Daejeon 34122 (KR)
  • SUNG, Chang Hyun
    Daejeon 34122 (KR)

(74)Representative: Plasseraud IP 
66, rue de la Chaussée d'Antin
75440 Paris Cedex 09
75440 Paris Cedex 09 (FR)


(56)References cited: : 
EP-A2- 2 518 859
JP-A- 2013 248 971
JP-A- 2016 178 792
KR-B1- 101 689 222
US-B2- 9 148 070
CN-A- 104 037 819
JP-A- 2016 178 792
KR-A- 20160 066 301
US-A1- 2013 038 294
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    [Technical Field]



    [0001] This application claims priority to and the benefit of Korean Patent Application No. 10-2017-0081732 filed in the Korean Intellectual Property Office on June 28, 2017.

    [0002] The present invention relates to a circuit for preventing power off of a contactor, and more particularly, to a circuit for preventing power off of a contactor, in which a battery management system and a contactor are multi-connected via a plurality of positive electrode terminals and a plurality of negative electrode terminals provided in each of the battery management system and the contactor, so that even when any one connection among the connections of the plurality of positive electrode terminals and the plurality of negative electrode terminals is disconnected or opened, it is possible to maintain supply of power supplied from the battery management system to the contactor through another connection of the positive electrode terminal and the negative electrode terminal.

    [Background Art]



    [0003] Recently, due to environmental pollution caused by depletion of fossil energy and use of fossil energy, an interest in an electric product which may be driven by using a battery without using fossil energy has been increased.

    [0004] Accordingly, research and development on an electric vehicle (EV) and a hybrid vehicle which is capable of solving pollution and energy problems has been actively conducted in recent.

    [0005] Document EP2518859 relates to a power supply device capable of appropriately preventing the output of excessive current and appropriately eliminating the variation of voltage between a plurality of batteries.

    [0006] Document US2014/0119069 relates to a high power control system for converting a DC output of a high power battery into an AC output.

    [0007] Document JP2016178792 discloses a system for reducing power consumption of a battery system contactor.

    [0008] Herein, the EV is a vehicle which mainly obtains power and is driven by driving an alternating current (AC) or direct current (DC) motor by using power of a battery, and is generally divided into a battery dedicated electric vehicle and a hybrid electric vehicle.

    [0009] In this case, the battery dedicated electric vehicle drives a motor by using only power of the battery, so that a high-output secondary battery and a high-capacity secondary battery are used in most of the battery dedicated electric vehicles, and thus, recently, research on peripheral components and devices related to a secondary battery is also variously conducted.

    [0010] For example, recently, research on various components or devices, such as a battery pack manufactured by connecting a plurality of battery cells in series and in parallel, a battery management system (BMS) controlling charging/discharging of a battery pack and monitoring a state of each battery, and a contactor connecting a battery pack to a load, such as an inverter, has been conducted.

    [0011] Among them, the contactor is a switch which connects a battery pack and a load and controls supply of power supplied from the battery pack to the load, and is mainly configured to connect the battery pack and the load based on a magnetic field when a coil provided in the contactor receives a voltage via a BMS and generates the magnetic field.

    [0012] In the meantime, each of the BMS and the contactor is connected via one positive electrode terminal and one negative electrode terminal, and even when any one of the positive electrode terminal and the negative electrode terminal has abnormality, power supplied to the contactor is simultaneously blocked, so that there is a problem in that the contactor is unnecessarily turned off only due to the simple abnormality of the terminal.

    [0013] Further, the positive electrode terminal and the negative electrode terminal of the contactor connected with the positive electrode terminal and the negative electrode terminal of the BMS use only one connector, so that even when the connector simply has abnormality, there is a problem in that the contactor is unnecessarily turned off.

    [0014] Further, due to the problem in that the contactor is unnecessarily turned off described above, a travelling EV may suddenly lose power and stop, and the sudden stop of the vehicle may cause a minor collision or rollover of the vehicle.

