(19)
(11)EP 3 540 277 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
05.05.2021 Bulletin 2021/18

(21)Application number: 19161806.5

(22)Date of filing:  11.03.2019
(51)International Patent Classification (IPC): 
F16K 11/074(2006.01)
F16K 11/087(2006.01)
F16K 11/072(2006.01)
F16K 31/04(2006.01)

(54)

DIRECTIONAL FLOW CONTROL DEVICE

RICHTUNGSABHÄNGIGE DURCHFLUSSSTEUERUNGSVORRICHTUNG

DISPOSITIF DE COMMANDE D'ÉCOULEMENT DIRECTIONNEL


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 12.03.2018 US 201815918314

(43)Date of publication of application:
18.09.2019 Bulletin 2019/38

(73)Proprietor: The Boeing Company
Chicago, IL 60606-2016 (US)

(72)Inventor:
  • ECKOLS, David Ansyl
    Chicago, IL Illinois 60606-2016 (US)

(74)Representative: Boult Wade Tennant LLP 
Salisbury Square House 8 Salisbury Square
London EC4Y 8AP
London EC4Y 8AP (GB)


(56)References cited: : 
DE-A1-102012 224 061
US-A1- 2005 236 049
DE-U1- 9 002 393
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The present disclosure relates generally to a directional flow control device and methods of assembling a directional flow control device.

    [0002] Flow control devices are used to control fluid flow in various systems. For example, in vehicles, such as aircraft, flow control devices are used to control fuel flow or hydraulic fluid flow, such as in flight control systems. Typical flow control devices are directional valves to change flow direction, such as into different channels or pipes. Other types of flow control devices are shut off valves that are operated to either allow flow or shut off flow in the system. Some systems utilize both shut off valves and directional valves within the system. Conventional flow control devices tend to be heavy and bulky, occupy significant space in the system, such as in the aircraft, and are expensive due to manufacturing complexity.

    [0003] Conventional flow control devices use a rotating bearing with channels to direct the flow within the flow control device. The rotating bearing is rotated by a motor utilizing a set of planetary gears to achieve the torque needed to rotate the bearing. The planetary gears are expensive and require maintenance and replacement. The rotating bearing of conventional flow control devices is typically rotated around an axis that is generally perpendicular to the channels allowing fluid flow therethrough. The inlet and the outlet channels of the rotating bearing of conventional flow control devices are typically angled at either a 45° angle or 90° angle relative to each other and have significant pressure loss due to the high angle of deflection of the fluid.

    [0004] It is with respect to these and other considerations that the disclosure made herein is presented.

    [0005] DE 90 02 393 U1 relates to a multi-way valve with electric drive.

    [0006] US 2005/236049 A1, in accordance with its abstract, relates to a multi-port selector valve, having a valve body that includes an inlet port module, an outlet port module, and a port selector. The port selector is rotatably disposed in the valve body and includes a flow path disposed through the port selector, a path inlet, a path outlet, and an offset portion. The path inlet has a first flow direction and the path outlet has a second flow direction. The offset portion includes a longitudinal flow direction with an angle of less than 90 degrees with the first flow direction.

    [0007] DE 10 2012 224061 A1, in accordance with its abstract, relates to a switch for an operating fluid, comprising an input opening for supplying an operating fluid to an input side and a plurality of output openings for outputting the operating fluid on an output side, between the input side and the output side an actuator having a connecting channel is provided, which is adjustable in such a way that the connecting channel can be used to connect the input opening to one of the output openings, the actuator consists of at least two parts, the connecting channel being defined at least in regions by both parts of the actuator.

    SUMMARY



    [0008] There is described herein a directional flow control device comprising: a housing extending along a longitudinal axis between an inlet end and a discharge end; a flow deflector received in the housing, the flow deflector being rotatable in the housing about a rotation axis parallel to the longitudinal axis, the flow deflector having a flow channel therethrough, the flow channel having an intake bore at a front end of the flow deflector and a discharge bore at a rear end of the flow deflector, the intake bore being coaxial with the rotation axis, the discharge bore being offset from the rotation axis; a shell receiving the housing, wherein the shell includes a cavity receiving the housing, the housing having a front housing and a rear housing, the rear housing being fixedly coupled to the shell, the front housing being axially movable in the cavity relative to the rear housing and the shell, the flow deflector being positioned between the front housing and the rear housing; and a biasing spring configured to engage the front housing and an end wall of the shell to bias the front housing toward the rear housing, the biasing spring sealingly compressing the front housing against the flow deflector.

    [0009] There is also described herein a method of assembling a directional flow control device comprising: providing a shell having a cavity between a front end and a rear end; positioning a front housing in the cavity, the front housing having a front pocket and an inlet bore open to the front pocket, positioning a rear housing in the cavity, the rear housing having a rear pocket, a first outlet bore open to the rear pocket and a second outlet bore open to the rear pocket, wherein the front housing and the rear housing are aligned in the cavity along a longitudinal axis extending between an inlet end and an outlet end of the directional flow control device; providing a flow deflector having a hub with a front end and a rear end, the front end being positioned in the front pocket, the rear end being positioned in the rear pocket, the flow deflector having a flow channel therethrough, the flow channel having an intake bore at a front end of the flow deflector, the flow channel having a discharge bore at a rear end of the flow deflector; and positioning the flow deflector between the front housing and the rear housing such that the intake bore is in flow communication with the inlet bore, the hub being rotatable relative to the front housing and the rear housing about a rotation axis coaxial with the intake bore and the rotation axis being parallel to the longitudinal axis, the hub being rotated about the rotation axis between a first discharge position and a second discharge position wherein the discharge bore is configured to be in fluid communication with the first outlet bore when the hub is at the first discharge position and wherein the discharge bore is configured to be in fluid communication with the second outlet bore when the hub is at the second discharge position, wherein said positioning a front housing in the cavity comprises movably coupling the front housing between the front end of the shell and the flow deflector and wherein said positioning a rear housing in the cavity comprises fixedly coupling the rear housing to the shell using fasteners, said positioning a front housing in the cavity comprises slidably coupling the front housing to the fasteners such that the front housing is movable relative to the rear housing, the method further comprising: positioning a biasing spring between the front end of the shell and the front housing to press the front housing into sealing engagement with the hub of the flow deflector.

    [0010] In accordance with one example, a directional flow control device is provided including a housing extending along a longitudinal axis between an inlet end and a discharge end. A flow deflector is received in the housing. The flow deflector is rotatable in the housing about a rotation axis parallel to the longitudinal axis. The flow deflector has a flow channel therethrough having an intake bore at a front end of the flow deflector and a discharge bore at a rear end of the flow deflector. The intake bore is coaxial with the rotation axis and the discharge bore is offset from the rotation axis.

    [0011] In accordance with one example, a directional flow control device is provided having a housing extending along a longitudinal axis between an inlet end and a discharge end and a flow deflector received in the housing. The flow deflector is rotatable in the housing about a rotation axis parallel to the longitudinal axis. The flow deflector has a flow channel therethrough. The flow channel has an intake bore at a front end of the flow deflector and a discharge bore at a rear end of the flow deflector. The intake bore extends along an intake bore axis and the discharge bore extends along a discharge bore axis angled relative to the intake bore axis by a fluid path change angle of less than 45°.

    [0012] In accordance with one example, a method of assembling a directional flow control device is provided including providing a shell having a cavity between a front end and a rear end. The method includes positioning a front housing in the cavity having a front pocket and an inlet bore open to the front pocket and positioning a rear housing in the cavity having a rear pocket, a first outlet bore open to the rear pocket and a second outlet bore open to the rear pocket, wherein the front housing and the rear housing are aligned in the cavity along a longitudinal axis extending between an inlet end and an outlet end of the directional flow control device. The method includes providing a flow deflector having a hub with a front end and a rear end with the front end being positioned in the front pocket and the rear end being positioned in the rear pocket and with the flow deflector having a flow channel therethrough having an intake bore at a front end of the flow deflector and a discharge bore at a rear end of the flow deflector. The method includes positioning the flow deflector between the front housing and the rear housing such that the intake bore is in flow communication with the inlet bore. The hub is rotatable relative to the front housing and the rear housing about a rotation axis coaxial with the intake bore and the rotation axis being parallel to the longitudinal axis and the hub is rotated about the rotation axis between a first discharge position and a second discharge position wherein the discharge bore is configured to be in fluid communication with the first outlet bore when the hub is at the first discharge position and wherein the discharge bore is configured to be in fluid communication with the second outlet bore when the hub is at the second discharge position.

    [0013] The features and functions that have been discussed can be achieved independently in various examples or may be combined in yet other examples, further details of which can be seen with reference to the following description and drawings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0014] 

    Figure 1 is a schematic view of a directional flow control device in accordance with an example.

    Figure 2 is an exploded view of the directional flow control device in accordance with an example.

    Figure 3 is a perspective view of the directional flow control device in accordance with an example.

    Figure 4 is a rear view of the directional flow control device.

    Figure 5 is a front perspective view of the directional flow control device.

    Figure 6 is a rear perspective view of a portion of the directional flow control device showing a flow deflector and a gear in accordance with an example.

