(19)
(11)EP 3 536 665 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
17.06.2020 Bulletin 2020/25

(21)Application number: 17893478.2

(22)Date of filing:  05.07.2017
(51)International Patent Classification (IPC): 
C01B 32/184(2017.01)
C04B 35/52(2006.01)
C09K 5/14(2006.01)
C01B 32/192(2017.01)
C04B 35/626(2006.01)
(86)International application number:
PCT/CN2017/091791
(87)International publication number:
WO 2018/133338 (26.07.2018 Gazette  2018/30)

(54)

METHOD FOR CONTINUOUSLY PREPARING GRAPHENE HEAT-CONDUCTING FILMS

VERFAHREN ZUR KONTINUIERLICHEN HERSTELLUNG VON WÄRMELEITENDEN GRAPHENFOLIEN

MÉTHODE DE PRÉPARATION EN CONTINU DE FILMS CONDUCTEURS DE CHALEUR EN GRAPHÈNE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 23.01.2017 CN 201710057914

(43)Date of publication of application:
11.09.2019 Bulletin 2019/37

(73)Proprietor: Changzhou Fuxi Technology Co., Ltd
Changzhou, Jiangsu 213000 (CN)

(72)Inventors:
  • ZHOU, Bucun
    Jiangsu 213000 (CN)
  • ZHOU, Renjie
    Jiangsu 213000 (CN)
  • LI, Feng
    Jiangsu 213000 (CN)
  • LU, Jing
    Jiangsu 213000 (CN)

(74)Representative: Wang, Bo 
Panovision IP Ebersberger Straße 3
85570 Markt Schwaben
85570 Markt Schwaben (DE)


(56)References cited: : 
WO-A1-2016/011987
CN-A- 102 757 038
CN-A- 105 110 794
CN-A- 105 523 547
US-A1- 2015 266 739
CN-A- 101 513 998
CN-A- 103 449 423
CN-A- 105 110 794
JP-A- 2011 195 363
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The present disclosure relates to graphene. In particular, the present disclosure relates to a method for continuously preparing thermal-conductivity graphene films.

    Background



    [0002] There are major application requirements for thermal conduction and dissipation in many fields such as electronics, communications, lighting, aerospace and national defense. The mainstream thermal conductive materials in the market are still mostly aluminum or copper or their alloys. In recent years, however, thermal-conductivity graphene films have been widely used and quickly occupy the market share of traditional materials. Thermal-conductivity graphene film has the following advantages: high thermal conductivity in a range of from 300 w/m·k to 1500w/m·k, which is higher than aluminum alloy and elemental copper; light weight, which is 25% lighter than aluminum and 75% lighter than copper.

    [0003] At present, the methods for preparing a highly oriented thermal-conductivity graphene film from graphite oxide are as follows: 1. dispersing the graphite oxide in a solvent to form a graphene oxide slurry, coating on the substrate by spraying, blade coating or extrusion coating and so on, drying to form a graphene oxide film, and then chemically reducing or thermally reducing the graphene oxide film to obtain a graphene film (e.g. CN 105084858 A). In this method, the solid content of the graphene oxide slurry is very low (0.5 to 2%), so a large amount of solvent needs to be removed during the drying process, which consumes too much energy, and owing to the temperature resistance characteristic, the surface appearance of the graphene oxide film will be poor when dried above 100 °C, causing the final prepared thermal-conductivity graphene film to be unacceptable to customers. 2. drying the graphite oxide firstly to form powders or granules, subjecting to high-temperature stripping to obtain the thin graphene sheets, dispersing the graphene sheets in a solvent to prepare a slurry, coating on a substrate by spraying, blade coating or extrusion coating and so on, drying to form a graphene film, and then thermally reducing to obtain a graphene film having a high thermal conductivity (Adv. Mater. 2014, 26(26): 4521-6). In this method, it is necessary to dry the graphite oxide firstly, which consumes too much energy and is costly.

    [0004] CN105110794 describes a method of making a graphene film, in which a graphene oxide slurry is coated on a PET substrate using a doctor blade in order to obtain a graphene oxide film. The weight ratio graphene/water is 1:(10-100). The coated film is dried in a drying tunnel. After removing the graphene film from the substrate the film is wound up to a coil. The film is then cut into pieces. The film is first heat treated at up to 800°C and then graphitised at 2300°C. This film has an electromagnetic shielding effectiveness of 67.6 Db at 30 MHz. The film has a thickness of 300 microns.

