(19)
(11)EP 3 530 886 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
22.07.2020 Bulletin 2020/30

(21)Application number: 19168258.2

(22)Date of filing:  23.02.2015
(51)International Patent Classification (IPC): 
F01D 17/16(2006.01)
F16H 19/00(2006.01)

(54)

VARIABLE VANE SYNCHRONIZATION RING TRANSMISSION MECHANISMS

RINGGETRIEBEMECHANISMEN ZUR SYNCHRONISIERUNG EINER VARIABLEN SCHAUFEL

MÉCANISMES DE TRANSMISSION DE BAGUE DE SYNCHRONISATION D'AUBE VARIABLE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 21.02.2014 US 201461942770 P

(43)Date of publication of application:
28.08.2019 Bulletin 2019/35

(62)Application number of the earlier application in accordance with Art. 76 EPC:
17185912.7 / 3266988
15156166.9 / 2910740

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventor:
  • TEIXEIRA, John D
    Palm City, FL 34990 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A1- 2 626 521
WO-A1-2013/177785
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    1. Field of the Invention



    [0001] The present disclosure relates to transmission mechanisms, and more particularly to transmission mechanisms, such as in synchronization rings for variable vanes in gas turbine engines.

    2. Description of Related Art



    [0002] Traditionally, turbo fan engines for aircraft can include multiple stages of variable vanes to condition and guide airflow through the compressor and/or turbine sections. Variable vanes are configured to be pivoted about their respective vane axis to alter the angle of attack in order to optimize airflow characteristics for various operating conditions.

    [0003] Variable vanes can be connected to a synchronization ring (sync ring), each by a respective vane arm connected to the stem of the respective vane. The sync ring can drive each variable vane counter-clockwise and/or clockwise around its respective longitudinal axis in order to adjust vane stage angle for a particular operating condition. Bell-crank style mechanisms are commonly used to convert the linear or rotational force and displacement of an actuator output shaft into an equivalent force and displacement suitable for driving the sync ring over the desired range of angular rotation. Depending on the desired range of angular displacement of the variable vanes, the limitation on input angle for bell-crank style mechanisms can limit the mechanical advantage that can be achieved through the bell-crank mechanism. This can ultimately limit the accuracy of angle of attack for traditional variable vane systems.

    [0004] Such conventional methods and systems have generally been considered satisfactory for their intended purpose. However, there is still a need in the art for improved transmission mechanisms. The present disclosure provides a solution for this need.

    [0005] WO 2013/177785 A1 discloses a planetary gear transmission for an electric vehicle.

    [0006] EP 2626521 A1 discloses an actuation mechanism for variable vanes in a gas turbine engine using a unison ring assembly, where the term "unison ring" may be considered to be interchangeable with the term "synchronisation ring".

    SUMMARY OF THE INVENTION



    [0007] According to a first aspect, the present invention provides a transmission mechanism comprising: a planet gear configured to be mounted to a synchronization ring for rotation relative to the synchronization ring about a planet gear axis; a set of sun gear teeth meshed with teeth of the planet gear, wherein the set of sun gear teeth is configured to rotate and drive motion of the planet gear in a circumferential direction about an axis of the set of sun gear teeth; a set of ring gear teeth meshed with the teeth of the planet gear, wherein the set of sun gear teeth and the set of ring gear teeth are spaced apart from one another; and an input shaft configured to extend in a radially outward direction with respect to the synchronization ring, the input shaft having a first end and a second end, defining an actuator axis therebetween, wherein the set of sun gear teeth is defined proximate to the first end of the input shaft operatively connecting the input shaft to the planet gear; wherein the set of sun gear teeth is concentric with the input shaft.

    [0008] It is contemplated that a center of the planet gear can be configured to move along an arcuate path. A circle defined by the arcuate path can be concentric with the set of sun gear teeth. The transmission mechanism can include an input shaft configured to extend in a radially outward direction with respect to a sync ring. The input shaft can have a first end and a second end and can define an actuator axis therebetween. The set of sun gear teeth can be defined proximate to the first end of the input shaft and can operatively connect the input shaft to the planet gear. The input shaft can be configured to rotate the set of sun gear teeth about the actuator axis. The set of sun gear teeth can be concentric with the input shaft. The input shaft can be configured to be normal to a rotation axis of a sync ring and to be mounted to the sun gear.

    [0009] The transmission mechanism can include a housing that can be operatively connected to the set of ring gear teeth. The housing can surround at least a portion of the set of sun gear teeth and/or the planet gear. In addition, the housing can be configured to be disposed radially outward of a sync ring mounted to the planet gear and can be configured to be stationary with respect to the set of ring gear teeth and an axis of the set of sun gear teeth.