    Figure 7 is a front perspective view of a portion of the directional flow control device showing the flow deflector and the gear.

    Figure 8 is a cross-sectional view of the flow deflector in accordance with an example.

    Figure 9 is a rear perspective view of a portion of the directional flow control device in accordance with an example showing a flow assembly and a driver assembly.

    Figure 10 is a side view of a portion of the directional flow control device in accordance with an example showing the flow assembly and the driver assembly.

    Figure 11 is a front perspective view of a portion of the directional flow control device in accordance with an example showing the flow assembly and the driver assembly.

    Figure 12 is a perspective view of a portion of the directional flow control device showing the flow deflector in a first discharge position.

    Figure 13 is a perspective view of a portion of the directional flow control device showing the flow deflector in a second discharge position.

    Figure 14 is a perspective view of a portion of the directional flow control device showing the flow deflector in a shut off position.


    DETAILED DESCRIPTION



    [0015] The following detailed description of certain examples will be better understood when read in conjunction with the appended drawings. It should be understood that the various examples are not limited to the arrangements and instrumentality shown in the drawings.

    [0016] Figure 1 is a schematic view of a directional flow control device 100 in accordance with an example for use in a fluid system 102. The directional flow control device 100 controls fluid flow in the fluid system 102. The fluid system 102 includes at least one supply lines and at least one discharge line coupled to the directional flow control device 100. For example, in the illustrated example, the fluid system 102 includes a first supply line 104, a first discharge line 106 and a second discharge line 108. In various examples, the first supply line 104 is coupled to a first supply reservoir 110, the first discharge line 106 is coupled to a first discharge reservoir 112 and the second discharge line 108 is coupled to a second discharge reservoir 114. The directional flow control device 100 is used to control flow between the first supply reservoir 110 and the first and second discharge reservoirs 112, 114. For example, the directional flow control device 100 may control fluid flow therethrough from the first supply line 104 to the first discharge line 106 or the second discharge line 108. In various examples, the fluid system 102 may include more than one supply line 104 and/or more than one supply reservoir 110. Optionally, the directional flow control device 100 may be operable in a shut off state where the directional flow control device 100 restricts fluid flow to the first discharge line 106 and the second discharge line 108. In alternative examples, the flow through the directional flow control device may be reversed such that the reservoirs 112, 114 are supply reservoirs and the reservoir 110 is a discharge reservoir; however, the description of the directional flow control device herein is with reference to the supply and discharge arrangement illustrated in Figure 1.

    [0017] The first discharge reservoir 112 may be coupled to a first working component 116 and the second discharge reservoir 114 may be coupled to a second working component 118. The fluid is used by the first and second working components 116, 118 for one or more functions or operations. For example, the fluid system 102 may be used in a vehicle, such as an aircraft 120. By way of example, the fluid system 102 may be a fuel supply system and the directional flow control device 100 may be used to control supply of fuel from the first supply reservoir 110 to the various first and second discharge reservoirs 112, 114. The first and second working components 116, 118 may be fuel pumps in such examples. By way of example, the fluid system 102 may be a flight control system, such as for controlling a position of a rudder or a flap, and the directional flow control device 100 may be used to control supply of hydraulic fluid within the fluid system 102, such as for moving the rudder or the flap. The first and second working components 116, 118 may be hydraulic actuators in such examples. By way of example, the fluid system 102 may be a landing gear control system, such as for controlling a position of the landing gear of the aircraft 120, and the directional flow control device 100 may be used to control supply of hydraulic fluid within the landing gear control system to raise or lower the landing gear of the aircraft 120. The fluid system 102 may be used in other subsystems of the aircraft 120, either additionally or as an alternative. The fluid system 102 may be used in other types of vehicles other than aircraft. The fluid system 102 may be used in non-vehicle applications, such as industrial applications.

    [0018] In various examples, the directional flow control device 100 includes a shell 130, a flow assembly 132 received in the shell 130 and a driver assembly 134 received in the shell 130. The flow assembly 132 is fluidly coupled to the supply line 104 and the first and second discharge lines 106, 108. The driver assembly 134 is operably coupled to the flow assembly 132 to control operation of the flow assembly 132, such as by moving the flow assembly 132 2 different discharge positions to control flow to the first discharge line 106 or the second discharge line 108. Optionally, the driver assembly 134 may be operated to move the flow assembly 132 to a shut off position to stop flow through the fluid system 102.

    [0019] Figure 2 is an exploded view of the directional flow control device 100 in accordance with an example. The directional flow control device 100 includes the shell 130, the flow assembly 132 and the driver assembly 134. In various examples, the flow assembly 132 includes a housing 140 and a flow deflector 142 received in the housing 140. In the illustrated example, the housing 140 is a multi-piece housing including a front housing 144 and a rear housing 146. The flow deflector 142 is configured to be captured between the front housing 144 and the rear housing 146. The flow deflector 142, the front housing 144 and the rear housing 146 are configured to be received in the shell 130 along a longitudinal axis 148. In various examples, the flow deflector 142 is rotatably received within the front housing 144 and the rear housing 146 to control flow through the directional flow control device 100. The housing 140 extends between an inlet end 150 and a discharge end 152 opposite the inlet end 150. The inlet end 150 and the discharge end 152 are arranged along the longitudinal axis 148.

    [0020] In various examples, the driver assembly 134 includes a motor 160 and an actuator 162 driven by the motor 160. The actuator 162 is used to move the flow deflector 142. The driver assembly 134 may include a gear 164 coupled to the flow deflector 142. The actuator 162 engages and drives the gear 164 to rotate the flow deflector 142 about a rotation axis 166 parallel to the longitudinal axis 148.

    [0021] The shell 130 includes body defining a cavity 200 extending between a front 202 and a rear 204 of the shell 130. The cavity 200 receives the flow assembly 132. The body may be manufactured from a metal material or a durable plastic material to protect the other components of the directional flow control device 100. The body may be thin to reduce weight of the directional flow control device 100. The shell 130 includes a top 206 and the bottom 208 opposite the top 206. In various examples, the shell 130 includes a mounting flange 210 at the bottom 208 for mounting the directional flow control device 100 to another component or structure, such as within the aircraft 120. The mounting flange 210 may be provided at other locations in alternative examples. In various examples, the cavity 200 includes a channel 212 at the top 206 that receives at least a portion of the driver assembly 134. The channel 212 may be narrower than the cavity 200 to reduce the overall size of the directional flow control device 100.

    [0022] In various examples, the cavity 200 is open at the rear 204 to receive the components of the directional flow control device 100. Optionally, a cover (not shown) may be coupled to the shell 130 at the rear 204 to close the cavity 200, such as to hold the flow assembly 132 in the cavity 200. In various examples, the shell 130 includes an end wall 214 (shown in Figure 5) at the front 202. In various examples, the flow assembly 132 is coupled to the end wall 214. In the illustrated embodiment, the directional flow control device 100 includes fasteners 216 used to secure the flow assembly 132 to the shell 130. In various examples, the fasteners 216 are configured to pass through the front housing 144 and are configured to be threadably coupled to the rear housing 146. For example, the rear housing 146 is fixed to the end wall 214 of the shell 130 by the fasteners 216. The front housing 144 may be axially movable along the fasteners 216 relative to the rear housing 146 and the shell 130. For example, the directional flow control device 100 includes a biasing spring 218 configured to engage the front housing 144 and the end wall 214 of the shell 130 to bias the front housing 144 toward the rear housing 146. The flow deflector 142 is captured between the front housing 144 and the rear housing 146. The biasing spring 218 sealingly compresses the front housing 144 against the flow deflector 142.

    [0023] The driver assembly 134 is configured to be received in the cavity 200, such as in the channel 212. In various examples, the motor 160 of the driver assembly 134 is an electric motor. The actuator 162 includes a driveshaft 230 and a pinion gear 232 coupled to the driveshaft 230 and rotated by the driveshaft 230. The pinion gear 232 includes gear teeth 234 around the outer perimeter of the pinion gear 232. The pinion gear 232 is configured to engage the gear 164 to rotate the flow deflector 142. Other types of actuators 162 may be used in alternative embodiments. In various examples, the driver assembly 134 includes a bearing 236 for supporting the driveshaft 230. In various examples, the motor 160 and the bearing 236 are configured to be mounted to the driver assembly 134, such as to the rear housing 146 and the front housing 144, respectively. In other various examples, the motor 160 and/or the bearing 236 may be mounted to the shell 130.

    [0024] The gear 164 includes an opening 240 that receives the flow deflector 142. In various examples, the gear 164 includes one or more locking features 242 configured to engage the flow deflector 142 and lock the gear 164 to the flow deflector 142 against relative rotation. In various examples, the locking feature 242 is a slot formed along the interior surface of the gear 164; however, other types of locking features may be provided in alternative examples. The gear 164 includes gear teeth 244 around the outer perimeter of the gear 164. The gear teeth 244 are configured to interface with the gear teeth 234 of the pinion gear 232 to drive rotation of the gear 164. In various examples, the gear 164 is configured to be coaxial with the flow deflector 142. The gear 164 is configured to be coaxial with the rotation axis 166 of the flow deflector 142.