    [0005] US2015/266739 describes a graphene film with a thickness of 100-500 microns. The graphene film has a thermal conductivity of at least 1,500 W/mK, an electrical conductivity no less than 10,000 S/cm, a physical density greater than 2.0 g/cm3, and/or a tensile strength greater than 35 MPa.

    [0006] Therefore, it is of great economic significance to develop a continuous method provided with high-efficiency and low-energy for preparing a thermal-conductivity graphene film.

    Summary of the Invention



    [0007] The first object of the present disclosure is to solve the problem of requiring a graphene oxide slurry with lower solid content, high energy consumption owing to remove the solvent at high temperature and the poor surface appearance of the graphene oxide film caused by high-temperature solvent removal in the process of preparing a thermal-conductivity graphene film in the prior art; the second is to solve the problem of tedious process, high energy consumption and high costs, which are results of drying firstly and then stripping when preparing the thermal-conductivity graphene film and providing a method for continuously preparing the thermal-conductivity graphene film.

    [0008] According to the invention, a method is provided for continuously preparing thermal-conductivity graphene films, comprising:
    1. 1) processing a graphite oxide containing 40 to 60wt% of moisture into strips via a screw extruder, and then cutting into pellets to obtain graphite oxide particles; the graphite oxide particles has a particle size of 1 to 5 mm;
    2. 2) stripping the graphite oxide particles of step 1) at a high temperature to prepare graphene oxide powder in a high-temperature furnace protected by nitrogen or argon gas; the temperature of high-temperature stripping ranges from 800 to 1500 °C; in the process of the high-temperature stripping, preferably the smaller the particle size in step 1), the shorter the time of the high-temperature stripping;
    3. 3) dispersing the graphene oxide powder in a solvent to form a homogeneous graphene oxide slurry by a high-speed disperser, wherein the high-speed disperser has a linear velocity of 5 to 50 m / min. The degree of homogeneity of dispersion in the present disclosure has an important influence on the thermal conductivity of the thermal-conductivity graphene film, and the more homogeneous, the higher the thermal conductivity will be. The thermal-conductivity graphene film of the present invention can be obtained only when the graphene oxide slurry has a viscosity of 20000-100000 mPa.s and a fineness of less than 30 µm. The high-speed disperser is preferably provided with a cooling layer which can prevent the slurry temperature from rising and avoid affecting the dispersion effect;
    4. 4) defoaming the dispersed graphene oxide slurry of step 3) under vacuum to avoid the impact on the subsequent process. Bubbles larger than 0.2mm are not allowed and the content of bubble less than 0.2 mm is less than 0.02 mL / L.If the bubbles does not meet the requirements, it will lead to the poor surface appearance of the resulting thermal-conductivity graphene film;
    5. 5) coating the defoamed graphene oxide slurry of step 4) on a substrate to form a graphene oxide film with a certain thickness by blade coating or extrusion coating, drying the graphene oxide film to remove the solvent in an oven of a coater, and then continuously winding to form coils, wherein the substrate is selected from the group consisting of a steel strip, PET, a stainless steel mesh of 500-2000 mesh and a nylon mesh of 500-1000 mesh, the thickness is 0.8-3 mm and the drying temperature of the oven of the coater is 70-150 °C.In the process of removing the solvent, the graphene oxide sheet is preferably oriented in the x-y plane due to the capillary pressure formed by the evaporation of the solvent and the thickness of the coating affects the thickness of the resulting thermal-conductivity graphene film.
    6. 6) stripping the graphene oxide film from the substrate of the coils of step 5) via a stripping device, and then cutting the edge of the graphene oxide film by a trimming device to form continuous coils of graphene oxide film. The stripped substrate can be repeatedly used after ultrasonic cleaning and drying, which can reduce manufacturing costs and enhance competitiveness;
    7. 7) performing heat treatment on the continuous coils of graphene oxide prepared in step 6) in a hot air oven heated from room temperature to 150 °C-500 °C; thereby realizing preliminary reduction of the graphene oxide film;
    8. 8) placing the preliminarily reduced graphene oxide of step 7) into a high-temperature induction heating furnace heated from room temperature to 2200 °C - 2800 °C, which can repair and rearrange defects of graphene sheets, increase the graphitization degree, and improve the thermal conductivity of materials;
    9. 9) rolling or vacuum rolling the graphitized graphene film of step 8) to increase the density, wherein the rolling has a pressure of 10 to 30 MPa;
    10. 10) transferring and sticking the rolled graphene film of step 9) onto protective films, which preferably are silicone protective films, to form the resulting product.