    [0010] The planet gear can be configured to connect to a sync ring through a spherical joint. An end surface of the housing can define a gear plane. The spherical joint can be configured to allow the planet gear to remain parallel with respect to the gear plane throughout an arc of motion. In addition, the spherical joint can be configured to allow a sync ring to rotate about and move axially with respect to a centerline axis to follow the arc of motion of the planet gear.

    [0011] It is also contemplated the set of ring gear teeth can be disposed on a partial ring gear defining a segment of a full ring gear. The set of sun gear teeth can be circumferentially disposed on a periphery of a partial sun gear defining a segment of a full sun gear.

    [0012] According to a second aspect the present invention provides a variable vane system including a sync ring defining a centerline axis, a plurality of variable vanes, and the transmission mechanism of the first aspect. The transmission mechanism is configured to drive motion of sync ring in an axial and rotational direction with respect to the centerline axis. The plurality of variable vanes are operatively connected to the sync ring such that the axial and rotational motion of the sync ring drives the rotation of the variable vanes to adjust the angle of attack of the variable vanes. It is contemplated that the variable vane system can include a plurality of vane arms operatively connecting an end of each variable vane to the sync ring. It is also contemplated that the housing can surround at least a portion of the transmission mechanism.

    [0013] These and other features of the systems and methods of the subject disclosure will become more readily apparent to those skilled in the art from the following detailed description of the preferred embodiments taken in conjunction with the drawings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0014] So that those skilled in the art to which the subject disclosure appertains will readily understand how to make and use the devices and methods of the subject disclosure without undue experimentation, preferred embodiments thereof will be described in detail herein below by way of example only, and with reference to certain figures, wherein:

    Fig. 1 is a schematic cross-sectional side elevation view of an exemplary embodiment of a gas turbine engine constructed in accordance with the present disclosure, showing a location of a variable vane system;

    Fig. 2 is a schematic partial perspective view of a portion of the gas turbine engine shown in Fig. 1, showing an engine case and a synchronization ring surrounding the turbine;

    Fig. 3 is a cut-away perspective view of a portion of a variable vane system of the gas turbine engine shown in Fig. 1, showing a synchronization ring, a transmission mechanism, and a vane arm;

    Fig. 4 is a partial cross-sectional view of an exemplary embodiment of the transmission mechanism of Fig. 3, showing a spherical joint and a planet gear; and

    Fig. 5 is a schematic partial plan view of an exemplary embodiment of a transmission mechanism constructed in accordance with the present disclosure, showing a partial sun gear.


    DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS



    [0015] Reference will now be made to the drawings wherein like reference numerals identify similar structural features or aspects of the subject disclosure. For purposes of explanation and illustration, and not limitation, a cross-sectional view of an exemplary embodiment of the gas turbine engine constructed in accordance with the disclosure is shown in Fig. 1 and is designated generally by reference character 100. Other embodiments of gas turbine engines constructed in accordance with the disclosure, or aspects thereof, are provided in Figs. 2-5, as will be described.

    [0016] As shown in Fig. 1, a variable vane system 102 includes a case 104 and a plurality of variable vanes 106. Variable vane system 102 is disposed in a turbine section 103 of gas turbine engine 100. Variable vanes 106 are stator vanes and project radially inward from case 104. Variable vane system 102 is shown in a high pressure turbine section 105 but could also be applied in a low pressure turbine section 107. Those skilled in the art will also readily appreciate that variable vane system 102 can also be disposed in a compressor section 101 of gas turbine engine 100, or can be used in any other suitable application.

    [0017] As shown in Fig. 2, variable vane system 102 includes a synchronization ring 108 (sync ring) disposed radially inward of case 104 defining a centerline axis A and a transmission mechanism 110. While sync ring 108 is shown and described herein as being disposed radially inward of case 104, those skilled in the art will readily appreciate that, depending on the application, sync ring 108 can be disposed radially outward of case 104. Variable vanes 106 project radially inward from case 104. The sync ring 108 is operatively connected to the variable vanes 106 such that the axial and rotational motion of sync ring 108 drives the rotation of variable vanes 106 about a vane axis B to adjust their angle of attack. The rotation of sync ring 108 about centerline axis A is indicated schematically by a double-headed arrow. The rotation of variable vanes 106 about vane axis B is also indicated schematically by a separate double-headed arrow. Variable vane system 102 includes a plurality of vane arms 114 operatively connecting a vane stem of each variable vane 106 to sync ring 108. Those skilled in the art will readily appreciate that while variable vane system 102 is shown with two transmission mechanisms 110, any suitable number of transmission mechanisms may be used.

    [0018] With reference now to Fig. 3, transmission mechanism 110 includes a planet gear 116, a set of sun gear teeth 118 and a set of ring gear teeth 120. Planet gear 116 is mounted to sync ring 108 for rotation relative to sync ring 108 about a planet gear axis C. Transmission mechanism 110 includes a ring gear segment 122. The set of ring gear teeth 120 is disposed on a partial ring gear 121 defining ring gear segment 122. Transmission mechanism 110 converts the rotational motion of an input shaft 124, described below, into curvilinear motion for driving sync ring 108.