    [0025] The flow deflector 142 includes a cylindrical hub 250 having a cylindrical outer perimeter 252. The flow deflector 142 extends between a front end 254 and a rear end 256. In various examples, the flow deflector 142 includes one or more locking features 258 for locking the gear 164 to the hub 250, such as for locking to the locking features 242 of the gear 164. In various examples, the locking feature 258 is a protrusion or tab extending from the outer perimeter 252. Other types of locking features 258 may be provided in alternative examples, such as a groove or channel.

    [0026] The flow deflector 142 includes a flow channel 260 extending therethrough. The flow channel 260 includes an intake bore 262 (shown in Figure 7) and a discharge bore 264. The intake bore 262 is open at the front end 254 and the discharge bore 264 is open at the rear end 256. In various examples, the intake bore 262 is coaxial with the rotation axis 166 and the discharge bore 264 is offset from the rotation axis 166. For embodiment, the discharge bore 264 is angled nonparallel to the intake bore 262.

    [0027] In various examples, the front end 254 has a convex, curved profile defining a front sealing surface 270 configured to seal against the front housing 144. The rear end 256 has a convex, curved profile defining a rear sealing surface 272 configured to seal against the rear housing 146. In other various embodiments, the front end 254 and/or the rear end 256 may be flat rather than being curved or may have other shapes in alternative examples.

    [0028] The front housing 144 extends along the longitudinal axis 148 between a front end 300 and an inner end 302. The inner end 302 is configured to face the rear housing 146. The front housing 144 includes a top 304 and a bottom 306 extending between the front end 300 and the inner end 302. In various examples, the top 304 and/or the bottom 306 may be flat for engagement with and support by the shell 130. For example, the flat surfaces may resist rotation of the rear housing 146 relative to the shell 130. The front housing 144 includes sides 308 extending between the top 304 and the bottom 306. In various examples, the sides 308 are curved; however, the sides 308 may have other shapes in alternative examples.

    [0029] The front housing 144 includes a front pocket 310 configured to receive the flow deflector 142. The front pocket 310 is sized and shaped to receive the front end 254 of the flow deflector 142. In various examples, the front pocket 310 is defined by one or more sidewalls 312 and an end wall 314. The end wall 314 defines a front sealing surface 316 of the front pocket 310. The end wall 314 has a complementary shape to the front end 254 of the flow deflector 142. For example, the end wall 314 may have a concave, curved profile defining the front sealing surface 316. In various examples, the sidewall 312 is circular and allows rotation of the flow deflector 142 in the front pocket 310. The sidewall 312 supports a portion of the hub 250.

    [0030] The front housing 144 includes an inlet bore 320 between the end wall 314 and the front end 300. The inlet bore 320 is configured to be in flow communication with the supply line 104 (shown in Figure 1). In various examples, the inlet bore 320 is coaxial with the longitudinal axis 148. The inlet bore 320 is configured to be in flow communication with the intake bore 262 of the flow deflector 142. For embodiment, the inlet bore 320 and the intake bore 262 are aligned along the rotation axis 166. Optionally, the inlet bore 320 may be threaded to receive the supply line 104 or a coupling on the supply line 104. Alternatively, the supply line 104 may be soldered to the inlet bore 320.

    [0031] The rear housing 146 extends along the longitudinal axis 148 between a rear end 400 and an inner end 402. The inner end 402 is configured to face the front housing 144. The rear housing 146 includes a top 404 and a bottom 406 extending between the rear end 400 and the inner end 402. In various examples, the top 404 and/or the bottom 406 may be flat for engagement with and support by the shell 130. For example, the flat surfaces may resist rotation of the rear housing 146 relative to the shell 130. The rear housing 146 includes sides 408 extending between the top 404 and the bottom 406. In various examples, the sides 408 are curved; however, the sides 408 may have other shapes in alternative examples.

    [0032] The rear housing 146 includes a rear pocket 410 (shown in phantom) configured to receive the flow deflector 142. The rear pocket 410 is sized and shaped to receive the rear end 256 of the flow deflector 142. In various examples, the rear pocket 410 is defined by one or more side walls and an end wall. The end wall defines a rear sealing surface 416 of the rear pocket 410. The end wall has a complementary shape to the rear end 256 of the flow deflector 142. For example, the end wall may have a concave, curved profile defining the rear sealing surface 416. In various examples, the sidewall is circular and allows rotation of the flow deflector 142 in the rear pocket 410. The sidewall supports a portion of the hub 250.

    [0033] The rear housing 146 includes a first outlet bore 420 between the end wall and the rear end 400 and a second outlet bore 422 between the end wall and the rear end 400. The first and second outlet bores 420, 422 are configured to be in flow communication with the discharge lines 106, 108 (shown in Figure 1), respectively. The first and second outlet bores 420, 422 are configured to be in flow communication with the discharge bore 264 of the flow deflector 142 depending on the orientation of the flow deflector 142 relative to the rear housing 146. In various examples, the first and second outlet bores 420, 422 are angled relative to each other. The first and second outlet bores 420, 422 are angled relative to the longitudinal axis 148. Optionally, the first and second outlet bores 420, 422 may be threaded to receive the first and second discharge lines 106, 108 or couplings on the first and second discharge lines 106, 108. Alternatively, the first and second discharge lines 106, 108 may be soldered to the first and second outlet bores 420, 422.

    [0034] Figure 3 is a perspective view of the directional flow control device 100 in accordance with an example showing the supply line 104 coupled to the directional flow control device 100 and showing the first and second discharge lines 106, 108 coupled to the directional flow control device 100. Figure 4 is a rear view of the directional flow control device 100. Figure 5 is a front perspective view of the directional flow control device 100.

    [0035] During assembly, the flow assembly 132 and the driver assembly 134 are loaded into the cavity 200 of the shell 130. For example, the driver assembly 134 may be mounted to the housing 140 and loaded into the cavity 200 through the rear 204. The fasteners 216 (Figure 5) are coupled to the housing 140 to secure the housing 140 in the shell 130. In various examples, the shell 130 includes an opening 220 (Figure 5) in the end wall 214 that provides access to the rear housing 146. The supply line 104 (Figure 3) is coupled to the rear housing 146 at the inlet bore 320 (Figure 5). The first and second discharge lines 106, 108 (Figure 3) are coupled to the first and second outlet bores 420, 422 (Figure 4). The directional flow control device 100 controls fluid flow from the supply line 104 to the first and second discharge lines 106, 108 through the flow assembly 132.

    [0036] Figure 6 is a rear perspective view of a portion of the directional flow control device 100 showing the flow deflector 142 and the gear 164 in accordance with an example. Figure 7 is a front perspective view of a portion of the directional flow control device 100 showing the flow deflector 142 and the gear 164. During assembly, the gear 164 is coupled to the flow deflector 142. For embodiment, the hub 250 is received in the opening 240. The locking features 242 to interact with the locking features 258 to lock the gear 164 to the hub 250 against relative rotation. Rotation of the gear 164 by the driver assembly 134 (shown in Figure 2) causes rotation of the flow deflector 142. The flow deflector 142 extends between the front end 254 and the rear end 256 along the rotation axis 166. The gear 164 is coaxial with the hub 250 along the rotation axis 166.

    [0037] In various examples, rather than having the gear 164 and the flow deflector 142 separate and discrete and coupled together, the gear 164 may be formed integral with the flow deflector 142. For example, the outer perimeter 252 of the hub 250 may have gear teeth formed thereon. For example, the gear teeth may be machined around the outer perimeter 252 or the gear teeth may be molded integral with the hub 250.

    [0038] Figure 8 is a cross-sectional view of the flow deflector 142 in accordance with an example. The flow channel 260 is shown extending through the flow deflector 142 in a direction generally parallel to fluid flow through the directional flow control device 100, such as between the front end 254 and the rear end 256. The intake bore 262 extends along an intake bore axis 280 and the discharge bore 264 extends along a discharge bore axis 282. The intake bore axis 280 is parallel to the rotation axis 166.

    [0039] The discharge bore axis 282 is angled relative to the intake bore axis 280 and a fluid path change angle 284. In various examples, the fluid path change angle 284 between the discharge bore axis 282 and the intake bore axis 280 is less than 45°. In various examples, the fluid path change angle 284 between the discharge bore axis 282 and the intake bore axis 280 is between approximately 10° and approximately 30°. In the illustrated example, the fluid path change angle 284 between the discharge bore axis 282 and the intake bore axis 280 is approximately 20°. The flow channel 260 has an inner bend 286 and an outer bend 288 between the intake bore 262 and the discharge bore 264. The inner bend 286 and the outer bend 288 are curved to provide a smooth transition between the intake bore 262 and the discharge bore 264. Providing the smooth transition and the small fluid path change angle 284 (for example, less than 45°) allows for efficient fluid flow through the flow deflector 142. For example, the smooth transition reduces the risk of cavitation at the inner bend 286 and/or the outer bend 288. Having a relatively long inner bend 286 and/or outer bend 288, rather than an abrupt corner, allows for efficient fluid flow through the flow deflector 142. The small fluid path change angle 284 has a low efficiency knock down factor for the fluid flow through the fluid system 102. The efficiency knock down factor is a knock down factor of the efficiency of the fluid path and is a function of the bend angle of the fluid path. In various examples, the fluid path change angle 284 may have an efficiency knock down factor of less than 0.5, such as between 0.1 and 0.5. In the illustrated example, the fluid path change angle 284 has an efficiency knock down factor of less than 0.3, such as between 0.2 and 0.3. In various examples, the fluid path change angle 284 may have an efficiency knock down factor of less than half the efficiency knock down factor of a 45° deflection angle.