    [0009] In an aspect of the disclosure relating to the method for continuously preparing thermal-conductivity graphene films, the further technical solution can be that the graphene oxide powder obtained in step 2) has a sheet size of 2 to 10 µm, and a number of sheet of 1 to 8.

    [0010] In an aspect of the disclosure relating to the method for continuously preparing thermal-conductivity graphene films, the further technical solution can be that the solvent of step 3) is selected from the group consisting of ethanol, water, NMP, DMF, furan, tetrahydrofuran or any combination thereof.

    [0011] The concentration of the graphene oxide in the graphene oxide slurry of step 3) is 3 to 20 wt%.

    [0012] In an aspect of the disclosure relating to the method for continuously preparing thermal-conductivity graphene films, the further technical solution can be that the hot air oven of step 7) has a heating rate of 1-3 °C / min.

    [0013] In an aspect of the disclosure relating to the method for continuously preparing thermal-conductivity graphene films, the further technical solution can be that the high-temperature induction heating furnace of step 8) has a heating rate of 2-10 °C / min.

    [0014] In the present invention, the thermal-conductivity graphene film has a density of 0.015 to 2.21 g/cm3; a thickness of 8 to 1000 µm; a thermal conductivity of 800 to 1900 W/m•K; a electromagnetic shielding effectiveness of 60-90 dB under the electromagnetic frequency of 30MHz-3GHz; a conductivity of 5-20x105 S/m; a tensile strength of 20-80 MPa and the thermal-conductivity graphene film can be bent more than 300,000 times under the detection condition of R0.5/180°.

    [0015] The method for continuously preparing thermal-conductivity graphene film in the present disclosure comprises the step of high-temperature stripping the graphite oxide containing a certain range of moisture directly, which saved the energy for drying graphite oxide. The surface functional group of graphene sheets has been mostly reduced after high-temperature stripping, so that when dispersed in a solvent, it can achieve a higher solid content in the slurry. Since most of the functional groups of the graphene sheets have been lost, the temperature of the oven can be raised to evaporate solvent fastly and increase drying efficiency when the coating is dried.

    [0016] Compared with the prior art, the present disclosure has the following advantages:
    1. 1. the graphene oxide containing 40-60 wt% of moisture is directly stripping at a high temperature, thereby eliminating the process of drying graphene oxide and achieving low energy consumption and low production cost;
    2. 2. Compared with the direct dispersion of graphite oxide to prepare the slurry, the concentration of graphene oxide in the slurry prepared in the invention after high-temperature stripping is higher, and reaches 3-20% by weight.


    [0017] Comparing to directly disperse the graphene oxide in a solvent to gain a slurry and then prepare the graphene oxide film (CN 105084858 A), the graphite oxide was stripped at a high temperature firstly and the solid content of the slurry reaches 3-20% by weight in the present disclosure.

    [0018] The thermal conductivity of the resulting thermal-conductivity graphene film can reach the level of the prior art in the case of having higher solid content in the slurry than the prior art with higher manufacturing efficiency and lower cost. In addition, higher temperatures can be adopted in the drying process, and thus the drying efficiency is higher than the prior art. According to Adv. Mater. 2014, 26(26): 4521-6, the graphite oxide is firstly dried and then stripped. By comparison, the method of the present disclosure eliminates the drying prcess and achieve slow energy consumption and low production cost.

    DETAILED DESCRIPTION OF THE EMBODIMENTS



    [0019] The objective, technical solutions and advantages of the present invention will be described clearly and completely as below with reference to the embodiments. It should be understand that the description is only exemplary and is not intended to limit the scope of the invention.

    [0020] The manufacturer of the graphene oxide raw material used in the present invention is SE2430W of Changzhou Sixth Element Materials Technology Co., Ltd. or JH005A of Nanjing Jiuhe Nano Technology Co., Ltd.. The remaining reagents are commercially available conventional reagents, and the high-speed disperser is double planetary mixer equipped with a cooling layer.