    [0019] With continued reference to Fig. 3, transmission mechanism 110 includes a full sun gear 117. The set of sun gear teeth 118 is circumferentially disposed on a periphery of a partial sun gear 119 defining a segment of full sun gear 117. The sun gear teeth 118 mesh with teeth 112 of planet gear 116. The sun gear teeth 118 are configured to rotate and drive the motion of planet gear 116 in a circumferential direction, about an axis D of the set of sun gear teeth 118. The ring gear teeth 120 are meshed with teeth 112 of planet gear 116. The sun gear teeth 118 and the ring gear teeth 120 are spaced apart from one another, so as not to interfere with one another. The sun gear teeth 118 are configured to rotate and drive motion of sync ring 108 in an axial and rotational direction with respect to the centerline axis A, indicated by the double-headed arrow in Fig. 2. A center 115 of planet gear 116 is configured to move along an arcuate path indicated schematically by the arrows in Fig. 3. A circle defined by the arcuate path is concentric with sun gear 117 and the set of sun gear teeth 118.

    [0020] With continued reference to Fig. 3, those skilled in the art will readily appreciate that due to the connection of sync ring 108 and vane arms 114, a single point on the surface of sync ring 108 moves in a curvilinear path as sync ring 108 is moved through its incremental range of positive and negative angular rotation about centerline axis A. When this displacement path is viewed from any plane whose normal intersects centerline axis A, the path of sync ring 108 displacement appears as a simple arc, similar to the arcuate path traveled by center 115 of planet gear 116. Those skilled in the art will readily appreciate that the radius of this simple arc of travel of planet gear 116 is equal to one half of the sum of the pitch diameters of sun gear 117 and planet gear 116. By establishing the pitch diameters of sun gear 117 and planet gear 116 such that the distance between their centers exactly matches the radius of the arc of displacement of sync ring 108, planet gear 116 can drive sync ring 108 by attaching sync ring 108 to a bore of planet gear 116.

    [0021] As shown in Figs. 2 and 3, transmission mechanism 110 includes an input shaft 124 extending in a radially outward direction with respect to case 104. Input shaft 124 has a first end 125 and a second end 127 and defines an actuator axis therebetween. The actuator axis is the same as axis D of the set of sun gear teeth 118 because sun gear 117 is concentric with input shaft 124. Sun gear 117 is positioned proximate to first end 125 of input shaft 124 and operatively connects input shaft 124 to planet gear 116. Input shaft 124 is configured to rotate sun gear 117 about actuator axis D. Input shaft 124 is mounted normal relative to the centerline axis A of sync ring 108.

    [0022] With continued reference to Figs. 2 and 3, transmission mechanism 110 includes a housing 126 that is connected to ring gear segment 122. Housing 126 surrounds at least a portion of sun gear 117 and/or a portion of planet gear 116. In addition, housing 126 is mounted radially outward of sync ring 108 and case 104 and is configured to be stationary with respect to ring gear segment 122 and an axis of sun gear 117 and to case 104. Axis D of sun gear 117 is coincident with actuator axis D.

    [0023] Those skilled in the art will readily appreciate that the diameter of sun gear 117 (and consequently, the diameter of planet gear 116) can be varied such the gear ratio of sun gear 117 to planet gear 116 can be set to any suitable value for a given application. Those skilled in the art will also readily appreciate that the distance between the center of sun gear 117 and center 115 of planet gear 116 for any given application depends on the radius at which planet gear 116 is attached to sync ring 108.

    [0024] Those skilled in the art will also readily appreciate that the diametral pitch of the gear set can be chosen such that there are an integral number of teeth on planet gear 116. In addition, those skilled in the art will readily appreciate that it is not necessary that a full ring gear have an integral number of teeth, because only ring gear segment 122 is required. Likewise, it is contemplated that if the gear ratio is such that sun gear 117 will make less than a full turn when the system is operated over the total required range of operation, then a full sun gear, e.g. sun gear 117, is not required and only sun gear teeth 118, e.g. a portion of full sun gear 117, is required to have an integral number of teeth, as will be described below. Those skilled in the art will readily appreciate that the mechanical advantage of the system can be easily modified by changing the relative diameters of sun gear 117 and planet gear 116. This allows the total operating range of input shaft 124 to be independently optimized for either a linear actuator or a rotary actuator.

    [0025] As shown in Fig. 4, planet gear 116 is connected to sync ring 108 through a spherical joint 128. An end surface 129 of housing 126 defines a gear plane E, which extends in and out of the page, as shown in Fig. 4. Those skilled in the art will readily appreciate that sync ring 108 and spherical joint 128 are rotated away from its initial starting position designated by radial line F, shown in Fig. 4, the middle of its angular range of operation, to a radial line G. Radial line F is normal to gear plane E while radial line G is not normal to gear plane E due to the rotation of sync ring 108 about centerline axis A.