    [0040] In various examples, the discharge bore 264 has a radius 290. The discharge bore 264, at the rear end 256, is spaced from the rotation axis 166 by a distance 292 less than the radius 290. The distance 292 corresponds to the positioning of the first and second outlet bores 420, 422 (shown in Figure 2). When the flow deflector 142 is rotated 180°, the discharge bore 264 may be aligned with the respective first and second outlet bores 420, 422. The distance 292 corresponds to a spacing 294 between the first and second outlet bores 420, 422. For example, the spacing 294 is twice the distance 292. The spacing 294 may be selected for manufacturability of the rear housing 146 (shown in Figure 2). Having the spacing 294 narrow corresponds to a narrow distance 292. The distance 292 corresponds to the fluid path change angle 284. For example, having a narrow distance 292 reduces the fluid path change angle 284, thus reducing the efficiency knock down factor of the flow channel 260, which affects the pressure loss through the directional flow control device 100. A length 296 of the discharge bore 264 and a length 298 of the intake bore 262 a fax the fluid path change angle 284. For example, having longer lengths 296, 298 reduces the fluid path change angle 284, thus reducing the efficiency knock down factor of the flow channel 260, which affects the pressure loss through the directional flow control device 100. However, increasing the lengths 296, 298 may add material cost and weight, which may be undesirable in some applications.

    [0041] Figure 9 is a rear perspective view of a portion of the directional flow control device 100 in accordance with an example showing the flow assembly 132 and the driver assembly 134. Figure 10 is a side view of a portion of the directional flow control device 100 in accordance with an example showing the flow assembly 132 and the driver assembly 134. Figure 11 is a front perspective view of a portion of the directional flow control device 100 in accordance with an example showing the flow assembly 132 and the driver assembly 134. The shell 130 (shown in Figure 2) is removed for clarity to illustrate the flow assembly 132 and the driver assembly 134.

    [0042] When assembled, the flow deflector 142 (shown in phantom) is received in the gear 164. The flow deflector 142 and the gear 164 are received in the housing 140. For example, the front end 254 of the flow deflector 142 is received in the front pocket 310 of the front housing 144 and the rear end 256 of the flow deflector 142 is received in the rear pocket 410 of the rear housing 146. The gear 164 is positioned between the inner ends 302, 402 of the front housing 144 and the rear housing 146. The fasteners 216 are used to secure the housing 140 to the shell 130. For example, the fasteners 216 pass through the front housing 144 and are coupled to the rear housing 146. In various examples, the front housing 144 is slidable along the fasteners 216 relative to the rear housing 146 and the shell 130. For example, the biasing spring 218 is used to bias the front housing 144 rearward toward the rear housing 146. The biasing spring 218 presses the front housing 144 against the flow deflector 142 and presses the flow deflector 142 against the rear housing 146. For example, the biasing spring 218 presses the front sealing surface 316 against the front sealing surface 270 of the flow deflector 142 to press the front end 254 in sealing engagement with the front sealing surface 316. The pressure from the biasing spring 218 and the front housing 144 on the flow deflector 142 presses the flow deflector 142 rearward against the rear housing 146. The rear sealing surface 272 of the flow deflector 142 is biased against the rear sealing surface 416 of the rear housing 146 by the biasing spring 218 pressing against the front housing 144 to press the rear end 256 in sealing engagement with the rear sealing surface 416. The spring constant of the biasing spring 218 is sufficient to overcome the fluid pressure plus a factor of safety, such as when the valve is at a shutoff position, to avoid a possible leak in the directional flow control device 100.

    [0043] In various examples, the driver assembly 134 is mounted to the flow assembly 132. The bearing 236 is mounted to the top 304 of the front housing 144. The motor 160 is mounted to the top 404 of the rear housing 146. The driveshaft 230 extends between the bearing 236 and the motor 160. The pinion gear 232 is mounted on the driveshaft 230 and is operably coupled to the gear 164. Rotation of the actuator 162 by the motor 160 causes rotation of the flow deflector 142 about the rotation axis 166.

    [0044] The intake bore 262 is axially aligned with the inlet bore 320 of the front housing 144 along the rotation axis 166. Rotation of the flow deflector 142 does not change the relative position of the intake bore 262 with respect to the inlet bore 320. The discharge bore 264 is angled relative to the intake bore 262 and is offset from the rotation axis 166. In various examples, the flow deflector 142 is rotatable relative to the front housing 144 and the rear housing 146 between a first discharge position and a second discharge position. The flow deflector 142 is rotatable to selectively couple the discharge bore 264 and flow communication with the first outlet bore 420 of the rear housing 146 and to selectively couple the discharge bore 264 and flow communication with the second outlet bore 422 of the rear housing 146 based on the position of the flow deflector 142 relative to the rear housing 146. In the first discharge position, the discharge bore 264 is aligned with and in flow communication with the first outlet bore 420 of the rear housing 146. In the second discharge position, the discharge bore 264 is aligned with and in flow communication with the second outlet bore 422 of the rear housing 146. In various examples, the first and second outlet bores 420, 422 are angled relative to each other, such as at an angle of less than 45°. In various examples, the flow deflector 142 is rotated 180° between the first discharge position and the second discharge position. The flow deflector 142 may be rotated other angles of rotation in alternative examples. Optionally, the flow deflector 142 may be rotated to a shut off position in which the discharge bore 264 is in flow communication with neither the first outlet bore 420 nor the second outlet bore 422 to stop flow through the directional flow control device 100. For example, the flow deflector 142 may be rotated 90° from the first discharge position and/or from the second discharge position to the shut off position.

    [0045] Position of the flow deflector 142 may be controlled by the motor 160 and/or by a position control device (not shown). For example, the motor 160 may have built-in position control. For example, the motor 160 may be calibrated to control the position of the flow deflector 142 based on a position of the motor 160 and/or the driveshaft 230 and/or the pinion gear 232. In other examples, a separate position control device, such as a laser target device may provide real-time feedback to the motor 160 to control the position of the flow deflector 142. The laser target device may target the gear 164 and/or the flow deflector 142 and/or the pinion gear 232 and/or the driveshaft 230.

    [0046] Figure 12 is a perspective view of a portion of the directional flow control device 100 showing the flow deflector 142 in a first discharge position. Figure 13 is a perspective view of a portion of the directional flow control device 100 showing the flow deflector 142 in a second discharge position. Figure 14 is a perspective view of a portion of the directional flow control device 100 showing the flow deflector 142 in a shut off position.

    [0047] In the first discharge position (Figure 12), the intake bore 262 is aligned with and in flow communication with the inlet bore 320 of the front housing 144. The discharge bore 264 is aligned with and in flow communication with the first outlet bore 420 of the rear housing 146. Fluid is able to flow through the fluid system 102 from the supply line 104, through the inlet bore 320, through the intake bore 262, through the discharge bore 264, through the first outlet bore 420 into the first discharge line 106.

    [0048] In the second discharge position (Figure 13), the intake bore 262 is aligned with and in flow communication with the inlet bore 320 of the front housing 144. The discharge bore 264 is aligned with and in flow communication with the second outlet bore 422 of the rear housing 146. Fluid is able to flow through the fluid system 102 from the supply line 104, through the inlet bore 320, through the intake bore 262, through the discharge bore 264, through the second outlet bore 422 into the second discharge line 108.

    [0049] In the shut off position (Figure 14), the intake bore 262 is aligned with and in flow communication with the inlet bore 320 of the front housing 144. The discharge bore 264 is offset from the first outlet bore 420 and from the second outlet bore 422 of the rear housing 146. The flow deflector 142 is rotated to the shut off position to stop flow through the directional flow control device 100.

    [0050] In the above, references to "front" and "rear" may be taken to be references to the associated component being disposed closer to the inlet end and discharge end respectively of the housing. That is, the "front" may be taken to be the inlet side of the device and the "rear" may be taken to be the discharge side of the device. Hence, "front" may refer to upstream and "rear" may refer to downstream relative to fluid flow when the device is in use.

    [0051] As used herein, an element or step recited in the singular and proceeded with the word "a" or "an" should be understood as not excluding plural of said elements or steps, unless such exclusion is explicitly stated. Furthermore, references to an "example" are not intended to be interpreted as excluding the existence of additional examples that also incorporate the recited features. Moreover, unless explicitly stated to the contrary, examples "comprising" or "having" an element or a plurality of elements having a particular property may include additional such elements not having that property.