    Example 1



    [0021] 
    1) The graphite oxide containing 45 wt% of moisture was processed into strips via a screw extruder, and then cutted into pellets to obtain graphite oxide particles having a particle size of 1 mm;
    2) The graphene oxide particles of step 1) were subjected to high-temperature stripping in a high-temperature furnace protected by argon gas at the temperature of 1000 °C,wherein the resulting graphene oxide powder has a sheet size of 8µm and has a number of sheet of 6;
    3) The graphene oxide powder was dispersed in ethanol to form a graphene oxide slurry by a high-speed disperser provided with a linear velocity 35 m/min. The solid content of graphene oxide slurry is 18wt%, with the viscosity being 60450 mPa.s and the fineness being less than 30 µm;
    4) The dispersed graphene oxide slurry was defoamed under a vacuum condition of 200pa by a film defoaming machine;
    5) The graphene oxide slurry was coated on a PET film via blade coating, dried in an oven of a coater, stripped and then continuously winded to form coils to obtain a thermal-conductivity graphene film having a thickness of 0.8 mm. The temperature distribution of the entire drying tunnel of the coater is shown in Table 1:
    Table 1 Temperature distribution of drying tunnel of the coater
    Tunnel /section 1 2 3 4 5 6 7 8 9 10 11 12 13
    Temperature/°C 85 90 95 100 110 120 130 120 110 100 95 85 80

    6) The graphene oxide film was stripped from the substrate and then the edges of which were cutted on both sides to form continuous coils of graphene oxide film;
    7) The continuous coils of graphene oxide were dried in a hot air oven heated from room temperature to 300 °C with the heating rate of 1.5 °C / min;
    8) The resultant of step 7) was subjected in a high-temperature induction heating furnace heated from room temperature to 2700 °C with the heating rate of 3 °C / min protected by argon gas;
    9) The resultant of step 8) was rolled under vacuum with the rolling pressure of 30 MPa;
    10) The resultant of step 9) was stuck onto silicone protective films to facilitate process.

    [0022] In this example, the resulting graphene heat-conduction film has a density of 2.0g/cm3; a thickness of 40µm; a thermal conductivity of 1300 W/m•K; a conductivity of 7×105 S/m; a tensile strength of 65 MPa; and the resulting thermal-conductivity graphene film can be bent more than 300,000 times under the detection condition of R0.5/180°.

    Example 2



    [0023] 
    1) The graphite oxide containing 48 wt% of moisture was processed into strips via a screw extruder, and then cutted into pellets to obtain graphite oxide particles having a particle size of 3 mm;
    2) The graphene oxide particles of step 1) were subjected to high-temperature stripping in a high-temperature furnace protected by argon gas at the temperature of 1200 °C, wherein the resulting graphene oxide powder has a sheet size of 7µm and has a number of sheet of 5;
    3) The graphene oxide powder was dispersed in water to form a graphene oxide slurry by a high-speed disperser provided with a linear velocity 40 m/min. The solid content of graphene oxide slurry is 10 wt%, with the viscosity being 43000mPa.s and the fineness being less than 30 µm;
    4) The dispersed graphene oxide slurry was defoamed under a vacuum condition of 100 pa by a film defoaming machine;
    5) The graphene oxide slurry was coated on a 316 L stainless steel mesh of 1000 mesh via blade coating, dried in an oven of a coater, stripped and then continuously winded to form coils to obtain a thermal-conductivity graphene film having a thickness of 1.0 mm. The temperature distribution of the entire drying tunnel of the coater is shown in Table 2:
    Table 2 Temperature distribution of drying tunnel of the coater
    Tunnel /section 1 2 3 4 5 6 7 8 9 10 11 12 13
    Temperature /°C 75 85 100 110 120 130 135 125 115 105 95 80 80

    6) The graphene oxide film was stripped from the substrate and then the edges of which were cutted on both sides to form continuous coils of graphene oxide films;
    7) The continuous coils of graphene oxide were dried in the hot air oven heated from room temperature to 350 °C with the heating rate of 1.8 °C / min;
    8) The resultant of step 7) was subjected in the high-temperature induction heating furnace heated from room temperature to 2500 °C with the heating rate of 5 °C / min protected by argon gas;
    9) The resultant of step 8) was rolled under vacuum with the rolling pressure of 20 MPa;
    10) The resultant of step 9) was stuck onto silicone protective films to facilitate process.

    [0024] In this example, the resulting graphene heat-conduction film has a density of 1.68 g/cm3; a thickness of 30 µm; a thermal conductivity of 1500 W/m•K; a conductivity of 8×105 S/m; a tensile strength of 65 MPa; and the resulting thermal-conductivity graphene film can be bent more than 300,000 times under the detection condition of R0.5/180°.