    [0026] In order to accommodate for this misalignment, spherical joint 128 is configured to allow planet gear 116 remain substantially parallel to gear plane E while allowing sync ring 108 to rotate about and move axially with respect to centerline axis A. Those skilled in the art will readily appreciate that even with the incorporation of spherical joint 128 to absorb the misalignment brought about by rotating sync ring 108 about centerline axis A, there can be a displacement of planet gear 116 relative to the gear plane E, i.e. planet gear 116 will move vertically with respect to gear plane E, as oriented in Fig. 4. The thickness of planet gear 116, sun gear 117, and ring gear segment 122 can be configured to allow for this vertical motion.

    [0027] With reference now to Fig. 5, a transmission mechanism 210 is similar to transmission mechanism 110, described above. In transmission mechanism 210, a partial sun gear 219 makes less than a full turn when the system is operated over the total required range of operation, therefore a full sun gear, e.g. sun gear 117, is not required. A set of sun gear teeth 218 are circumferentially disposed on a periphery of partial sun gear 219, while a portion 230 of partial sun gear 219 remains without sun gear teeth 218.

    [0028] Those skilled in the art will readily appreciate that transmission mechanisms, e.g. transmission mechanisms 110 and 210, tend to provide an increased mechanical advantage compared to that of a traditional bell-crank mechanism. For example, if the input angle of a bell-crank mechanism is a total range of 90 degrees, i.e. 45 degrees in one direction and 45 degrees in the opposite direction, and the sync ring must drive the variable vanes over a total range of 30 degrees of rotation, then the limitation on input angle means that a maximum mechanical advantage of 3:1 can be achieved. This 90 degree limitation on the input angle of a bell-crank mechanism is generally imposed to maintain an approximately linear correlation between the input angle and the output displacement of the bell-crank mechanism. Any other suitable mechanical advantage can be used for a given application without departing from the scope of this disclosure.

    [0029] Those skilled in the art will also readily appreciate that variable vane position is generally measured implicitly by measuring the angular position of an actuator output shaft. By virtue of the increased mechanical advantage of transmission mechanisms, e.g. transmission mechanisms 110 and 210, and the accompanying increase in the angular displacement of the actuator output shaft, the vane position measurement tends to be more accurate than transmission systems having lower mechanical advantage and correspondingly smaller actuator output shaft displacement ranges.

    [0030] In addition, those skilled in the art will readily appreciate that in order for a bell-crank mechanism to achieve a similar displacement to that of transmission mechanisms, e.g. transmission mechanisms 110 and 210, a bell-crank mechanism tends to require input from a larger actuator, capable of generating larger actuation forces, than is required for transmission mechanisms. Those skilled in the art will also readily appreciate that larger actuation forces, such as those used in traditional bell-crank mechanisms tend to require larger linkage components between the actuator and the bell-crank mechanism than those required for transmission mechanisms, tending to make the actuator system using the bell-crank mechanism heavier than one using transmission mechanisms.

    [0031] Those skilled in the art will readily appreciate that for a given input shaft rotation angle, the arrangement described herein has the potential to provide a greater degree of mechanical advantage than a simple bellcrank arrangement and would therefore reduce actuator torque requirements and actuation linkage loads, potentially reducing actuation system weight while improving accuracy.

    [0032] The methods and systems of the present disclosure, as described above and shown in the drawings, provide for transmission mechanisms and variable vane systems with superior properties including potentially improved mechanical advantage, potentially increased accuracy and potentially reduced weight. While the apparatus and methods of the subject disclosure have been shown and described with reference to preferred embodiments, those skilled in the art will readily appreciate that changes and/or modifications may be made thereto without departing from the scope of the subject disclosure as set out in the claims.


    Claims

    1. A transmission mechanism (110; 210) comprising:

    a planet gear (116; 216) configured to be mounted to a synchronization ring (108) for rotation relative to the synchronization ring about a planet gear axis (C);

    a set of sun gear teeth (118; 218) meshed with teeth (112) of the planet gear, wherein the set of sun gear teeth is configured to rotate and drive motion of the planet gear in a circumferential direction about an axis (D) of the set of sun gear teeth;

    a set of ring gear teeth (120) meshed with the teeth of the planet gear, wherein the set of sun gear teeth and the set of ring gear teeth are spaced apart from one another; and

    an input shaft (124) configured to extend in a radially outward direction with respect to the synchronization ring, the input shaft having a first end (125) and a second end (127), defining an actuator axis (D) therebetween, wherein the set of sun gear teeth is defined proximate to the first end of the input shaft operatively connecting the input shaft to the planet gear;

    wherein the set of sun gear teeth is concentric with the input shaft.