    [0052] It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described examples (and/or features thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the various examples without departing from the scope thereof. Dimensions, types of materials, orientations of the various components, and the number and positions of the various components described herein are intended to define parameters of certain examples, and are by no means limiting and are merely exemplary examples. Many other examples and modifications within the scope of the claims will be apparent to those of skill in the art upon reviewing the above description. In the appended claims, the terms "including" and "in which" are used as the plain-English equivalents of the respective terms "comprising" and "wherein." Moreover, in the following claims, the terms "first," "second," and "third," etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.


    Claims

    1. A directional flow control device (100) comprising:

    a housing (140) extending along a longitudinal axis (148) between an inlet end (150) and a discharge end (152);

    a flow deflector (142) received in the housing (140), the flow deflector being rotatable in the housing (140) about a rotation axis (166) parallel to the longitudinal axis, the flow deflector (142) having a flow channel (260) therethrough, the flow channel (260) having an intake bore (262) at a front end (254) of the flow deflector (142) and a discharge bore (264) at a rear end (256) of the flow deflector (142), the intake bore (262) being coaxial with the rotation axis (166), the discharge bore (264) being offset from the rotation axis (166);

    a shell (130) receiving the housing (140), wherein the shell (130) includes a cavity (200) receiving the housing (140), the housing (140) having a front housing (144) and a rear housing (146), the rear housing (146) being fixedly coupled to the shell (130), the front housing (144) being axially movable in the cavity relative to the rear housing (146) and the shell (130), the flow deflector (142) being positioned between the front housing (144) and the rear housing (146); and

    a biasing spring (218) configured to engage the front housing (144) and an end wall (214) of the shell (130) to bias the front housing (144) toward the rear housing (146), the biasing spring sealingly compressing the front housing (144) against the flow deflector (142).


     
    2. The directional flow control device (100) of Claim 1, wherein the rotation axis (166) extends through the flow deflector (142) in a direction generally parallel to fluid flow through the directional flow control device (100), and wherein, optionally, the discharge bore (264) is rotatable between a first discharge position and a second discharge position.
     
    3. The directional flow control device (100) of Claim 1 or 2, wherein the intake bore (262) extends along an intake bore axis (280) and the discharge bore (264) extends along a discharge bore axis (282) angled relative to the intake bore axis (280) by a fluid path change angle (284) that is less than 45° and/or has an efficiency knock down factor of less than 0.5.
     
    4. The directional flow control device (100) of any preceding Claim, wherein:

    the discharge bore (264) has a radius (290), and

    the discharge bore (264) at the rear end (256) of the flow deflector (142) is spaced from the rotation axis (166) by a distance (292) less than the radius (290).


     
    5. The directional flow control device (100) of any preceding Claim, wherein the flow deflector (142) includes a hub (250), the hub (250) being cylindrical.
     
    6. The directional flow control device (100) of Claim 5, further comprising a gear (164) coaxial with the hub (250), the gear being driven by an actuator (162) of a drive assembly (134) to rotate the discharge bore (264) and wherein, optionally, the gear (164) includes an opening (220) receiving the hub (250), the gear having a gear locking feature (242), the hub (250) having a locking feature (258) engaging the gear locking feature (242) to lock the gear (164) to the hub (250) against relative rotation.
     
    7. The directional flow control device (100) of any preceding Claim, wherein:

    the flow deflector (142) is rotatably coupled between the front housing (144) and the rear housing (146); and/or

    the front housing (144) having a front pocket (310) receiving the front end (254) of the flow deflector (142) and an inlet bore (320) in flow communication with the intake bore (262), the rear housing (146) having a rear pocket (410) receiving the rear end (256) of the flow deflector (142), the rear housing (146) having a first outlet bore (420) and a second outlet bore (422), the flow deflector (142) being rotatable to selectively couple the discharge bore (264) in flow communication with the first outlet bore (420) and being rotatable to selectively couple the discharge bore (264) in flow communication with the second outlet bore (422).


     
    8. The directional flow control device (100) of Claim 7, wherein the flow deflector (142) is rotatable to a first discharge position in flow communication with the first outlet bore (420), the flow deflector (142) being rotatable to a second discharge position in flow communication with the second outlet bore (422), and the flow deflector (142) being rotatable to a shut off position in which the discharge bore (264) is in flow communication with neither the first outlet bore (420) nor the second outlet bore (422) to shut off flow through the directional flow control device, wherein, optionally:

    the inlet bore (320) is axially aligned with the intake bore (262) along the rotation axis (166); the first outlet bore (420) and the second outlet bore (422) are angled relative to each other at less than 45°; or

    the front housing (144) includes a front sealing surface (316) in the front pocket (310) and the rear housing (146) includes a rear sealing surface (416) in the rear pocket (410), a front end (300) of the front housing (144) being in sealing engagement with the front sealing surface (316), and a rear end (400) of the rear housing (146) being in sealing engagement with the rear sealing surface (416) and, further optionally, the biasing spring (218) holding the front end (254) and the rear end (256) of the flow deflector (142) in sealing engagement with the front sealing surface (316) of the front housing (144) and the rear sealing surface (416) of the rear housing (146); or

    any combination of the above.


     
    9. The directional flow control device (100) of any preceding Claim, wherein the shell (130) holds a drive assembly (134) operably coupled to the flow deflector (142) to rotate the flow deflector (142).
     
    10. An aircraft comprising the directional flow control device (100) of any preceding Claim.
     
    11. The aircraft of Claim 10, wherein one of:

    the directional flow control device (100) is configured to control fuel flow; or

    the directional flow control device (100) is configured to control hydraulic fluid flow, optionally in a flight control system.


     
    12. A method of assembling a directional flow control device (100), the method comprising steps of:

    providing a shell (130) having a front end (202), a rear end (204), and a cavity (200) between the front end (202) and the rear end (204);

    positioning a front housing (144) in the cavity (200), the front housing (144) having a front pocket (310) and an inlet bore (320) open to the front pocket (310),

    positioning a rear housing (146) in the cavity (200), the rear housing (146) having a rear pocket (410), a first outlet bore (420) open to the rear pocket (410) and a second outlet bore (422) open to the rear pocket (410), wherein the front housing (144) and the rear housing (146) are aligned in the cavity (200) along a longitudinal axis (148) extending between an inlet end (150) and an outlet end of the directional flow control device (100);

    providing a flow deflector (142) having a hub (250) with a front end (254) and a rear end (256), the front end (254) of the hub (250) being positioned in the front pocket (310), the rear end (256) of the hub (250) being positioned in the rear pocket (410), the flow deflector (142) having a flow channel (260) therethrough, the flow channel (260) having an intake bore (262) at the front end of the flow deflector (142), the flow channel (260) having a discharge bore (264) at the rear end of the flow deflector (142); and

    positioning the flow deflector (142) between the front housing (144) and the rear housing (146) such that the intake bore is in flow communication with the inlet bore, the hub (250) being rotatable relative to the front housing (144) and the rear housing (146) about a rotation axis (166) coaxial with the intake bore and the rotation axis being parallel to the longitudinal axis, the hub (250) being rotated about the rotation axis between a first discharge position and a second discharge position wherein the discharge bore (264) is configured to be in fluid communication with the first outlet bore (420) when the hub (250) is at the first discharge position and wherein the discharge bore (264) is configured to be in fluid communication with the second outlet bore (422) when the hub (250) is at the second discharge position,

    wherein the step of positioning the front housing (144) in the cavity (200) comprises movably coupling the front housing (144) between the front end (202) of the shell (130) and the flow deflector (142), wherein the step of positioning the rear housing (146) in the cavity (200) comprises fixedly coupling the rear housing (146) to the shell (130) using fasteners (216), and wherein the step of positioning the front housing (144) in the cavity comprises slidably coupling the front housing (144) to the fasteners such that the front housing (144) is movable relative to the rear housing (146), the method further comprising:

    positioning a biasing spring (218) between the front end of the shell (130) and the front housing (144) to press the front housing (144) into sealing engagement with the hub (250) of the flow deflector (142).


     
    13. The method of Claim 12, wherein the step of positioning the flow deflector (142) between the front housing (144) and the rear housing (146) comprises positioning the flow deflector (142) such that the intake bore (262) extends along an intake bore axis (280) parallel to the rotation axis (166) and the discharge bore (264) extends along a discharge bore axis (282) angled relative to the intake bore axis (280) by a fluid path change angle (284) of less than 45°.
     
    14. The method of Claim 12 or Claim 13, further comprising providing a gear (164) coaxial with the hub (250) and operably coupling an actuator (162) of a drive assembly (134) to the gear to rotate the hub (250).
     
    15. The method of any of Claims 12 to 14, wherein the step of positioning the flow deflector (142) between the front housing (144) and the rear housing (146) comprises positioning the flow deflector (142) such that the flow deflector (142) is rotatable to a shut off position in which the discharge bore (264) is in flow communication with neither the first outlet bore (420) nor the second outlet bore (422) to shut off flow through the directional flow control device (100).
     