    Example 3



    [0025] 
    1) The graphite oxide containing 56 wt% of moisture was processed into strips via a screw extruder, and then cutted into pellets to obtain graphite oxide particles having a particle size of 5mm;
    2) The graphene oxide particles of step 1) were subjected to high-temperature stripping in a high-temperature furnace protected by argon gas at the temperature of 1450 °C, wherein the resulting graphene oxide powder has a sheet size of 6µm and has a number of sheet of 6;
    3) The graphene oxide powder was dispersed in DMF to form a graphene oxide slurry by a high-speed disperser provided with a linear velocity 30m/min. The solid content of graphene oxide slurry is 4wt%, with the viscosity being 35000 mPa.s and the fineness being less than 30 µm;
    4) The dispersed graphene oxide slurry was defoamed under a vacuum condition of 200pa by a film defoaming machine;
    5) The graphene oxide slurry was coated on a nylon mesh of 1500 mesh via blade coating, dried in an oven of a coater, stripped and then continuously winded to form coils to obtain a grapheme oxide film having a thickness of 1.5mm. The temperature distribution of the entire drying tunnel of the coater is shown in Table 3:
    Table 3 Temperature distribution of drying tunnel of the coater
    Tunnel /section 1 2 3 4 5 6 7 8 9 10 11 12 13
    Temperature /°C 85 95 100 110 120 135 140 130 120 105 95 85 80

    6) The graphene oxide film was stripped from the substrate and then the edges of which were cutted on both sides to form continuous coils of graphene oxide films;
    7) The continuous coils graphene oxide were dried in the hot air oven heated from room temperature to 400°C with the heating rate of 2.5°C / min;
    8) The resultant of step 7) was subjected in the high-temperature induction heating furnace heated from room temperature to 2300 °C with the heating rate of 5 °C / min protected by argon gas;
    9) The resultant of step 8) was rolled under vacuum with the rolling pressure of 18 MPa;
    10) The resultant of step 9) was stuck onto silicone protective films to facilitate process.

    [0026] In this example, the resulting graphene heat-conduction film has a density of 2.1 g/cm3; a thickness of 20 µm; a thermal conductivity of 1600 W/m•K; a conductivity of 8×105 S/m; a tensile strength of 60 MPa; and the resulting thermal-conductivity graphene film can be bent more than 300,000 times under the detection condition of R0.5/180°.

    Example 4



    [0027] In order to show that the thermal-conductivity graphene film prepared in the present disclosure can have good electromagnetic shielding performance even at a low density, a thermal-conductivity graphene film with low density is prepared to measure the electromagnetic shielding effectiveness.

    [0028] The materials used and the steps in example 4 were identical with example 1, except for the vacuum rolling treatment of the step 9) in example 1. The density of the resultant of example 4 is 0.15 g/cm3. According to the standard test method for measuring the electromagnetic shielding efficiency of planar materials of ANSI/ASTM D4935-2010, the electromagnetic shielding effectiveness (SE) of plane waves was measured in the frequency range of 30 MHz to 1500 MHz. The results are shown in the following table 4:
    Table 4 Electromagnetic shielding effectiveness at typical frequency points
    Frequency /MHzSE/dB
    30 75.5
    100 83.9
    150 92.6
    200 100.9
    500 97.9
    1000 94.3
    1100 89.3
    1500 91.4


    [0029] The shielding effectiveness of the graphene film reaches the same performance as copper and silver, but its density is only several tenths of that of copper and silver, which can greatly reduce weight for many applications.


    Claims

    1. A method for continuously preparing thermal-conductivity graphene films, comprising:

    1) processing a graphite oxide containing 40 to 60wt% of moisture into strips via a screw extruder, and then cutting into pellets to obtain graphite oxide particles; the graphite oxide particles have a particle size of 1 to 5 mm;

    2) stripping the graphite oxide particles of the step 1) at a high temperature, the stripping of the graphene oxide particles is completed in a high-temperature furnace, and the stripping process is protected by nitrogen or argon gas, to prepare graphene oxide powder; the temperature of the stripping ranges from 800 to 1500 °C;

    3) the graphene oxide powder obtained in the step 2) is dispersed in the solvent through a high-speed disperser to form a homogeneous graphene oxide slurry, wherein the high-speed disperser has a linear velocity of 5 to 50 m / min, the concentration of the graphene oxide in the graphene oxide slurry is 3 to 20 wt%, wherein the graphene oxide slurry has a viscosity of 20000-100000 mPa.s and a fineness of less than 30 µm;

    4) defoaming the dispersed graphene oxide slurry of the step 3) by a defoaming machine under vacuum, so that the diameter of the bubbles in the defoamed graphene oxide slurry is not larger than 0.2 mm, and the content of bubbles less than 0.2 mm is less than 0.02 mL / L;

