(19)
(11)EP 3 546 760 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
22.07.2020 Bulletin 2020/30

(21)Application number: 18163865.1

(22)Date of filing:  26.03.2018
(51)International Patent Classification (IPC): 
F04D 15/00(2006.01)
F04D 13/08(2006.01)
F04D 13/06(2006.01)
F04D 29/66(2006.01)

(54)

SUBMERSIBLE ELECTRIC MACHINE

TAUCHFÄHIGE ELEKTRISCHE MASCHINE

MACHINE ÉLECTRIQUE SUBMERSIBLE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
02.10.2019 Bulletin 2019/40

(73)Proprietor: Xylem Europe GmbH
8200 Schaffhausen (CH)

(72)Inventors:
  • OLSSON, Staffan
    167 43 Bromma (SE)
  • BERGSTEN, Måns
    115 58 Stockholm (SE)
  • HALLGREN, Gert
    126 39 Hägersten (SE)

(74)Representative: Brann AB 
P.O. Box 3690 Drottninggatan 27
103 59 Stockholm
103 59 Stockholm (SE)


(56)References cited: : 
EP-A2- 2 426 360
KR-B1- 101 578 478
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical field of the Invention



    [0001] The present invention relates generally to the field of submersible electric machines especially configured for transporting/handling a liquid, preferably liquid comprising solid matter. Thus the present invention relates to an electric liquid transporting machine. Further, the present invention relates specifically to the field of submersible electric machines especially configured and intended for treatment/transport applications, and comprises submersible electric machines such as submersible pumps and submersible mixers. It shall be pointed out that despite the name/term submersible pumps, it is a fact in the technical field in question that submersible pumps can be located in the pumped liquid, i.e. wet-installed applications, or alternatively be located separate from the pumped liquid, i.e. dry-installed applications. Thus, the term submersible does not specify that the device is or must be submersed, but defines that the device has specific properties/qualities.

    [0002] The submersible electric machine comprises a hydraulic unit that comprises an impeller configured for propelling/moving the liquid, a drive unit that comprises a drive unit housing defining a motor compartment, an electric motor arranged in the motor compartment and drive shaft connected to the electric motor, the drive shaft extending from the electric motor to the hydraulic unit and being connected to the impeller, a top unit that comprises a top unit housing defining an electronics chamber, the electronics chamber being separated from the motor compartment by a dividing structural wall, and a vibration sensor.

    Background of the Invention



    [0003] Submersible electric machines having an internal vibration sensor is known in the art, see for instance KR101578478 and EP2426360. '478 disclosing a submersible pump having an unspecified vibration sensor connected to an upper surface of a terminal board that separates an electronics chamber from the motor compartment that houses the electric motor. '360 discloses a submersible pump having a 1D or 2D vibration sensor connected to an upper bearing housing that separates an electronics chamber from the motor compartment that houses the electric motor. The 2D vibration sensor monitors two dimensions perpendicular to the drive shaft of the pump.

    [0004] The main object of using an internal vibration sensor in submersible electric machines is as a protective feature, i.e. to monitor the condition/status of the submersible electric machine. A submersible electric machine is subject to vibrations during operation, mainly due to the rotating impeller, and elevated vibrations can be directly harmful and/or implies that the operation is not optimal. Basically, vibrations entails that mechanical parts of the submersible electric machine wear faster and thereby has a shorter life. The vibration sensor is used to detect abnormal condition.

    [0005] Common conditions and circumstances, that can lead to elevated vibration and that are of interest to warn and protect against, are clogging, bad attachment of the pump, piping systems that are mechanically weak or badly attached, damaged parts such as impeller and drive shaft, severely defected bearings, etc.

    [0006] Heavy duty submersible electric machines, for instance submersible pumps having a rated power in the range from about 48 kW (about 60 Horsepower) to about 800 kW (about 1100 Horsepower) or more, are really expensive and also hard to exchange. Pumps in the upper end of the interval can easily by 2-4 meters high and have a weight of several tons. Thus, the vibration sensor shall be configured to detect if the pump is vibrating more than normally and in such cases initiate a warning signal or a total stop of the pump in order to be able to service the pump before it is damaged, i.e. the submersible electric machine shall be configured to take precautionary measures based on the monitoring of the vibration.