     
    2. A transmission mechanism as recited in claim 1, wherein a center (115) of the planet gear is configured to move along an arcuate path, wherein a circle defined by the arcuate path is concentric with the set of sun gear teeth.
     
    3. A transmission mechanism as recited in claim 1 or 2, wherein the input shaft is configured to rotate the set of sun gear teeth about the actuator axis.
     
    4. A transmission mechanism as recited in any of claims 1, 2 or 3, wherein the input shaft is configured to be mounted to the sun gear and to be normal to a centerline axis (A) of the synchronization ring.
     
    5. A transmission mechanism as recited in any preceding claim, further comprising a housing (126) operatively connected to the set of ring gear teeth and surrounding at least a portion of at least one of the set of sun gear teeth and the planet gear, wherein the housing is configured to be disposed radially outward of the synchronization ring and configured to be stationary with respect to the set of ring gear teeth and an axis (D) of the set of sun gear teeth.
     
    6. A transmission mechanism as recited in any preceding claim, wherein the planet gear is configured to connect to the synchronization ring through a spherical joint (128; 228), wherein an end surface (129) of a housing (126) defines a gear plane (E), wherein the spherical joint is configured to allow the planet gear to remain parallel with respect to the gear plane throughout an arc of motion, and wherein the spherical joint is configured to allow the synchronization ring to rotate about and move axially with respect to a centerline axis (A) to follow an arc of motion of the planet gear.
     
    7. A transmission mechanism as recited in any preceding claim, wherein the set of ring gear teeth is disposed on a partial ring gear (121) defining a segment (122; 222) of a full ring gear.
     
    8. A transmission mechanism as recited in any preceding claim, wherein the set of sun gear teeth is circumferentially disposed on a periphery of a partial sun gear (119; 219) defining a segment of a full sun gear (117).
     
    9. A variable vane system, comprising:

    the transmission mechanism as recited in claim 1, wherein:

    the synchronization ring defines a centerline axis (A);

    the planet gear is mounted radially outward of the synchronization ring; and

    the set of sun gear teeth actuates the synchronization ring for axial and rotational motion with respect to the centerline axis;

    a plurality of variable vanes (106) operatively connected to the synchronization ring such that the axial and rotational motion of the synchronization ring drives the rotation of the variable vanes to adjust the angle of attack of the variable vanes; and

    said input shaft (124) extends in a radially outward direction with respect to the synchronization ring.


     
    10. A variable vane system as recited in claim 9, wherein a center (115) of the planet gear is configured to move along an arcuate path, wherein a circle defined by the arcuate path is concentric with the set of sun gear teeth.
     
    11. A variable vane system as recited in claims 9 or 10, further comprising a plurality of vane arms (114) operatively connecting an end of each variable vane to the synchronization ring.
     
    12. A variable vane system as recited in any of claims 9 to 11, wherein the input shaft is configured to rotate the set of sun gear teeth about the actuator axis.
     
    13. A variable vane system as recited in any of claims 9 to 12, wherein the input shaft is normal to the centerline axis of the synchronization ring.
     
    14. A variable vane system as recited in any of claims 9 to 13, further comprising a housing (126) disposed radially outward of the synchronization ring operatively connected to the set of ring gear teeth and surrounding at least a portion of the transmission mechanism, wherein the housing is configured to be stationary with respect to the set of ring gear teeth and an axis (D) of the set of sun gear teeth.
     
    15. A variable vane system as recited in any of claims 9 to 14, wherein the planet gear is connected to the synchronization ring through a spherical joint (128; 228), wherein an end surface (129) of a housing (126) defines a gear plane (E), wherein the spherical joint is configured to allow the planet gear to remain parallel with respect to the gear plane throughout an arc of motion, and wherein the spherical joint is configured to allow the synchronization ring to rotate about and move axially with respect to the centerline axis to follow an arc of motion of the planet gear; and/or
    wherein the set of ring gear teeth is disposed on a partial ring gear (121) defining a segment (122; 222) of a full ring gear; and/or
    wherein the set of sun gear teeth is circumferentially disposed on a periphery of a partial sun gear (119; 219) defining a segment of a full sun gear (117).
     