    [Detailed Description of the Invention]


    [Technical Problem]



    [0015] An object of the present invention is to provide a circuit for preventing power off of a contactor, in which a battery management system and a contactor are multi-connected via a plurality of positive electrode terminals and a plurality of negative electrode terminals provided in each of the battery management system and the contactor, so that even when any one connection among the connections of the plurality of positive electrode terminals and the plurality of negative electrode terminals is disconnected or opened, it is possible to maintain supply of power supplied from the battery management system to the contactor through another connection of the positive electrode terminal and the negative electrode terminal.

    [0016] Another object of the present invention is to provide a circuit for preventing power off of a contactor, in which a plurality of positive electrode terminals and a plurality of negative electrode terminals provided in a contactor are connected with a battery management system via different connectors, so that even when any one connector has abnormality, it is possible to maintain power supplied from the battery management system via the positive electrode terminal and the negative electrode terminal which are connected with the battery management system via another connector.

    [0017] Another object of the present invention is to provide a circuit for preventing power off of a contactor, in which a plurality of fuses or a plurality of switches that is blown or off due to an overcurrent is connected to a plurality of positive electrode terminals and a plurality of negative electrode terminals provided in a battery management system, respectively, so that it is possible to effectively block the overcurrent from flowing into the battery management system due to an external short-circuit.

    [Technical Solution]



    [0018] An exemplary embodiment of the present invention provides a circuit for preventing power off of a contactor, the circuit including: a battery management system which controls power supplied to a contactor, and includes a first battery management system (BMS) positive electrode terminal and a second BMS positive electrode terminal connected to a positive electrode of a power supply and a first BMS negative electrode terminal and a second BMS negative electrode terminal connected to a ground or a negative electrode of the power supply; and a contactor which makes a connection between a battery pack and a load be on/off and includes a first contactor positive terminal connected to the first BMS positive electrode terminal and a second contactor positive electrode terminal connected to the second BMS positive electrode terminal, and a first contactor negative electrode terminal connected to the first BMS negative electrode terminal and a second contactor negative electrode terminal connected to the second BMS negative electrode terminal.

    [0019] In the exemplary embodiment, the battery management system may include a plurality of fuses which is connected to the first BMS positive electrode terminal, the second BMS positive electrode terminal, the first BMS negative electrode terminal, and the second BMS negative electrode terminal, respectively, and is blown based on an overcurrent.

    [0020] In the exemplary embodiment, the battery management system may include a plurality of switches which is connected to the first BMS positive electrode terminal, the second BMS positive electrode terminal, the first BMS negative electrode terminal, and the second BMS negative electrode terminal, respectively, and is on/off based on an overcurrent.

    [0021] In the exemplary embodiment, the contactor may include: a coil which is connected to the first contactor positive electrode terminal, the second contactor positive electrode terminal, the first contactor negative electrode terminal, and the second contactor negative electrode terminal, and generates a magnetic field and makes the contactor be on/off; and diodes which are formed between the coil and the first contactor positive electrode terminal, the second contactor positive electrode terminal, the first contactor negative electrode terminal, and the second contactor negative electrode terminal, and determine a direction of a current.

    [0022] In the exemplary embodiment, the contactor may include: a first connector including the first contactor positive electrode terminal and the first contactor negative electrode terminal; and a second connector including the second contactor positive electrode terminal and the second contactor negative electrode terminal.

    [Advantageous Effects]



    [0023] According to one aspect of the present invention, there is provided a circuit for preventing power off of a contactor, in which a battery management system and a contactor are multi-connected via a plurality of positive electrode terminals and a plurality of negative electrode terminals provided in each of the battery management system and the contactor, so that even when any one connection among the connections of the plurality of positive electrode terminals and the plurality of negative electrode terminals is disconnected or opened, it is possible to maintain supply of power supplied from the battery management system to the contactor through another connection of the positive electrode terminal and the negative electrode terminal.