    [0007] However, it has become apparent that in almost all applications the detrimental and unfavorable vibration component has not been collinear with the measuring direction of the vibration sensor. It has also been unknown which frequencies that are the most unfavorable, and thereby the essential measuring range, in order to provide accurate protection of the submersible electric machine. Resulting in that known arrangements use too large safety margins and thereby too many false warnings and unnecessary stops are initiated.

    Object of the Invention



    [0008] The present invention aims at obviating the aforementioned disadvantages and failings of previously known submersible electric machines, and at providing an improved submersible electric machine. A primary object of the present invention is to provide an improved submersible electric machine of the initially defined type that comprises a vibration sensor configured to monitor the whole range of harmful frequencies. It is another object of the present invention to provide a submersible electric machine, wherein the attachment structure for the vibration sensor is designed not to interfere with the vibration monitoring in the essential measuring range.

    Summary of the Invention



    [0009] According to the invention at least the primary object is attained by means of the initially defined submersible electric machine having the features defined in the independent claim. Preferred embodiments of the present invention are further defined in the dependent claims.

    [0010] According to the present invention, there is provided a submersible electric machine of the initially defined type, which is characterized in that the vibration sensor is directly or indirectly connected to a partition arranged in the electronics chamber, is configured to monitor vibrations in at least two dimensions [2D] and is configured to monitor vibrations at frequencies ranging up to 500 Hz, and in that the partition is made of metal, is connected to the top unit housing and has a natural frequency equal to or more than 500 Hz.

    [0011] Thus, the present invention is based on the insight of using a vibration sensor configured to monitor a wide range of frequencies, i.e. the essential measuring range, and an attachment structure for the vibration sensor designed to have a natural frequency above the essential measuring range. Thereby, the monitoring of the vibrations of the submersible electric machine that is implemented entails correct and reliable precautionary measures. Thereby the service can be made more efficient and the productive life of the submersible electric machine will increase.

    [0012] According to a second aspect of the present invention, there is provided a system that comprises at least one submersible electric machine assembly that comprises a submersible electric machine of the above type and a base unit, the base unit being operatively connected to the vibration sensor of the submersible electric machine and being configured to break/close the current to the submersible electric machine, a central unit operatively connected to the base unit of each of the at least one submersible electric machine assembly, and an operator interface operatively connected to the central unit.

    [0013] According to a preferred embodiment of the present invention, the partition is made of aluminum. Thereby obtaining a rigid partition and at the same time obtaining a low weight partition.

    [0014] According to a preferred embodiment of the present invention, the partition is arranged to divide the electronics chamber into a high voltage section and a low voltage section, the terminal block of the being arranged in the high voltage section and the vibration sensor being arranged in the low voltage section. Thereby, the vibration sensor is shielded from interference from the terminal block.

    [0015] According to a preferred embodiment of the present invention, the vibration sensor is configured to monitor vibrations in three dimensions [3D].

    [0016] According to a preferred embodiment of the present invention, the top unit comprises an electronic module configured for monitoring the operation of the submersible electric machine, the electronic module being attached to the partition, and wherein the vibration sensor is integrated into the electronic module.

    [0017] Further advantages with and features of the invention will be apparent from the other dependent claims as well as from the following detailed description of preferred embodiments.

    Brief description of the drawings



    [0018] A more complete understanding of the abovementioned and other features and advantages of the present invention will be apparent from the following detailed description of preferred embodiments in conjunction with the appended drawings, wherein:
    Fig. 1
    is a schematic illustration of an inventive system for transporting a liquid,
    Fig. 2
    is a schematic cross sectional view of an inventive submersible electric machine according to a preferred embodiment, and
    Fig. 3
    is a schematic perspective view from above of a partition.

    Detailed description of preferred embodiments of the invention



    [0019] The present invention relates generally to the field of submersible electric machines especially configured for handling and/or transporting liquid, preferably liquid comprising solid matter. The submersible electric machine is for instance constituted by a submersible pump or a submersible mixer. The present invention relates specifically to the field of submersible pumps such as centrifugal pumps and axial/propeller pumps. The present invention will be described in connection with a pump application, but it shall be realized that this also applies to mixer applications if nothing else is indicated. The present invention will be described in connection with a wet-installed pump, but it shall be realized that this also applies to dry-installed pumps if nothing else is indicated. A wet-installed application entails that the device is partly or fully submersed in the liquid. A dry-installed application entails that the device is fully located separated from the liquid.