    Ansprüche

    1. Durchflussrichtungssteuervorrichtung (100), umfassend:

    ein Gehäuse (140), das sich entlang einer Längsachse (148) zwischen einem Einlassende (150) und einem Auslassende (152) erstreckt;

    einen Durchflussdeflektor (142), der in dem Gehäuse (140) untergebracht ist, wobei der Durchflussdeflektor in dem Gehäuse (140) um eine zu der Längsachse parallele Drehachse (166) drehbar ist, wobei der Durchflussdeflektor (142) einen Durchflusskanal (260) durch ihn hindurch aufweist, wobei der Durchflusskanal (260) eine Eingangsbohrung (262) an einem vorderen Ende (254) des Durchflussdeflektors (142) und eine Ausgangsbohrung (264) an einem hinteren Ende (256) des Durchflussdeflektors (142) aufweist, wobei die Eingangsbohrung (262) koaxial mit der Drehachse (166) ist und die Ausgangsbohrung (264) aus der Drehachse (166) versetzt ist;

    eine Schale (130), die das Gehäuse (140) aufnimmt, wobei die Schale (130) einen Hohlraum (200) aufweist, der das Gehäuse (140) aufnimmt, wobei das Gehäuse (140) ein vorderes Gehäuse (144) und ein hinteres Gehäuse (146) aufweist, wobei das hintere Gehäuse (146) fest mit der Schale (130) verbunden ist, wobei das vordere Gehäuse (144) in dem Hohlraum relativ zu dem hinteren Gehäuse (146) und der Schale (130) axial beweglich ist, wobei der Durchflussdeflektor (142) zwischen dem vorderen Gehäuse (144) und dem hinteren Gehäuse (146) angeordnet ist; und

    eine Vorspannfeder (218), die konfiguriert ist, um mit dem vorderen Gehäuse (144) und einer Endwand (214) der Schale (130) in Eingriff zu stehen, um das vordere Gehäuse (144) in Richtung des hinteren Gehäuses (146) vorzuspannen, wobei die Vorspannfeder das vordere Gehäuse (144) dichtend gegen den Durchflussdeflektor (142) zusammendrückt.


     
    2. Durchflussrichtungssteuervorrichtung (100) nach Anspruch 1, bei der sich die Drehachse (166) durch den Durchflussdeflektor (142) in einer Richtung erstreckt, die im Allgemeinen parallel zur Fluidströmung durch die Durchflussrichtungssteuervorrichtung (100) ist, und wobei optional die Ausgangsbohrung (264) zwischen einer ersten Auslassposition und einer zweiten Auslassposition drehbar ist.
     
    3. Durchflussrichtungssteuervorrichtung (100) nach Anspruch 1 oder 2, bei der sich die Eingangsbohrung (262) entlang einer Eingangsbohrungsachse (280) erstreckt und sich die Ausgangsbohrung (264) entlang einer Ausgangsbohrungsachse (282) erstreckt, die relativ zur Eingangsbohrungsachse (280) um einen Fluidwegänderungswinkel (284) abgewinkelt ist, der weniger als 45° beträgt und/oder einen Wirkungsgrad-Abschlagfaktor von weniger als 0,5 aufweist.
     
    4. Durchflussrichtungssteuervorrichtung (100) nach einem der vorhergehenden Ansprüche, bei der
    die Ausgangsbohrung (264) einen Radius (290) aufweist, und
    die Ausgangsbohrung (264) am hinteren Ende (256) des Durchflussdeflektors (142) von der Drehachse (166) um einen Abstand (292) beabstandet ist, der kleiner als der Radius (290) ist.
     
    5. Durchflussrichtungssteuervorrichtung (100) nach einem der vorhergehenden Ansprüche, bei der der Durchflussdeflektor (142) eine Nabe (250) aufweist und die Nabe (250) zylindrisch ist.
     
    6. Durchflussrichtungssteuervorrichtung (100) nach Anspruch 5, die ferner ein mit der Nabe (250) koaxiales Zahnrad (164) umfasst, wobei das Zahnrad von einem Aktuator (162) einer Antriebsbaugruppe (134) angetrieben ist, um die Ausgangsbohrung (264) zu drehen, und wobei optional das Zahnrad (164) eine Öffnung (220) aufweist, die die Nabe (250) aufnimmt, wobei das Zahnrad ein Zahnradverriegelungsmerkmal (242) aufweist und die Nabe (250) ein Verriegelungsmerkmal (258) aufweist, das mit dem Zahnradverriegelungsmerkmal (242) in Eingriff steht, um das Zahnrad (164) an der Nabe (250) gegen eine relative Drehung zu verriegeln.
     
    7. Durchflussrichtungssteuervorrichtung (100) nach einem der vorhergehenden Ansprüche, bei der:

    der Durchflussdeflektor (142) drehbar zwischen dem vorderen Gehäuse (144) und dem hinteren Gehäuse (146) gekoppelt ist; und/oder

    das vordere Gehäuse (144) eine vordere Tasche (310), die das vordere Ende (254) des Durchflussdeflektors (142) aufnimmt, und eine Einlassbohrung (320) in Durchflussverbindung mit der Eingangsbohrung (262) aufweist, das hintere Gehäuse (146) eine hintere Tasche (410) aufweist, die das hintere Ende (256) des Durchflussdeflektors (142) aufnimmt, das hintere Gehäuse (146) eine erste Auslassbohrung (420) und eine zweite Auslassbohrung (422) aufweist, der Durchflussdeflektor (142) drehbar ist, um selektiv die Ausgangsbohrung (264) in Durchflussverbindung mit der ersten Auslassbohrung (420) zu koppeln, und drehbar ist, um selektiv die Ausgangsbohrung (264) in Durchflussverbindung mit der zweiten Auslassbohrung (422) zu koppeln.


     
    8. Durchflussrichtungssteuervorrichtung (100) nach Anspruch 7, bei der der Durchflussdeflektor (142) in eine erste Auslassposition in Durchflussverbindung mit der ersten Auslassbohrung (420) drehbar ist, der Durchflussdeflektor (142) in eine zweite Auslassposition in Durchflussverbindung mit der zweiten Auslassbohrung (422) drehbar ist, und der Durchflussdeflektor (142) in eine Absperrposition drehbar ist, in der die Ausgangsbohrung (264) weder mit der ersten Auslassbohrung (420) noch mit der zweiten Auslassbohrung (422) in Durchflussverbindung steht, um die Strömung durch die Durchflussrichtungssteuervorrichtung abzusperren, wobei optional:

    die Einlassbohrung (320) axial mit der Eingangsbohrung (262) entlang der Drehachse (166) fluchtet und die erste Auslassbohrung (420) und die zweite Auslassbohrung (422) in einem Winkel von weniger als 45° zueinander angeordnet sind; oder

    das vordere Gehäuse (144) eine vordere Dichtfläche (316) in der vorderen Tasche (310) aufweist und das hintere Gehäuse (146) eine hintere Dichtfläche (416) in der hinteren Tasche (410) aufweist, wobei ein vorderes Ende (300) des vorderen Gehäuses (144) in Dichtungseingriff mit der vorderen Dichtfläche (316) ist, und ein hinteres Ende (400) des hinteren Gehäuses (146) in Dichtungseingriff mit der hinteren Dichtungsfläche (416) ist, und wobei ferner optional die Vorspannfeder (218) das vordere Ende (254) und das hintere Ende (256) des Durchflussdeflektors (142) in Dichtungseingriff mit der vorderen Dichtungsfläche (316) des vorderen Gehäuses (144) und der hinteren Dichtungsfläche (416) des hinteren Gehäuses (146) hält; oder

    eine beliebige Kombination von diesen.


     
    9. Durchflussrichtungssteuervorrichtung (100) nach einem der vorhergehenden Ansprüche, bei der das Gehäuse (130) eine Antriebsbaugruppe (134) hält, die betreibbar mit dem Durchflussdeflektor (142) gekoppelt ist, um den Durchflussdeflektor (142) zu drehen.
     
    10. Luftfahrzeug mit der Durchflussrichtungssteuervorrichtung (100) nach einem der vorhergehenden Ansprüche.
     
    11. Luftfahrzeug nach Anspruch 10, bei dem:

    die Durchflussrichtungssteuervorrichtung (100) konfiguriert ist, um den Kraftstoffstrom zu steuern; und/oder

    die Durchflussrichtungssteuervorrichtung (100) konfiguriert ist, um einen Hydraulikfluidfluss zu steuern,

    optional in einem Flugsteuerungssystem.