    [0024] Further, according to another aspect of the present invention, there is provided a circuit for preventing power off of a contactor, in which a plurality of positive electrode terminals and a plurality of negative electrode terminals provided in a contactor are connected with a battery management system via different connectors, so that even when any one connector has abnormality, it is possible to maintain power supplied from the battery management system via the positive electrode terminal and the negative electrode terminal which are connected with the battery management system via another connector.

    [0025] Further, according to another aspect of the present invention, there is provided a circuit for preventing power off of a contactor, in which a plurality of fuses or a plurality of switches that is blown or off due to an overcurrent is connected to a plurality of positive electrode terminals and a plurality of negative electrode terminals provided in a battery management system, respectively, so that it is possible to effectively block the overcurrent from flowing into the battery management system due to an external short-circuit.

    [Brief Description of Drawings]



    [0026] 

    FIG. 1 is a diagram schematically illustrating a configuration of a circuit for preventing power off of a contactor according to an exemplary embodiment of the present invention.

    FIG. 2 is a diagram schematically illustrating a state in which a fuse of the circuit for preventing power off of the contactor according to the exemplary embodiment of the present invention is blown.

    FIG. 3 is a diagram schematically illustrating a configuration of a circuit for preventing power off of a contactor according to another exemplary embodiment of the present invention.

    FIG. 4 is a diagram schematically illustrating a state in which a switch of the circuit for preventing power off of the contactor according to another exemplary embodiment of the present invention is off.


    [Mode for carrying out the invention]



    [0027] The present invention will be described in detail with reference to the accompanying drawings. Herein, repeated descriptions, and detailed descriptions of publicly known function and configuration which may unnecessarily make the main point of the present invention be unclear will be omitted. The exemplary embodiment of the present invention is provided for more completely explaining the present invention to those skilled in the art. Accordingly, shapes, sizes, and the like of the elements in the drawing may be exaggerated for a clearer description.

    [0028] In the entire specification, unless explicitly described to the contrary, when it is said that a part "comprises/includes" a constituent element, this means that another constituent element may be further "included/comprised", not that another constituent element is excluded.

    [0029] Further, a term "~ unit" described in the specification means a unit of processing one or more functions or operations, and the "~ unit" may be implemented by hardware, software, or a combination of hardware and software.

    [0030] Further, throughout the specification, "on/off" may mean "open/close" of a switch described in the specification. For example, an off state of a switch may mean that a switch is opened to close a circuit connected with the corresponding switch.

    [0031] FIG. 1 is a diagram schematically illustrating a configuration of a circuit 100 for preventing power off of a contactor according to an exemplary embodiment of the present invention.

    [0032] However, the circuit 100 for preventing power off of the contactor illustrated in FIG. 1 is the exemplary embodiment, and constituent elements thereof are not limited to the exemplary embodiment illustrated in FIG. 1, and it is noted that some constituent elements may be added, changed, or deleted as necessary.

    [0033] Further, it is noted that the circuit 100 for preventing power off of the contactor illustrated in FIG. 1 is applicable to any kind of technical fields to which a secondary battery is applicable.

    [0034] Further, it is noted that the circuit 100 for preventing power off of the contactor according to the exemplary embodiment of the present invention is applicable to various technical fields as long as a battery is used, in addition to an electric vehicle.

    [0035] First, referring to FIG. 1, the circuit 100 for preventing power off of the contactor according to the exemplary embodiment of the present invention may include a battery management system (BMS) 10 and a contactor 20.

    [0036] Herein, the BMS 10 may serve to control power supplied to the contactor 20 from a power supply unit 1 that supplies power as illustrated in FIG. 1.