    [0020] Reference is initially made to figure 1, schematically disclosing an inventive system for transporting a liquid, generally designated 1. The system 1 comprises at least one submersible electric machine assembly that comprises a submersible electric machine, generally designated 2 and a base unit 3. The system 1 disclosed in figure 1 comprises two submersible electric machine assemblies, i.e. two submersible electric machines 2 and two base units 3. One specific base unit 3 is operatively connected to one submersible electric machine 2, and the base unit 3 is configured to break/close the current to the submersible electric machine 2. Thus, the base unit 3 is configured to control the operation of the submersible electric machine 2. The system 1 also comprises a central unit 4 operatively connected to the base unit 3 of each of the at least one submersible electric machine assembly, and an operator interface 5 operatively connected to the central unit 4.

    [0021] The central unit 4 comprises an embedded web page, configured to disclose data concerning different operational parameters of all the submersible electric machines 2. Thus, the central unit 4 collects data and communicates with all connected submersible electric machine assemblies and provides all data to the operator interface in order to provide an overall view of the entire system to the operator.

    [0022] According to one embodiment the operator interface 5 is constituted by an operator panel connected to the central unit 4 via a data cable, wherein the operator panel is configured to interact with the embedded web page. The operator panel is located in close vicinity of the central unit 4. According to an alternative and/or complementary embodiment the operator interface 5 is constituted by a remote operator device operatively connected to the central unit 4, either via a data cable or wirelessly via a wireless router connected to the central unit 4 via a data cable, wherein the remote operator device is configured to interact with the embedded web page. The remote operator device may be constituted by a smartphone, a laptop, a tablet, a PC, etc.

    [0023] According to the preferred embodiment the submersible electric machine assembly comprises a Variable Frequency Drive (VFD) 6. The VFD 6 is connected to the submersible electric machine 2 via an electric power cable, generally designated 7. The base unit 3 is connected to a circuit breaker 8 that is arranged to break/close the power wires of the electric power cable 7.

    [0024] Reference is now also made to figures 2 and 3. The submersible electric machine 2 comprises a hydraulic unit 9, a drive unit 10 and a top unit 11.

    [0025] The hydraulic unit 9 comprises an impeller 12 configured for propelling the liquid. According to the disclosed embodiment, i.e. pump applications, the hydraulic unit 9 also comprises a volute 13 defining a pump chamber 14, the pump chamber 14 having an inlet opening 15 and an outlet opening 16. The impeller 12 is located in the pump chamber 14 and is configured to move liquid from the inlet opening 15 to the outlet opening 16 via the pump chamber 14, when the submersible electric machine 2 is in operation. An outlet conduit 16' is releasably connected to the outlet opening 16 of the pump. In dry-installed applications an inlet conduit is releasably connected to the inlet opening 15 of the pump, i.e. the inlet conduit extend from the basin that houses the liquid to be pumped to the inlet opening 15 of the pump.

    [0026] The drive unit 10 comprises a drive unit housing 17 defining a motor compartment 18, an electric motor 19 arranged in the motor compartment 18 and a drive shaft 20 connected to the electric motor 19. The electric motor 19 comprises a stator 21 and a rotor 22, wherein the drive shaft 20 is connected to the rotor 22 of the electric motor 19. The drive shaft 20 extends from the electric motor 19 to the hydraulic unit 9, wherein the impeller 12 is connected to and driven in rotation by the drive shaft 20 during operation of the submersible electric machine 2. Thus, the submersible electric machine 2 is configured to be operated at a variable operational speed [rpm], by means of the VFD 6 that is configured to control the operational speed of the submersible electric machine 2. The operational speed of the submersible electric machine 2 is more precisely the rpm of the electrical motor 19 and of the impeller 12, and correspond/relate to a VFD 6 output frequency.

    [0027] The top unit 11 comprises a top unit housing 23 defining an electronics chamber 24, also known as connection chamber. The liquid tight electronics chamber 24 is separated from the motor compartment 18 by a dividing structural wall 25. The top unit housing 23 is divided into a lower housing portion 23' and an upper housing portion 23".