    Ansprüche

    1. Übertragungsmechanismus (110; 210), der Folgendes umfasst:

    ein Planetenrad (116; 216), das dazu konfiguriert ist, an einem Synchronisationsring (108) zur Drehung relativ zu dem Synchronisationsring um eine Planetenradachse (C) montiert zu sein;

    einen Satz von Sonnenradzähnen (118; 218), die mit Zähnen (112) des Planetenrads verzahnt sind, wobei der Satz von Sonnenradzähnen dazu konfiguriert ist, das Planetenrad in eine Umfangsrichtung um eine Achse (D) des Satzes von Sonnenradzähnen zu drehen und die Bewegung davon anzutreiben;

    einen Satz von Hohlradzähnen (120), die mit den Zähnen des Planetenrads verzahnt sind, wobei der Satz von Sonnenradzähnen und der Satz von Hohlradzähnen voneinander beabstandet sind; und

    eine Eingangswelle (124), die dazu konfiguriert ist, sich in eine radial nach außen verlaufende Richtung in Bezug auf den Synchronisationsring zu erstrecken, wobei die Eingangswelle ein erstes Ende (125) und ein zweites Ende (127) aufweist, die eine Betätigungselementachse (D) dazwischen definieren, wobei der Satz von Sonnenradzähnen nahe dem ersten Ende der Eingangswelle definiert ist, das die Eingangswelle mit dem Planetenrad verbindet;

    wobei der Satz von Sonnenradzähnen konzentrisch mit der Eingangswelle ist.


     
    2. Übertragungsmechanismus nach Anspruch 1, wobei ein Mittelpunkt (115) des Planetenrads dazu konfiguriert ist, sich entlang eines bogenförmigen Verlaufs zu bewegen, wobei ein Kreis, der durch den bogenförmigen Verlauf definiert ist, konzentrisch mit dem Satz von Sonnenradzähnen ist.
     
    3. Übertragungsmechanismus nach Anspruch 1 oder 2, wobei die Eingangswelle dazu konfiguriert ist, den Satz von Sonnenradzähnen um die Betätigungselementachse zu drehen.
     
    4. Übertragungsmechanismus nach einem der Ansprüche 1, 2 oder 3, wobei die Eingangswelle dazu konfiguriert ist, an dem Sonnenrad montiert zu sein und normal zu einer Mittellinienachse (A) des Synchronisationsrings zu sein.
     
    5. Übertragungsmechanismus nach einem der vorhergehenden Ansprüche, der ferner ein Gehäuse (126) umfasst, das betriebswirksam mit dem Satz von Hohlradzähnen verbunden ist und mindestens einen Abschnitt von mindestens einem des Satzes von Sonnenradzähnen und des Planetenrads umgibt, wobei das Gehäuse dazu konfiguriert ist, radial außerhalb des Synchronisationsrings angeordnet zu sein, und dazu konfiguriert ist, in Bezug auf den Satz von Hohlradzähnen und eine Achse (D) des Satzes von Sonnenradzähnen stationär zu sein.
     
    6. Übertragungsmechanismus nach einem der vorhergehenden Ansprüche, wobei das Planetenrad dazu konfiguriert ist, sich durch ein Kugelgelenk (128; 228) mit dem Synchronisationsring zu verbinden, wobei eine Endfläche (129) eines Gehäuses (126) eine Radebene (E) definiert, wobei das Kugelgelenk dazu konfiguriert ist, dem Planetenrad zu ermöglichen, während eines Bewegungsbogens parallel in Bezug auf die Radebene zu bleiben, und wobei das Kugelgelenk dazu konfiguriert ist, dem Synchronisationsring zu ermöglichen, sich um eine Mittellinienachse (A) zu drehen und sich axial in Bezug darauf zu bewegen, um einem Bewegungsbogen des Planetenrads zu folgen.
     
    7. Übertragungsmechanismus nach einem der vorhergehenden Ansprüche, wobei der Satz von Hohlradzähnen auf einem Teilhohlrad (121) angeordnet ist, das ein Segment (122; 222) eines ganzen Hohlrads definiert.
     
    8. Übertragungsmechanismus nach einem der vorhergehenden Ansprüche, wobei der Satz von Sonnenradzähnen in Umfangsrichtung auf einem Umfang eines Teilsonnenrads (119; 219) angeordnet ist, das ein Segment eines ganzen Sonnenrads (117) definiert.
     
    9. System variabler Leitschaufeln, das Folgendes umfasst:

    den Übertragungsmechanismus nach Anspruch 1, wobei:

    der Synchronisationsring eine Mittellinienachse (A) definiert;

    das Planetenrad radial außerhalb des Synchronisationsrings montiert ist; und

    der Satz von Sonnenradzähnen den Synchronisationsring für axiale und drehende Bewegung in Bezug auf die Mittellinienachse betätigt;

    eine Vielzahl von variablen Leitschaufeln (106), die betriebswirksam mit den Synchronisationsring verbunden sind, sodass die axiale und drehende Bewegung des Synchronisationsrings die Drehung der variablen Leitschaufeln dazu antreibt, den Angriffswinkel der variablen Leitschaufeln einzustellen; und

    die Eingangswelle (124) sich in eine radial nach außen verlaufende Richtung in Bezug auf den Synchronisationsring erstreckt.