    [0037] In this case, the BMS 10 may include a first BMS positive electrode terminal 11 and a second BMS positive electrode terminal 12 connected to a positive electrode of the power supply unit 1, and a first BMS negative electrode terminal 13 and a second BMS negative electrode terminal 14 connected to a negative electrode or a ground of the power supply unit 1. Further, the contactor 2 may include a first contactor positive electrode terminal 21 a second contactor positive electrode terminal 22, a first contactor negative electrode terminal 23, and a second contactor negative electrode terminal 24. However, throughout the present specification, it is noted that each of the first BMS positive electrode terminal 11, the second BMS positive electrode terminal 12, the first BMS negative electrode terminal 13, the second BMS negative electrode terminal 14, the first contactor positive electrode terminal 21, the second contactor positive electrode terminal 22, the first contactor negative electrode terminal 23, and the second contactor negative electrode terminal 24 is one node and is provided for describing a connection relationship between the constituent elements, and is not required to be essentially separately provided as a physically divided constituent element.

    [0038] Further, the BMS 10 and the contactor 20 each of which includes the two positive electrode terminals and two negative electrode terminals are described, but are illustrative for the exemplary embodiment, and the present invention also includes the case where each of the BMS 10 and the contactor 20 includes the larger number of terminals.

    [0039] Further, the BMS 10 may further include a main control unit (MCU) 10' that is a central processing unit which controls the BMS 10 as a constituent element.

    [0040] In this case, the MCU 10' may serve to control a current flowing from the power supply unit 1 to the first BMS positive electrode terminal 11, the second BMS positive electrode terminal 12, the first BMS negative electrode terminal 13, and the second BMS negative electrode terminal 14.

    [0041] For example, the MCU 10' controls on/off of switches (not illustrated) formed between the first BMS positive electrode terminal 11, the second BMS positive electrode terminal 12, the first BMS negative electrode terminal 13, and the second BMS negative electrode terminal 14 and the power supply unit 1, thereby controlling the current flowing from the power supply unit 1 to the first BMS positive electrode terminal 11, the second BMS positive electrode terminal 12, the first BMS negative electrode terminal 13, and the second BMS negative electrode terminal 14.

    [0042] However, it is noted that the role of the MCU 10' and the method of controlling the current by the MCU 10' are not limited to the foregoing.

    [0043] Further, referring to FIGS. 1 and 3, the BMS 10 may further include a plurality of fuses 15 or a plurality of switches 16 connected with the first BMS positive electrode terminal 11, the second BMS positive electrode terminal 12, the first BMS negative electrode terminal 13, and the second BMS negative electrode terminal 14, respectively.

    [0044] In this case, the plurality of fuses 15 or the plurality of switches 16 may serve to block an overcurrent from flowing into the BMS 10 due to an external short-circuit.

    [0045] Further, when an overcurrent flows from the power supply unit 1 into the BMS 10, the plurality of fuses 15 or the plurality of switches 16 is blown or off, thereby serving to block the overcurrent from flowing from the power supply unit 1 into the contactor 20.

    [0046] More particularly, the plurality of fuses 15 or the plurality of switches 16 is autonomously blown or off in a predetermined amount of current, so that it is possible to block the overcurrent from flowing into the BMS 10, but it is noted that the present invention is not limited thereto.

    [0047] For example, the BMS 10 may include a detecting unit (not illustrated) which detects a voltage supplied from the power supply unit 1 to the plurality of fuses 15 or the plurality of switches 16, and a controller (not illustrated) which blows or turns off the plurality of fuses 15 or the plurality of switches 16 when the overcurrent is detected in the plurality of fuses 15 or the plurality of switches 16, and in this case, the BMS 10 controls the blow or the off of the plurality of fuses 15 or the plurality of switches 16 via the detecting unit (not illustrated) and the controller (not illustrated), thereby blocking the overcurrent from flowing into the BMS 10.

    [0048] In this case, the detecting unit (not illustrated) and the controller (not illustrated) may be included in the MCU 10' of the BMS 10 illustrated in FIGS. 1 to 4, but it is noted that the present invention is not limited thereto.

    [0049] In the meantime, referring to FIG. 2, when the fuse 15 connected to the first BMS positive electrode terminal 11 among the plurality of fuses 15 is blown due to the overcurrent, the BMS 10 may maintain the connection with the contactor 20 via the second BMS positive electrode terminal 12 connected with the second contactor positive electrode terminal 22 of the contactor 20 and the second BMS negative electrode terminal 14 connected with the second contactor negative electrode terminal 24.