    [0028] The different housing parts of the submersible electric machine 2 and the impeller 12 are preferably made of metal, such as aluminum and/or iron/steel. According to the disclosed embodiment the pump chamber 14 is separated from the liquid tight motor compartment 18 by means of a liquid seal chamber 26, preventing the pumped liquid to reach the motor compartment 18 along the drive shaft 20. Thereto the submersible electric machine 2 according to the disclosed embodiment comprises an outer jacket 27 enclosing the drive unit housing 17. The outer jacket 27 is configured to define internal cooling arrangements 28 for cooling down the motor compartment 18 and the electric motor 19, especially useful in dry-installed application but also used in wet-installed applications.

    [0029] The components of the submersible electric machine 2 are usually, directly or indirectly, cold down by means of the liquid/media surrounding the submersible electric machine 2. The submersible electric machine 2 is designed and configured to be able to operate in a submerged configuration/position, i.e. during operation be configured to be able to be located entirely under the liquid surface. However, it shall be realized that in wet-installed applications the submersible electric machine 2 during operation must not be entirely located under the liquid surface but may continuously or occasionally be partly located above the liquid surface. The submersible electric machine 2 is intended to be located in a natural recess/cavity/pit or in a prepared tank/station. In dry-installed applications the submersible electric machine 2 during operation is entirely located separated from/outside the pumped liquid.

    [0030] It is essential that the submersible electric machine 2 comprises a vibration sensor 29, schematically illustrated in figure 3, and a partition 30 arranged in the electronics chamber 24. The vibration sensor 29 shall be directly or indirectly connected to the partition 30. The vibration sensor 29 is configured to monitor vibrations in at least two dimensions [2D] and is configured to monitor vibrations at frequencies ranging from 10 Hz up to 500 Hz. According to a preferred embodiment the vibration sensor 29 is configured to monitor vibrations in three dimensions [3D], in order to obtain a complete monitoring of vibrations in all possible directions independently of the orientation of the vibration sensor 29. The vibrations are measured in each dimension over the entire monitoring/measuring frequency range. Based on these data, a vibration speed mean value is determined, for instance using root-square-means, for each dimension. Thereafter a vibration speed resultant for all dimensions is determined/calculated, using root-square-means. The base unit 3 is operatively connected to the vibration sensor 29 of the submersible electric machine 2, and if the vibration speed resultant exceeds a predetermined threshold the base unit 3 will provide a warning signal or stop the submersible electric machine 2.

    [0031] The partition 30 is made of metal and is connected to the top unit housing 23 such that the vibrations of the submersible electric machine 2 is transferred/propagates to the partition 30 and to the vibration sensor 29 at the same time as the partition 30 is rigid. Preferably, the partition 30 is made of aluminum in order to obtain a rigid construction and at the same time a low weight construction. According to a preferred embodiment, the partition 30 is arranged/clamped between the lower housing portion 23' and the upper housing portion 23" of the top unit housing 23. According to the preferred embodiment the partition 30 is clamped by means of a spring element 31, circular wave spring, towards the lower housing portion 23', i.e. the spring element 31 is located between the upper housing portion 23" and the partition 30.

    [0032] It is essential that the partition 30 has a natural frequency equal to or more than 500 Hz, i.e. above the monitoring/measuring range of the vibration sensor 29 in order not to cause false vibration readings. Preferably, the natural frequency of the partition 30 is equal to or more than 700 Hz, in order to have a safety margin from the monitoring range of the vibration sensor 29.

    [0033] The submersible electric machine 2 comprises a terminal block 32 arranged in the electronics chamber 24. The electric power cable 7 extends through a liquid tight lead-trough 33 into the electronics chamber 24, preferably through the lower housing portion 23' of the top unit housing 23. Heavy duty submersible electric machines 2 may comprise two or more parallel electric power cables in order to obtain enough cross section area of the power wires. A minimum distance between the terminal block 32 and the partition 30 is equal to or more than 7 millimeters, preferably equal to or more than 10 millimeters.

    [0034] According to a preferred embodiment the surface of the partition 30 facing the terminal block 32 is coated with an insulating coating. The insulating coating has a dielectric strength equal to or more than 5 kV, preferably equal to or more than 8 kV. Measured at 20°C and 65% Relative Humidity. The insulating coating has a thickness equal to or more than 0,2 millimeter, preferably equal to or more than 0,4 millimeter, and thereto equal to or less than 2 millimeters.