     
    10. System variabler Leitschaufeln nach Anspruch 9, wobei ein Mittelpunkt (115) des Planetenrads dazu konfiguriert ist, sich entlang eines bogenförmigen Verlaufs zu bewegen, wobei ein Kreis, der durch den bogenförmigen Verlauf definiert ist, konzentrisch mit dem Satz von Sonnenradzähnen ist.
     
    11. System variabler Leitschaufeln nach den Ansprüchen 9 oder 10, das ferner eine Vielzahl von Leitschaufelarmen (114) umfasst, die betriebswirksam ein Ende jeder variablen Leitschaufel mit dem Synchronisationsring verbinden.
     
    12. System variabler Leitschaufeln nach einem der Ansprüche 9 bis 11, wobei die Eingangswelle dazu konfiguriert ist, den Satz von Sonnenradzähnen um die Betätigungselementachse zu drehen.
     
    13. System variabler Leitschaufeln nach einem der Ansprüche 9 bis 12, wobei die Eingangswelle normal zu der Mittellinienachse des Synchronisationsrings ist.
     
    14. System variabler Leitschaufeln nach einem der Ansprüche 9 bis 13, das ferner ein Gehäuse (126) umfasst, das radial außerhalb des Synchronisationsrings angeordnet ist, der betriebswirksam mit dem Satz von Hohlradzähnen verbunden ist und mindestens einen Abschnitt des Übertragungsmechanismus umgibt, wobei das Gehäuse dazu konfiguriert ist, in Bezug auf den Satz von Hohlradzähnen und eine Achse (D) des Satzes von Sonnenradzähnen stationär zu sein.
     
    15. System variabler Leitschaufeln nach einem der Ansprüche 9 bis 14, wobei das Planetenrad mit dem Synchronisationsring durch ein Kugelgelenk (128; 228) verbunden ist, wobei eine Endfläche (129) eines Gehäuses (126) eine Radebene (E) definiert, wobei das Kugelgelenk dazu konfiguriert ist, dem Planetenrad zu ermöglichen, während eines Bewegungsbogens parallel in Bezug auf die Radebene zu bleiben, und wobei das Kugelgelenk dazu konfiguriert ist, dem Synchronisationsring zu ermöglichen, sich um die Mittellinienachse zu drehen und sich axial in Bezug darauf zu bewegen, um einem Bewegungsbogen des Planetenrads zu folgen; und/oder
    wobei der Satz von Hohlradzähnen auf einem Teilhohlrad (121) angeordnet ist, das ein Segment (122; 222) eines ganzen Hohlrads definiert; und/oder
    wobei der Satz von Sonnenradzähnen in Umfangsrichtung auf einem Umfang eines Teilsonnenrads (119; 219) angeordnet ist, das ein Segment eines ganzen Sonnenrads (117) definiert.
     


    Revendications

    1. Mécanisme de transmission (110 ; 210) comprenant :

    un train planétaire (116 ; 216) étant configuré pour être monté sur une bague de synchronisation (108) pour tourner par rapport à la bague de synchronisation autour d'un axe (C) de train planétaire ;

    un ensemble de dents de roue solaire (118 ; 218) en prise avec des dents (112) du train planétaire, dans lequel l'ensemble de dents de roue solaire est configuré pour tourner et entraîner le mouvement du train planétaire dans une direction circonférentielle autour d'un axe (D) de l'ensemble de dents de roue solaire ;

    un ensemble de dents de couronne dentée (120) en prise avec les dents du train planétaire, dans lequel l'ensemble de dents de roue solaire et l'ensemble de dents de couronne dentée sont espacés l'un de l'autre ; et

    un arbre d'entrée (124) étant configuré pour s'étendre dans une direction radialement vers l'extérieur par rapport à la bague de synchronisation, l'arbre d'entrée ayant une première extrémité (125) et une seconde extrémité (127), définissant entre elles un axe d'actionneur (D), dans lequel l'ensemble de dents de roue solaire est défini à proximité de la première extrémité de l'arbre d'entrée reliant fonctionnellement l'arbre d'entrée au train planétaire ;

    dans lequel l'ensemble de dents de roue solaire est concentrique avec l'arbre d'entrée.


     
    2. Mécanisme de transmission selon la revendication 1, dans lequel un centre (115) du train planétaire est configuré pour se déplacer le long d'un chemin arqué, dans lequel un cercle défini par le chemin arqué est concentrique avec l'ensemble de dents de roue solaire.
     
    3. Mécanisme de transmission selon la revendication 1 ou 2, dans lequel l'arbre d'entrée est configuré pour faire tourner l'ensemble de dents de roue solaire autour de l'axe d'actionneur.
     
    4. Mécanisme de transmission selon l'une quelconque des revendications 1, 2 ou 3, dans lequel l'arbre d'entrée est configuré pour être monté sur la roue solaire et pour être perpendiculaire à un axe central (A) de la bague de synchronisation.
     