    [0050] Further, referring to FIG. 4, when the switch 16 connected to the first BMS positive electrode terminal 11 among the plurality of switches 16 is off due to the overcurrent, the BMS 10 may maintain the connection with the contactor 20 via the second BMS positive electrode terminal 12 connected with the second contactor positive electrode terminal 22 of the contactor 20 and the second BMS negative electrode terminal 14 connected with the second contactor negative electrode terminal 24.

    [0051] That is, in the circuit 100 for preventing power off of the contactor according to the exemplary embodiment of the present invention, the BMS 10 is multi-connected with the contactor 20 via the first BMS positive electrode terminal 11, the second BMS positive electrode terminal 12, the first BMS negative electrode terminal 13, and the second BMS negative electrode terminal 14 provided in the BMS 10, and the first contactor positive electrode terminal 21, the second contactor positive electrode terminal 22, the first contactor negative electrode terminal 23, and the second contactor negative electrode terminal 21 provided in the contactor 20, so that even when any one connection among the multiple connections has abnormality, it is possible to maintain a connection state of the BMS 10 and the contactor 20 through another connection.

    [0052] Next, the contactor 20 may serve to make a connection between a battery pack 2 and a load 3 be on/off as illustrated in FIG. 1.

    [0053] To this end, the contactor 20 may include the first contactor positive electrode terminal 21 connected to the first BMS positive electrode terminal 11, the second contactor positive electrode terminal 22 connected to the second BMS positive electrode terminal 12, the first contactor negative electrode terminal 23 connected to the first BMS negative electrode terminal 13, and the second contactor negative electrode terminal 24 connected to the second BMS negative electrode terminal 14.

    [0054] Further, the contactor 20 may further include a coil 25 which receives power from the power supply unit 1 via the BMS 10 and generates a magnetic field to control on/off of the contactor 20 as a constituent element, but the coil 25 is the constituent element generally included in the contactor 20, so that a detailed description thereof will be omitted.

    [0055] Further, the contactor 20 may further include a plurality of diodes connected to the first contactor positive electrode terminal 21, the second contactor positive electrode terminal 22, the first contactor negative electrode terminal 23, and the second contactor negative electrode terminal 24, respectively.

    [0056] Herein, the plurality of diodes is formed between the first BMS positive electrode terminal 11 and the first contactor positive electrode terminal 21, the second BMS positive electrode terminal 12 and the second contactor positive electrode terminal 22, the first BMS negative electrode terminal 13 and the first contactor negative electrode terminal 23, and the second BMS negative electrode terminal 14 and the second contactor negative electrode terminal 24 to serve to determine a direction of the current.

    [0057] Further, the contactor 20 may further include a first connector 27 including the first contactor positive electrode terminal 21 and the first contactor negative electrode terminal 22 and the second connector 28 including the second contactor positive electrode terminal 23 and the second contactor negative electrode terminal 24.

    [0058] That is, the first contactor positive electrode terminal 21 and the first contactor negative electrode terminal 23, and the second contactor positive electrode terminal 22 and the second contactor negative electrode terminal 24 of the contactor 20 are connected to the first BMS positive electrode terminal 11 and the first BMS negative electrode terminal 13, and the second BMS positive electrode terminal 12 and the second BMS negative electrode terminal 14 provided in the BMS 10 via the different first connector 27 and second connector 28, so that even when any one of the first connector 27 and the second connector 28 has abnormality (for example, damage), the connection between the contactor 20 and the BMS 10 may be maintained via another connector (one having no abnormality between the first connector 27 and the second connector 28).