     
    12. Verfahren zum Zusammenbau einer Durchflussrichtungssteuervorrichtung (100), wobei das Verfahren die Schritte umfasst:

    Bereitstellen eines Schale (130) mit einem vorderen Ende (202), einem hinteren Ende (204) und einem Hohlraum (200) zwischen dem vorderen Ende (202) und dem hinteren Ende (204);

    Positionieren eines vorderen Gehäuses (144) in dem Hohlraum (200), wobei das vordere Gehäuse (144) eine vordere Tasche (310) und eine zu der vorderen Tasche (310) offene Einlassbohrung (320) aufweist,

    Positionieren eines hinteren Gehäuses (146) in dem Hohlraum (200), wobei das hintere Gehäuse (146) eine hintere Tasche (410), eine erste Auslassbohrung (420), die zu der hinteren Tasche (410) offen ist, und eine zweite Auslassbohrung (422), die zu der hinteren Tasche (410) offen ist, aufweist, wobei das vordere Gehäuse (144) und das hintere Gehäuse (146) in dem Hohlraum (200) entlang einer Längsachse (148), die sich zwischen einem Einlassende (150) und einem Auslassende der Durchflussrichtungssteuervorrichtung (100) erstreckt, ausgerichtet sind;

    Bereitstellen eines Durchflussdeflektors (142), der eine Nabe (250) mit einem vorderen Ende (254) und einem hinteren Ende (256) aufweist, wobei das vordere Ende (254) der Nabe (250) in der vorderen Tasche (310) positioniert ist und das hintere Ende (256) der Nabe (250) in der hinteren Tasche (410) positioniert ist, wobei der Durchflussdeflektor (142) einen Durchflusskanal (260) durch ihn hindurch aufweist, wobei der Durchflusskanal (260) eine Eingangsbohrung (262) am vorderen Ende des Durchflussdeflektors (142) aufweist, wobei der Durchflusskanal (260) eine Ausgangsbohrung (264) am hinteren Ende des Durchflussdeflektors (142) aufweist; und

    Positionieren des Durchflussdeflektors (142) zwischen dem vorderen Gehäuse (144) und dem hinteren Gehäuse (146), so dass die Einlassbohrung in Durchflussverbindung mit der Einlassbohrung steht, wobei die Nabe (250) relativ zu dem vorderen Gehäuse (144) und dem hinteren Gehäuse (146) um eine Drehachse (166) drehbar ist, die koaxial zu der Einlassbohrung ist, und die Drehachse parallel zu der Längsachse ist, wobei die Nabe (250) um die Drehachse zwischen einer ersten Auslassposition und einer zweiten Auslassposition gedreht wird, wobei die Ausgangsbohrung (264) konfiguriert ist, um in Fluidverbindung mit der ersten Auslassbohrung (420) zu stehen, wenn die Nabe (250) in der ersten Auslassposition ist, und wobei die Ausgangsbohrung (264) konfiguriert ist, um in Fluidverbindung mit der zweiten Auslassbohrung (422) zu stehen, wenn die Nabe (250) in der zweiten Auslassposition ist,

    wobei der Schritt des Positionierens des vorderen Gehäuses (144) in dem Hohlraum (200) ein bewegliches Koppeln des vorderen Gehäuses (144) zwischen dem vorderen Ende (202) der Schale (130) und dem Durchflussdeflektor (142) umfasst, wobei der Schritt des Positionierens des hinteren Gehäuses (146) in dem Hohlraum (200) ein festes Koppeln des hinteren Gehäuses (146) mit der Schale (130) unter Verwendung von Befestigungsmitteln (216) umfasst, und wobei der Schritt des Positionierens des vorderen Gehäuses (144) in dem Hohlraum ein gleitendes Koppeln des vorderen Gehäuses (144) mit den Befestigungselementen umfasst, so dass das vordere Gehäuse (144) relativ zu dem hinteren Gehäuse (146) beweglich ist, wobei das Verfahren ferner umfasst:

    Positionieren einer Vorspannfeder (218) zwischen dem vorderen Ende der Schale (130) und dem vorderen Gehäuse (144), um das vordere Gehäuse (144) in dichtenden Eingriff mit der Nabe (250) des Durchflussdeflektors (142) zu drücken.


     
    13. Verfahren nach Anspruch 12, bei dem der Schritt des Positionierens des Durchflussdeflektors (142) zwischen dem vorderen Gehäuse (144) und dem hinteren Gehäuse (146) das Positionieren des Durchflussdeflektors (142) derart umfasst, dass sich die Eingangsbohrung (262) entlang einer Eingangsbohrungsachse (280) parallel zur Rotationsachse (166) erstreckt und sich die Ausgangsbohrung (264) entlang einer Ausgangsbohrungsachse (282) erstreckt, die relativ zur Eingangsbohrungsachse (280) um einen Fluidwegänderungswinkel (284) von weniger als 45° abgewinkelt ist.
     
    14. Verfahren nach Anspruch 12 oder Anspruch 13, das ferner das Bereitstellen eines Zahnrads (164), das koaxial mit der Nabe (250) ist, und das funktionsmäßige Koppeln eines Aktuators (162) einer Antriebsbaugruppe (134) mit dem Zahnrad, um die Nabe (250) zu drehen, umfasst.
     
    15. Verfahren nach einem der Ansprüche 12 bis 14, bei dem der Schritt des Positionierens des Durchflussdeflektors (142) zwischen dem vorderen Gehäuse (144) und dem hinteren Gehäuse (146) das Positionieren des Durchflussdeflektors (142) derart umfasst, dass der Durchflussdeflektor (142) in eine Absperrposition drehbar ist, in der die Ausgangsbohrung (264) weder mit der ersten Auslassbohrung (420) noch mit der zweiten Auslassbohrung (422) in Durchflussverbindung steht, um die Strömung durch die Durchflussrichtungssteuervorrichtung (100) abzusperren.
     


    Revendications

    1. Dispositif de commande d'écoulement directionnel (100) comprenant :

    un boîtier (140) s'étendant le long d'un axe longitudinal (148) entre une extrémité d'entrée (150) et une extrémité de décharge (152) ;

    un déflecteur d'écoulement (142) reçu dans le boîtier (140), le déflecteur d'écoulement pouvant tourner dans le boîtier (140) autour d'un axe de rotation (166) parallèle à l'axe longitudinal, le déflecteur d'écoulement (142) ayant un canal d'écoulement (260) à travers ce dernier, le canal d'écoulement (260) ayant un alésage d'admission (262) au niveau d'une extrémité avant (254) du déflecteur d'écoulement (142) et un alésage de décharge (264) au niveau d'une extrémité arrière (256) du déflecteur d'écoulement (142), l'alésage d'admission (262) étant coaxial avec l'axe de rotation (166), l'alésage de décharge (264) étant décalé de l'axe de rotation (166) ;

    une coque (130) recevant le boîtier (140), dans lequel la coque (130) comprend une cavité (200) recevant le boîtier (140), le boîtier (140) ayant un boîtier avant (144) et un boîtier arrière (146), le boîtier arrière (146) étant couplé de manière fixe à la coque (130), le boîtier avant (144) étant axialement mobile dans la cavité par rapport au boîtier arrière (146) et à la coque(130), le déflecteur d'écoulement (142) étant positionné entre le boîtier avant (144) et le boîtier arrière (146) ; et

    un ressort de sollicitation (218) configuré pour mettre en prise le boîtier avant (144) et une paroi d'extrémité (214) de la coque (130) afin de solliciter le boîtier avant (144) vers le boîtier arrière (146), le ressort de sollicitation comprimant, de manière étanche, le boîtier avant (144) contre le déflecteur d'écoulement (142).


     
    2. Dispositif de commande d'écoulement directionnel (100) selon la revendication 1, dans lequel l'axe de rotation (166) s'étend à travers le déflecteur d'écoulement (142) dans une direction généralement parallèle à l'écoulement de fluide à travers le dispositif de commande d'écoulement directionnel (100), et dans lequel, facultativement, l'alésage de décharge (264) peut tourner entre une première position de décharge et une seconde position de décharge.
     
    3. Dispositif de commande d'écoulement directionnel (100) selon la revendication 1 ou 2, dans lequel l'alésage d'admission (262) s'étend le long d'un axe d'alésage d'admission (280) et l'alésage de décharge (264) s'étend le long d'un axe d'alésage de décharge (282) coudé par rapport à l'axe d'alésage d'admission (280) par un angle de changement de trajectoire de fluide (284) qui est inférieur à 45° et/ou a un facteur d'efficacité d'assemblage inférieur à 0,5.
     
    4. Dispositif de commande d'écoulement directionnel (100) selon l'une quelconque des revendications précédentes, dans lequel :

    l'alésage de décharge (264) a un rayon (290), et

    l'alésage de décharge (264), au niveau de l'extrémité arrière (256) du déflecteur d'écoulement (142), est éloigné de l'axe de rotation (166) par une distance (292) inférieure au rayon (290).


     
    5. Dispositif de commande d'écoulement directionnel (100) selon l'une quelconque des revendications précédentes, dans lequel le déflecteur d'écoulement (142) comprend un moyeu (250), le moyeu (250) étant cylindrique.
     
    6. Dispositif de commande d'écoulement directionnel (100) selon la revendication 5, comprenant en outre un engrenage (164) coaxial avec le moyeu (250), l'engrenage étant entraîné par un actionneur (162) d'un ensemble d'entraînement (134) pour faire tourner l'alésage de décharge (264), et dans lequel, facultativement, l'engrenage (164) comprend une ouverture (220) recevant le moyeu (250), l'engrenage ayant une caractéristique de verrouillage d'engrenage (242), le moyeu (250) ayant une caractéristique de verrouillage (258) mettant en prise la caractéristique de verrouillage d'engrenage (242) pour verrouiller l'engrenage (164) avec le moyeu (250) contre la rotation relative.
     