    5) coating the defoamed graphene oxide slurry of the step 4) on a substrate to form a graphene oxide film with a certain thickness, drying the graphene oxide film to remove the solvent, and then continuously winding to form coils; the coating is performed by blade coating or extrusion coating; the drying is performed in an oven of a coater; the substrate has a thickness of 0.8-3mm and is selected from the group consisting of a steel strip, PET, a stainless steel mesh of 500-2000 mesh or a nylon mesh of 500-1000 mesh; the drying is performed in an oven of a coater and temperature of the drying is 70-150°C;

    6) stripping the graphene oxide film from the substrate of the coils of the step 5) via a stripping device, and then cutting the edges of the graphene oxide film by a trimming device to form continuous coils of graphene oxide film;

    7) the heat treatment is performed in a hot air oven, comprising placing the continuous coils of graphene oxide prepared in the step 6) in the hot air oven heated from room temperature to 150 °C-500 °C, thereby realizing preliminary reduction of the graphene oxide film;

    8) the graphitization is completed in a high-temperature induction heating furnace, comprising placing the preliminarily reduced graphene oxide of the step 7) in the high-temperature induction heating furnace heated from room temperature to 2200- 2800 °C for graphitization;

    9) rolling the graphitized graphene film of the step 8) to increase the density to obtain the thermal-conductivity graphene films, wherein the pressure of the rolling ranges from 10 to 30 Mpa; and

    10) transferring and sticking the rolled graphene film of the step 9) onto the protective films to form the final product.


     
    2. The method according to claim 1, wherein in the step 2), the graphene oxide powder has a sheet size of 2 to 10 µm, and a number of sheet of 1 to 8.
     
    3. The method according to claim 1, wherein in the step 3), the solvent is selected from the group consisting of ethanol, water, NMP, DMF, furan, tetrahydrofuran or any combination thereof.
     
    4. The method according to claim 1, wherein the hot air oven has a heating rate of 1-3 °C / min.
     
    5. The method according to claim 1, wherein the high-temperature induction heating furnace has a heating rate of 2-10 °C / min.
     
    6. A thermal-conductivity graphene film prepared by the method of claim 1-5, wherein the thermal-conductivity graphene film has a density of 0.015 to 2.21 g/cm3; a thickness of 8 to 1000 µm; a thermal conductivity of 800 to 1900 W/m•K; a electromagnetic shielding effectiveness of 60-90dB under the electromagnetic frequency of 30 MHz-3 GHz; a conductivity of 5-20×105S/m; a tensile strength of 20-80MPa and the thermal-conductivity graphene film can be bent more than 300,000 times under the detection condition of R0.5/180°.
     


    Ansprüche

    1. Verfahren zum kontinuierlichen Herstellen von Graphenfilmen mit einer Wärmeleitfähigkeit, umfassend:

    1) Verarbeiten eines Graphitoxids, das 40-60 Gew.-% Feuchtigkeit enthält, zu Streifen durch einen Schneckenextruder und anschließendes Schneiden in Pellets, um Graphitoxidteilchen zu erhalten; wobei die Graphitoxidteilchen eine Teilchengröße von 1-5 mm aufweist;

    2) Abziehen der Graphitoxidteilchen von dem Schritt 1) bei einer hohen Temperatur, wobei das Abziehen der Graphenoxidteilchen in einem Hochtemperaturofen abgeschlossen und der Abziehprozess durch Stickstoff oder Argongas geschützt wird, um Graphenoxidpulver herzustellen; und wobei die Temperatur des Abziehens in einem Bereich von800-1500°C liegt.

    3) Dispergierendes im Schritt 2) erhaltenen Graphenoxidpulversin dem Lösungsmittel durch ein Hochgeschwindigkeitsdispergiergerät, um eine homogene Graphenoxidaufschlämmung zu bilden, wobei das Hochgeschwindigkeitsdispergiergerät eine lineare Geschwindigkeit von 5-50 m/min aufweist, und wobei die Konzentration des Graphenoxids in der Graphenoxidaufschlämmung 3-20 Gew.-%beträgt, und wobei die Graphenoxidaufschlämmung eine Viskosität von 20000-100000 mPa·s und eine Feinheit von weniger als 30µmaufweist.