    5. Mécanisme de transmission selon une quelconque revendication précédente, comprenant en outre un boîtier (126) relié fonctionnellement à l'ensemble de dents de couronne dentée et entourant au moins une partie d'au moins l'un de l'ensemble de dents de roue solaire et du train planétaire, dans lequel le boîtier est configuré pour être disposé radialement à l'extérieur de la bague de synchronisation et configuré pour être fixe par rapport à l'ensemble de dents de couronne dentée et à un axe (D) de l'ensemble de dents de roue solaire.
     
    6. Mécanisme de transmission selon une quelconque de revendication précédente, dans lequel le train planétaire est configuré pour être relié à la bague de synchronisation à travers un joint sphérique (128 ; 228), dans lequel une surface d'extrémité (129) d'un boitier (126) définit un plan de roue dentée (E), dans lequel le joint sphérique est configuré pour permettre au train planétaire de rester parallèle par rapport au plan de roue dentée tout au long d'un arc de mouvement, et dans lequel le joint sphérique est configuré pour permettre à la bague de synchronisation de tourner et de se déplacer axialement par rapport à un axe central (A) pour suivre un arc de mouvement du train planétaire.
     
    7. Mécanisme de transmission selon une quelconque de revendication précédente, dans lequel l'ensemble de dents de couronne dentée est disposé sur une couronne dentée partielle (121) définissant un segment (122 ; 222) d'une couronne dentée complète.
     
    8. Mécanisme de transmission selon une quelconque revendication précédente, dans lequel l'ensemble de dents de roue solaire est disposé circonférentiellement sur une périphérie d'une roue solaire partielle (119 ; 219) définissant un segment d'une roue solaire complète (117).
     
    9. Système à aube variable, comprenant :
    le mécanisme de transmission selon la revendication 1, dans lequel :

    la bague de synchronisation définit un axe central (A) ;

    le train planétaire est monté radialement à l'extérieur de la bague de synchronisation ; et

    l'ensemble de dents de roue solaire actionne la bague de synchronisation pour un mouvement axial et rotatif par rapport à l'axe central ;

    une pluralité d'aubes variables (106) reliées fonctionnellement à la bague de synchronisation de sorte que le mouvement axial et rotatif de la bague de synchronisation entraîne la rotation des aubes variables pour ajuster l'angle d'attaque des aubes variables ; et

    ledit arbre d'entrée (124) s'étend dans une direction radialement vers l'extérieur par rapport à la bague de synchronisation.


     
    10. Système à aube variable selon la revendication 9, dans lequel un centre (115) du train planétaire est configuré pour se déplacer le long d'un chemin arqué, dans lequel un cercle défini par le chemin arqué est concentrique avec l'ensemble de dents de roue solaire.
     
    11. Système à aube variable selon les revendications 9 ou 10, comprenant en outre une pluralité de bras d'aube (114) reliant fonctionnellement une extrémité de chaque aube variable à la bague de synchronisation.
     
    12. Système à aube variable selon l'une quelconque des revendications 9 à 11, dans lequel l'arbre d'entrée est configuré pour faire tourner l'ensemble de dents de roue solaire autour de l'axe d'actionneur.
     
    13. Système à aube variable selon l'une quelconque des revendications 9 à 12, dans lequel l'arbre d'entrée est perpendiculaire à l'axe central de la bague de synchronisation.
     
    14. Système à aube variable selon l'une quelconque des revendications 9 à 13, comprenant en outre un boîtier (126) disposé radialement à l'extérieur de la bague de synchronisation, relié fonctionnellement à l'ensemble de dents de couronne dentée et entourant au moins une partie du mécanisme de transmission, dans lequel le boîtier est configuré pour être fixe par rapport à l'ensemble de dents de couronne dentée et à un axe (D) de l'ensemble de dents de roue solaire.
     
    15. Système à aube variable selon l'une quelconque des revendications 9 à 14, dans lequel le train planétaire est relié à la bague de synchronisation par l'intermédiaire d'un joint sphérique (128 ; 228), dans lequel une surface d'extrémité (129) d'un boîtier (126) définit un plan de roue dentée (E), dans lequel le joint sphérique est configuré pour permettre au train planétaire de rester parallèle par rapport au plan de roue dentée tout au long d'un arc de mouvement, et dans lequel le joint sphérique est configuré pour permettre à la bague de synchronisation de tourner et de se déplacer axialement par rapport à l'axe central pour suivre un arc de mouvement du train planétaire ; et/ou
    dans lequel l'ensemble de dents de couronne dentée est disposé sur une couronne dentée partielle (121) définissant un segment (122 ; 222) d'une couronne dentée complète ; et/ou
    dans lequel l'ensemble de dents de roue solaire est disposé circonférentiellement sur une périphérie d'une roue solaire partielle (119 ; 219) définissant un segment d'une roue solaire complète (117).
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description