    Claims

    1. A circuit for preventing power off of a contactor, the circuit comprising:

    a battery management system (10) which controls power supplied to a contactor (20), and includes a first battery management system (BMS) positive electrode terminal (11) and a second BMS positive electrode terminal (12) connected to a positive electrode of a power supply and a first BMS negative electrode terminal (13) and a second BMS negative electrode terminal (14) connected to a ground or a negative electrode of the power supply (1);

    a contactor (20) which makes a connection between a battery pack (2) and a load (3) be on/off and includes a first contactor positive terminal (21) connected to the first BMS positive electrode terminal (11) and a second contactor positive electrode terminal (22) connected to the second BMS positive electrode terminal (12), and a first contactor negative electrode terminal (23) connected to the first BMS negative electrode terminal (13) and a second contactor negative electrode terminal (24) connected to the second BMS negative electrode terminal (14), thereby making a plurality of connections between the battery management system and the contactor through a plurality of positive electrode terminals and the plurality of negative electrode terminals,

    characterised in that

    when any one connection among connections of the plurality of positive electrode terminals and the plurality of negative electrode terminals is disconnected, supplying power from the battery management system to the contactor is maintained through another connection.


     
    2. The circuit of claim 1, wherein the battery management system (10) includes a plurality of fuses (15) which is connected to the first BMS positive electrode terminal (11), the second BMS positive electrode terminal (12), the first BMS negative electrode terminal (13), and the second BMS negative electrode terminal (14), respectively, and is blown based on an overcurrent.
     
    3. The circuit of claim 1, wherein the battery management system includes a plurality of switches (16) which is connected to the first BMS positive electrode terminal (11), the second BMS positive electrode terminal (12), the first BMS negative electrode terminal (13), and the second BMS negative electrode terminal (14), respectively, and is on/off based on an overcurrent.
     
    4. The circuit of claim 1, wherein the contactor includes:

    a coil (25) which is connected to the first contactor positive electrode terminal (21), the second contactor positive electrode terminal (22), the first contactor negative electrode terminal (23), and the second contactor negative electrode terminal (24), and generates a magnetic field and makes the contactor (20) be on/off; and

    diodes (26) which are formed between the coil (25) and the first contactor positive electrode terminal (21), the second contactor positive electrode terminal (22), the first contactor negative electrode terminal (23), and the second contactor negative electrode terminal (24), and determine a direction of a current.


     
    5. The circuit of claim 1, wherein the contactor (20) includes:

    a first connector (27) including the first contactor positive electrode terminal (21) and the first contactor negative electrode terminal (23); and

    a second connector (28) including the second contactor positive electrode terminal (22) and the second contactor negative electrode terminal (24).


     
    6. The circuit of claim 2 or 3, wherein the BMS includes a detecting unit which detects a voltage supplied from the power supply unit to the plurality of fuses or the plurality of switches, and a controller which blows or turns off the plurality of fuses or the plurality of switches when overcurrent is detected in the plurality of fuses or the plurality of switches.
     


    Ansprüche

    1. Schaltung zum Verhindern eines Ausschaltens eines Schützes, die Schaltung umfassend:

    ein Batterie-Verwaltungssystem (10), welches eine zu einem Schütz (20) gelieferte Leistung steuert und einen ersten positiven Batterie-Verwaltungssystem (BMS)-Elektrodenanschluss (11) und einen zweiten positiven BMS-Elektrodenanschluss (12), welche mit einer positiven Elektrode einer Leistungsversorgung verbunden sind, und einen ersten negativen BMS-Elektrodenanschluss (13) und einen zweiten negativen BMS-Elektrodenanschluss (14) umfasst, welche mit einer Erdung oder

    einer negativen Elektrode der Leistungsversorgung (1) verbunden sind;