    4) Entschäumen der dispergierten Graphenoxidaufschlämmung von dem Schritt 3) durch eine Entschäumungsmaschine unter Vakuum, so dass der Durchmesser der Blasen in der entschäumten Graphenoxidaufschlämmung 0,2 mm nicht überschreitet und der Gehalt an Blasen von kleiner als 0,2 mm weniger als 0,02 ml/L ist;

    5) Beschichten der entschäumten Graphenoxidaufschlämmung von dem Schritt 4) auf ein Substrat, um einen Graphenoxidfilm mit einer bestimmten Dicke zu bilden, Trocknen des Graphenoxidfilms, um das Lösungsmittel zu entfernen, und anschließendes kontinuierliches Wickeln, um Spulen zu bilden; wobei die Beschichtung durch eine Klingenbeschichtung oder eine Extrusionsbeschichtung durchgeführt wird; und wobei das Trocknen in einem Ofen eines Beschichters durchgeführt wird, und wobei das Substrat eine Dicke von 0,8-3 mm aufweist und aus der Gruppe bestehend aus einem Stahlband, PET, einem Edelstahlnetz von 500-2000 Maschen oder einem Nylonnetz von 500-1000 Maschen ausgewählt ist; und wobei das Trocknen in einem Ofen eines Beschichters durchgeführt wird und die Trocknungstemperatur 70-150°Cbeträgt;

    6) Abziehen des Graphenoxidfilms von dem Substrat der Spulen von dem Schritt 5) durch eine Abziehvorrichtung und anschließendes Schneiden der Kanten des Graphenoxidfilms durch eine Trimmvorrichtung, um kontinuierliche Spulen des Graphenoxidfilms zu bilden;

    7) die Wärmebehandlung wird in einem Heißluftofen durchgeführt, umfassend das Einlegen der im Schritt 6) hergestellten kontinuierlichen Graphenoxidspulen in den Heißluftofen, der von der Raumtemperatur auf 150-500°C erwärmt wurde, wodurch eine vorläufige Reduktion des Graphenoxidfilms zu realisieren;

    8) die Graphitisierung wird in einem Hochtemperatur-Induktionsheizofen abgeschlossen, umfassend das Einlegen des vorläufig reduzierten Graphenoxids von dem Schritt 7) in den Hochtemperatur-Induktionsheizofen, der zur Graphitisierung von der Raumtemperatur auf 2200-2800°C erwärmt wurde;

    9) Walzen des graphitierten Graphenfilms von dem Schritt 8), um die Dichte zu erhöhen, wodurch die Graphenfilme mit einer Wärmeleitfähigkeit erhalten werden, wobei der Druck des Walzens in einem Bereich von 10-30 MPa liegt; und

    10) Übertragen und Aufkleben des gerollten Graphenfilms von dem Schritt 9) auf die Schutzfilme, um das Endprodukt zu bilden.


     
    2. Verfahren nach Anspruch 1, wobei im Schritt 2) das Graphenoxidpulver eine Blattgröße von 2-10 µmund eine Anzahl von Blättern von 1-8 aufweist.
     
    3. Verfahren nach Anspruch 1, wobei in Schritt 3) das Lösungsmittel aus der Gruppe bestehend aus Ethanol, Wasser, NMP, DMF, Furan, Tetrahydrofuran oder einer beliebigen Kombination davon ausgewählt ist.
     
    4. Verfahren nach Anspruch 1, wobei der Heißluftofen eine Heizrate von 1-3°C/min aufweist.
     
    5. Verfahren nach Anspruch 1, wobei der Hochtemperatur-Induktionsheizofen eine Heizrate von 2-10 °C/minaufweist.
     
    6. Graphenfilm mit einer Wärmeleitfähigkeit, welcher mit dem Verfahren nach Anspruch 1 bis 5hergestellt ist, wobei der Graphenfilm mit einer Wärmeleitfähigkeit eine Dichte von 0,015-2,21 g/cm3, eine Dicke von 8-1000 µm, eine Wärmeleitfähigkeit von 800-1900 W/m*K, einen elektromagnetischen Abschirmwirkungsgrad von 60-90 dB bei einer elektromagnetischen Frequenz von 30 MHz-3 GHz, eine Leitfähigkeit von 5-20x105S/m und eine Zugfestigkeit von 20-80 MPa aufweist, und wobei der Graphenfilm mit einer Wärmeleitfähigkeit unter der Detektionsbedingung von R0,5/180° für mehr als 300.000 Male gebogen werden kann.
     