    7. Dispositif de commande d'écoulement directionnel (100) selon l'une quelconque des revendications précédentes, dans lequel :

    le déflecteur d'écoulement (142) est couplé, de manière rotative, entre le boîtier avant (144) et le boîtier arrière (146) ; et/ou

    le boîtier avant (144) ayant une poche avant (310) recevant l'extrémité avant (254) du déflecteur d'écoulement (142) et un alésage d'entrée (320) en communication d'écoulement avec l'alésage d'admission (262), le boîtier arrière (146) ayant une poche arrière (410) recevant l'extrémité arrière (256) du déflecteur d'écoulement (142), le boîtier arrière (146) ayant un premier alésage de sortie (420) et un second alésage de sortie (422), le déflecteur d'écoulement (142) pouvant tourner pour coupler sélectivement l'alésage de décharge (264) en communication d'écoulement avec le premier alésage de sortie (420) et pouvant tourner pour coupler sélectivement l'alésage de décharge (264) en communication d'écoulement avec le second alésage de sortie (422).


     
    8. Dispositif de commande d'écoulement directionnel (100) selon la revendication 7, dans lequel le déflecteur d'écoulement (142) peut tourner dans une première position de décharge en communication d'écoulement avec le premier alésage de sortie (420), le déflecteur d'écoulement (142) pouvant tourner dans une seconde position de décharge en communication d'écoulement avec le second alésage de sortie (422), et le déflecteur d'écoulement (142) pouvant tourner dans une position d'obturation dans laquelle l'alésage de décharge (264) n'est en communication d'écoulement ni avec le premier alésage de sortie (420) ni avec le second alésage de sortie (422), afin d'obturer l'écoulement à travers le dispositif de commande d'écoulement directionnel, dans lequel, facultativement :

    l'alésage d'entrée (320) est axialement aligné avec l'alésage d'admission (262) le long de l'axe de rotation (166) ; le premier alésage de sortie (420) et le second alésage de sortie (422) forment un angle l'un par rapport à l'autre inférieur à 45° ; ou bien

    le boîtier avant (144) comprend une surface d'étanchéité avant (316) dans la poche avant (310) et le boîtier arrière (146) comprend une surface d'étanchéité arrière (416) dans la poche arrière (410), une extrémité avant (300) du boîtier avant (144) étant en mise en prise d'étanchéité avec la surface d'étanchéité avant (316) et une extrémité arrière (400) du boîtier arrière (146) étant en mise en prise d'étanchéité avec la surface d'étanchéité arrière (416) et en outre facultativement, le ressort de sollicitation (218) maintenant l'extrémité avant (254) et l'extrémité arrière (256) du déflecteur d'écoulement (142) en mise en prise d'étanchéité avec la surface d'étanchéité avant (316) du boîtier avant (144) et la surface d'étanchéité arrière (416) du boîtier arrière (146) ; ou bien

    l'une quelconque des combinaisons de la partie ci-dessus.


     
    9. Dispositif de commande d'écoulement directionnel (100) selon l'une quelconque des revendications précédentes, dans lequel la coque (130) maintient un ensemble d'entraînement (134) couplé, de manière opérationnelle, au déflecteur d'écoulement (142) pour faire tourner le déflecteur d'écoulement (142).
     
    10. Aéronef comprenant le dispositif de commande d'écoulement directionnel (100) selon l'une quelconque des revendications précédentes.
     
    11. Aéronef selon la revendication 10, dans lequel l'un parmi :

    le dispositif de commande d'écoulement directionnel (100) est configuré pour commander l'écoulement de combustible ; ou bien

    le dispositif de commande d'écoulement directionnel (100) est configuré pour commander l'écoulement de fluide hydraulique, facultativement dans un système de commande de vol.


     
    12. Procédé pour assembler un dispositif de commande d'écoulement directionnel (100), le procédé comprenant les étapes consistant à :

    prévoir une coque (130) ayant une extrémité avant (202), une extrémité arrière (204), et une cavité (200) entre l'extrémité avant (202) et l'extrémité arrière (204) ;

    positionner un boîtier avant (144) dans la cavité (200), le boîtier avant (144) ayant une poche avant (310) et une alésage d'entrée (320) ouvert par rapport à la poche avant (310),

    positionner un boîtier arrière (146) dans la cavité (200), le boîtier arrière (146) ayant une poche arrière (410), un premier alésage de sortie (420) ouvert par rapport à la poche arrière (410) et un second alésage de sortie (422) ouvert par rapport à la poche arrière (410), dans lequel le boîtier avant (144) et le boîtier arrière (146) sont alignés dans la cavité (200) le long d'un axe longitudinal (148) s'étendant entre une extrémité d'entrée (150) et une extrémité de sortie du dispositif de commande d'écoulement directionnel (100) ;

    prévoir un déflecteur d'écoulement (142) ayant un moyeu (250) avec une extrémité avant (254) et une extrémité arrière (256), l'extrémité avant (254) du moyeu (250) étant positionnée dans la poche avant (310), l'extrémité arrière (256) du moyeu (250) étant positionnée dans la poche arrière (410), le déflecteur d'écoulement (142) ayant un canal d'écoulement (260) à travers ce dernier, le canal d'écoulement (260) ayant un alésage d'admission (262) au niveau de l'extrémité avant du déflecteur d'écoulement (142), le canal d'écoulement (260) ayant un alésage de décharge (264) au niveau de l'extrémité arrière du déflecteur d'écoulement (142) ; et

    positionner le déflecteur d'écoulement (142) entre le boîtier avant (144) et le boîtier arrière (146) de sorte que l'alésage d'admission est en communication d'écoulement avec l'alésage d'entrée, le moyeu (250) pouvant tourner par rapport au boîtier avant (144) et au boîtier arrière (146) autour d'un axe de rotation (166) coaxial avec l'alésage d'admission et l'axe de rotation étant parallèle à l'axe longitudinal, le moyeu (250) étant entraîné en rotation autour de l'axe de rotation entre une première position de décharge et une seconde position de décharge, dans lequel l'alésage de décharge (264) est configuré pour être en communication de fluide avec le premier alésage de sortie (420) lorsque le moyeu (250) est dans la première position de décharge et dans lequel l'alésage de décharge (264) est configuré pour être en communication de fluide avec le second alésage de sortie (422) lorsque le moyeu (250) est dans la seconde position de décharge,

    dans lequel l'étape consistant à positionner le boîtier avant (144) dans la cavité (200) comprend l'étape consistant à coupler, de manière mobile, le boîtier avant (144) entre l'extrémité avant (202) de la coque (130) et le déflecteur d'écoulement (142), dans lequel l'étape consistant à positionner le boîtier arrière (146) dans la cavité (200) comprend l'étape consistant à coupler, de manière fixe, le boîtier arrière (146) à la coque (130) à l'aide de fixations (216), et dans lequel l'étape consistant à positionner le boîtier avant (144) dans la cavité comprend l'étape consistant à coupler, de manière coulissante, le boîtier avant (144) aux fixations de sorte que le boîtier avant (144) est mobile par rapport au boîtier arrière (146), le procédé comprenant en outre l'étape consistant à :
    positionner un ressort de sollicitation (218) entre l'extrémité avant de la coque (130) et le boîtier avant (144) afin de comprimer le boîtier avant (144) en mise en prise d'étanchéité avec le moyeu (250) du déflecteur d'écoulement (142) .


     
    13. Procédé selon la revendication 12, dans lequel l'étape consistant à positionner le déflecteur d'écoulement (142) entre le boîtier avant (144) et le boîtier arrière (146) comprend l'étape consistant à positionner le déflecteur d'écoulement (142) de sorte que l'alésage d'admission (262) s'étend le long d'un axe d'alésage d'admission (280) parallèlement à l'axe de rotation (166) et l'alésage de décharge (264) s'étend le long d'un axe d'alésage de décharge (282) coudé par rapport à l'axe d'alésage d'admission (280) selon un angle de changement de trajectoire de fluide (284) inférieur à 45°.
     
    14. Procédé selon la revendication 12 ou la revendication 13, comprenant en outre les étapes consistant à prévoir un engrenage (164) coaxial avec le moyeu (250) et à coupler, de manière opérationnelle, un actionneur (162) d'un ensemble d'entraînement (134) à l'engrenage pour faire tourner le moyeu (250).
     
    15. Procédé selon l'une quelconque des revendications 12 à 14, dans lequel l'étape consistant à positionner le déflecteur d'écoulement (142) entre le boîtier avant (144) et le boîtier arrière (146) comprend l'étape consistant à positionner le déflecteur d'écoulement (142) de sorte que le déflecteur d'écoulement (142) peut tourner dans une position d'obturation dans laquelle l'alésage de décharge (264) n'est en communication d'écoulement ni avec le premier alésage de sortie (420), ni avec le second alésage de sortie (422), pour l'obturation à travers le dispositif de commande d'écoulement directionnel (100).
     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description