    einen Schütz (20), welcher eine Verbindung zwischen einem Batteriepack (2) und

    einer Last (3) ein/ausschaltet und einen ersten positiven Schützanschluss (21), welcher mit dem ersten positiven BMS-Elektrodenanschluss (11) verbunden ist, und einen zweiten positiven Schütz-Elektrodenanschluss (22), welcher mit dem zweiten positiven BMS-Elektrodenanschluss (12) verbunden ist, und einen ersten negativen Schütz-Elektrodenanschluss (23), welcher mit dem ersten negativen BMS-Elektrodenanschluss (13) verbunden ist, und einen zweiten negativen Schütz-Elektrodenanschluss (24), welcher mit dem zweiten negativen BMS-Elektrodenanschluss (14) verbunden ist, umfasst, wodurch eine Mehrzahl von Verbindungen zwischen dem Batterie-Verwaltungssystem und dem Schütz durch eine Mehrzahl von positiven Elektrodenanschlüssen und die Mehrzahl von negativen Elektrodenanschlüssen hergestellt sind,

    dadurch gekennzeichnet, dass wenn eine beliebige Verbindung aus Verbindungen der Mehrzahl von positiven Elektrodenanschlüssen und der Mehrzahl von negativen Elektrodenanschlüssen getrennt wird, ein Liefern von Leistung von dem Batterie-Verwaltungssystem zu dem Schütz durch eine andere Verbindung aufrechterhalten wird.


     
    2. Schaltung nach Anspruch 1, wobei das Batterie-Verwaltungssystem (10) eine Mehrzahl von Sicherungen (15) umfasst, welche mit dem ersten positiven BMS-Elektrodenanschluss (11), dem zweiten positiven BMS-Elektrodenanschluss (12), dem ersten negativen BMS-Elektrodenanschluss (13) bzw. dem zweiten negativen BMS-Elektrodenanschluss (14) verbunden ist und auf Grundlage eines Überstroms durchbrennt.
     
    3. Schaltung nach Anspruch 1, wobei das Batterie-Verwaltungssystem eine Mehrzahl von Schaltern (16) umfasst, welche mit dem ersten positiven BMS-Elektrodenanschluss (11), dem zweiten positiven BMS-Elektrodenanschluss (12), dem ersten negativen BMS-Elektrodenanschluss (13) bzw. dem zweiten negativen BMS-Elektrodenanschluss (14) verbunden ist und auf Grundlage eines Überstroms ein/ausgeschaltet wird.
     
    4. Schaltung nach Anspruch 1, wobei der Schütz umfasst:

    eine Spule (25), welche mit dem ersten positiven Schütz-Elektrodenanschluss (21), dem zweiten positiven Schütz-Elektrodenanschluss (22), dem ersten negativen Schütz-Elektrodenanschluss (23) und dem zweiten negativen Schütz-Elektrodenanschluss (24) verbunden ist und ein Magnetfeld erzeugt und den Schütz (20) ein/ausschaltet; und

    Dioden (26), welche zwischen der Spule (25) und dem ersten positiven Schütz-Elektrodenanschluss (21), dem zweiten positiven Schütz-Elektrodenanschluss (22),

    dem ersten negativen Schütz-Elektrodenanschluss (23) und dem zweiten negativen Schütz-Elektrodenanschluss (24) gebildet sind und eine Richtung eines Stroms bestimmen.


     
    5. Schaltung nach Anspruch 1, wobei der Schütz (20) umfasst:

    ein erstes Verbindungselement (27), welches den ersten positiven Schütz-Elektrodenanschluss (21) und den ersten negativen Schütz-Elektrodenanschluss (23) umfasst; und

    ein zweites Verbindungselement (28), welches den zweiten positiven Schütz-Elektrodenanschluss (22) und den zweiten negativen Schütz-Elektrodenanschluss (24) umfasst.


     
    6. Schaltung nach Anspruch 2 oder 3, wobei das BMS eine Detektionseinheit umfasst, welche eine Spannung detektiert, welche von der Leistungsversorgungseinheit zu der Mehrzahl von Sicherungen oder der Mehrzahl von Schaltern geliefert wird, sowie eine Steuereinheit, welche die Mehrzahl von Sicherungen oder die Mehrzahl von Schaltern durchbrennt oder ausschaltet, wenn ein Überstrom in der Mehrzahl von Sicherungen oder der Mehrzahl von Schaltern detektiert wird.
     