    Revendications

    1. Procédé de préparation en continu de films de graphène à conductivité thermique, comprenant:

    1) traiter un oxyde de graphite contenant 40 à 60% en poids d'humidité en bandes via une extrudeuse à vis, puis découper en pastilles pour obtenir des particules d'oxyde de graphite; les particules d'oxyde de graphite ont une granulométrie de 1 à 5 mm;

    2) décaper les particules d'oxyde de graphite de l'étape 1) à haute température, le décapement des particules d'oxyde de graphène est achevé dans un four à haute température, et le processus de décapement est protégé par de gaz azote ou de gaz argon, pour préparer de poudre d'oxyde de graphène ; la température du décapement varie de 800 à 1500 °C;

    3) la poudre d'oxyde de graphène obtenue à l'étape 2) est dispersée dans le solvant par un disperseur à grande vitesse pour former une suspension homogène d'oxyde de graphène, le disperseur à grande vitesse ayant une vitesse linéaire de 5 à 50 m/min, la concentration de l'oxyde de graphène dans la suspension d'oxyde de graphène étant de 3 à 20% en poids, la suspension d'oxyde de graphène ayant une viscosité de 20000 à 100000 mPa.s et une finesse inférieure à 30 µm;

    4) éliminerdes mousses dans la suspension d'oxyde de graphène dispersée de l'étape 3) par une machine d'élimination de mousses sous vide, de sorte que le diamètre des bulles dans la suspension d'oxyde de graphène dont les mousses ont été éliminées ne soit pas supérieur à 0,2 mm et que la teneur en bulles inférieure à 0,2 mm soit moins de 0,02 ml IL;

    5) revêtir la suspension d'oxyde de graphène dont les mousses ont été éliminées de l'étape 4) sur un substrat pour former un film d'oxyde de graphène avec une certaine épaisseur, sécher le film d'oxyde de graphène pour éliminer le solvant, puis enrouler en continu pour former des bobines; le revêtement est effectué par revêtement à lame ou revêtement par extrusion; le séchage est effectué dans une étuve d'une coucheuse; le substrat a une épaisseur de 0,8-3 mm et est choisi dans le groupe constitué d'une bande d'acier, de PET, d'une maille d'acier inoxydable de 500-2000 mailles ou d'une maille de nylon de 500-1000 mailles; le séchage est effectué dans uneétuved'une coucheuse et la température du séchage est de 70-150 °C;

    6) décaper le film d'oxyde de graphène du substrat des bobines de l'étape 5) par un dispositif de décapage, puis couper les bords du film d'oxyde de graphène par un dispositif de rognage pour former des bobines en continu de film d'oxyde de graphène;

    7) le traitement thermique est effectué dans un four à air chaud, comprenant le placement des bobines en continu d'oxyde de graphène préparées à l'étape 6) dans le four à air chaud chauffé de la température ambiante à 150 °C-500 °C, réalisant ainsi une réduction préliminaire du film d'oxyde de graphène;

    8) la graphitisation est achevée dans un four de chauffage par induction à haute température, comprenant le placement de l'oxyde de graphème préalablement réduit de l'étape 7) dans le four de chauffage par induction à haute température chauffé de la température ambiante à 2200 -2800 °C pour la graphitisation;

    9) laminerle film de graphène graphité de l'étape 8) pour augmenter la densité pour obtenir les films de graphène à conductivité thermique, la pression du laminage variant de 10 à 30 MPa; et

    10) transférer et coller le film de graphène laminé de l'étape 9) sur les films protecteurs pour former le produit final.


     
    2. Procédé selon la revendication 1, dans lequel à l'étape 2), la poudre d'oxyde de graphène a une taille de feuille de 2 à 10 µm, et un nombre de feuille de 1 à 8.
     
    3. Procédé selon la revendication 1, dans lequel à l'étape 3), le solvant est choisi dans le groupe constitué par l'éthanol, l'eau, l'NMP, le DMF, le furane, le tétrahydrofurane ou toute combinaison de ceux-ci.
     
    4. Procédé selon la revendication 1, dans lequel le four à air chaud a une vitesse de chauffage de 1 à 3 °C/min.
     
    5. Procédé selon la revendication 1, dans lequel le four de chauffage par induction à haute température a une vitesse de chauffage de 2 à 10 °C/min.
     
    6. Film de graphène à conductivité thermique préparé par le procédé des revendications 1 à 5, dans lequel le film de graphène à conductivité thermique a une densité de 0,015 à 2,21 g/cm3; une épaisseur de 8 à 1000 µm; une conductivité thermique de 800 à 1900 W/m•K; une efficacité de blindage électromagnétique de 60 à 90 dB sous la fréquence électromagnétique de 30 MHz-3GHz; une conductivité de 5-20x105S/m; une résistance à la traction de 20-80MPa et le film de graphène à conductivité thermique peuvent être pliés plus de 300000 fois dans la condition de détection de R0,5/180°.
     






    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description