    Revendications

    1. Circuit de prévention de mise hors tension d'un contacteur, le circuit comprenant :

    un système de gestion de batterie (10) qui commande l'énergie alimentant un contacteur (20), et comporte une première borne d'électrode positive de système de gestion de batterie (BMS) (11) et une seconde borne d'électrode positive de BMS (12) connectées à une électrode positive d'une alimentation en énergie et une première borne d'électrode négative de BMS (13) et une seconde borne d'électrode négative de BMS (14) connectées à une masse ou à une électrode négative de l'alimentation en énergie (1) ;

    un contacteur (20) qui établit une connexion entre un bloc-batterie (2) et une charge (3) en marche/arrêt et comporte une première borne positive de contacteur (21) connectée à la première borne d'électrode positive de BMS (11) et une seconde borne d'électrode positive de contacteur (22) connectée à la seconde borne d'électrode positive de BMS (12), et une première borne d'électrode négative de contacteur (23) connectée à la première borne d'électrode négative de BMS (13) et

    une seconde borne d'électrode négative de contacteur (24) connectée à la seconde borne d'électrode négative de BMS (14), établissant ainsi une pluralité de connexions entre le système de gestion de batterie et le contacteur à travers une pluralité de bornes d'électrode positive et la pluralité de bornes d'électrode négative,

    caractérisé en ce que lorsqu'une quelconque connexion parmi les connexions de la pluralité de bornes d'électrode positive et de la pluralité de bornes d'électrode négative est déconnectée, l'alimentation en énergie du contacteur à partir du système de gestion de batterie est maintenue à travers une autre connexion.


     
    2. Circuit selon la revendication 1, dans lequel le système de gestion de batterie (10) comporte une pluralité de fusibles (15) qui sont connectés à la première borne d'électrode positive de BMS (11), à la seconde borne d'électrode positive de BMS (12), à la première borne d'électrode négative de BMS (13) et à la seconde borne d'électrode négative de BMS (14), respectivement, et sautent sur la base d'une surintensité.
     
    3. Circuit selon la revendication 1, dans lequel le système de gestion de batterie comporte une pluralité de commutateurs (16) qui sont connectés à la première borne d'électrode positive de BMS (11), à la seconde borne d'électrode positive de BMS (12), à la première borne d'électrode négative de BMS (13) et à la seconde borne d'électrode négative de BMS (14), respectivement, et sont en marche/arrêt sur la base d'une surintensité.
     
    4. Circuit selon la revendication 1, dans lequel le contacteur comporte :

    une bobine (25) qui est connectée à la première borne d'électrode positive de contacteur (21), à la seconde borne d'électrode positive de contacteur (22), à la première borne d'électrode négative de contacteur (23) et à la seconde borne d'électrode négative de contacteur (24), et génère un champ magnétique et amène le contacteur (20) à être en marche/arrêt ; et

    des diodes (26) qui sont formées entre la bobine (25) et la première borne d'électrode positive de contacteur (21), la seconde borne d'électrode positive de contacteur (22),

    la première borne d'électrode négative de contacteur (23) et la seconde borne d'électrode négative de contacteur (24), et déterminent une direction d'un courant.


     
    5. Circuit selon la revendication 1, dans lequel le contacteur (20) comporte :

    un premier connecteur (27) comportant la première borne d'électrode positive de contacteur (21) et la première borne d'électrode négative de contacteur (23) ; et

    un second connecteur (28) comportant la seconde borne d'électrode positive de contacteur (22) et la seconde borne d'électrode négative de contacteur (24).


     
    6. Circuit selon la revendication 2 ou 3, dans lequel le BMS comporte une unité de détection qui détecte une tension alimentée depuis l'unité d'alimentation en énergie vers la pluralité de fusibles ou vers la pluralité de commutateurs, et un dispositif de commande qui fait sauter ou éteint la pluralité de fusibles ou la pluralité de commutateurs lorsqu'une surintensité est détectée dans la pluralité de fusibles ou la pluralité de commutateurs.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description