    [0035] According to the disclosed embodiment the partition 30 is arranged to divide the electronics chamber 24 into a high voltage section and a low voltage section, wherein the high voltage section is configured for levels exceeding 400 VAC and up to 1500 VAC and the low voltage section is configured for levels up to 24 VDC, preferably up to 50 VDC. The terminal block 32 is arranged in the high voltage section and the vibration sensor 29 is arranged in the low voltage section. Thus, in the disclosed embodiment the insulating coating is coated onto the surface of the partition 30 facing the high voltage section. Preferably, the high voltage section of the electronics chamber 24 is located intermediate the motor compartment 18 and the low voltage section, in order to minimize the electromagnetic interference and heat from the electric motor to the low voltage section as much as possible.

    [0036] The electric power cable 7 comprises a plurality of power wires 34 connected to the terminal block 32, and thereto the electric power wire 7 comprises a first pair of communication wires 35 operatively connected to the vibration sensor 29 and connected to the base unit 3. The first pair of communication wires 35 is configured for two-way data communication.

    [0037] According to the preferred embodiment, the top unit 11 comprises an electronic module 36 configured for monitoring the operation of the submersible electric machine 2. The electronic module 36 is firmly attached to the partition 30. According to a preferred embodiment the vibration sensor 29 is integrated into the electronic module 36, wherein the vibration sensor is constituted by a MEMS vibration sensor. By having a mechatronic and integrated vibration sensor 29 it is possible to measure accurately, the vibration sensor takes small space and works in an environment with severe electromagnetic interference and high heat. Other sensors, such as motor temp sensors, bearing temp sensors, leakage sensors, etc. are also connected to the electronic module 36, wherein said first pair of communication wires 35 are connected to the electronic module 36. Thereby measuring signals (analog signals) from all sensors are collected and stored as digital data in a memory/storage device of the electronic module 36, said data being transferred between the submersible electric machine 2 and the base unit 3 via the first pair of communication wires 35. The memory of the electronic module 36 comprises predetermined thresholds, for sending alarm signals/information to the base unit 3 or to send stop signals to the base unit 3. The memory of the electronic module 36 may also store running statistics and thus act as a black box if the submersible electric machine 2 breaks down or is stopped. The memory may also comprise rating plate data of the submersible electric machine 2. Preferably all information on the memory of the electronic module 36 also has a copy on a memory/storage device of the central unit 4.

    [0038] Preferably, the electric power cable 7 also comprises a second pair of communication wires (not shown) that is not connected to the electronic module 36 but directly to a temperature sensor (not disclosed). Thus, the temperature sensor is directly connected to the base unit 3 via the second pair of communication wires, when the temperature being too high the base unit 3 shall break the current to the submersible electric machine 2 as quickly as possible, without being processed in the electronic module 36. It is not necessary that the second pair of communication wires is configured for two-way communication.

    [0039] The partition 30 comprises at least one passage 37 for passing through at least the first pair of communication wires 35 from the high voltage section to the low voltage section. The inner surface of the at least one passage 37 is preferably coated with the insulating coating.

    [0040] The electronic module 36 may comprise an integrated current transformer (not disclosed) configured for measuring the submersible electric machine 2 current and preferably configured for measuring the frequency of the submersible electric machine voltage supply. Data from the current transformer can be used to at least determine running time and number of starts. This is useful when the submersible electric machine is leased, and in order to plan for next service.

    [0041] The system may also comprise a power analyzer (not disclosed) operatively connected to the base unit 3, in order to monitor/measure current, voltage, power, power factor, and imbalances between the phases. Such data can give valuable information to the operator in order to prevent breakdown.

    Feasible modifications of the Invention



    [0042] The invention is not limited only to the embodiments described above and shown in the drawings, which primarily have an illustrative and exemplifying purpose. This patent application is intended to cover all adjustments and variants of the preferred embodiments described herein, thus the present invention is defined by the wording of the appended claims and thus, the equipment may be modified in all kinds of ways within the scope of the appended claims.

    [0043] It shall also be pointed out that all information about/concerning terms such as above, under, upper, lower, etc., shall be interpreted/read having the equipment oriented according to the figures, having the drawings oriented such that the references can be properly read. Thus, such terms only indicates mutual relations in the shown embodiments, which relations may be changed if the inventive equipment is provided with another structure/design.

    [0044] It shall also be pointed out that even thus it is not explicitly stated that features from a specific embodiment may be combined with features from another embodiment, the combination shall be considered obvious, if the combination is possible.


    Claims

    1. A submersible electric machine (2) for transporting a liquid, the submersible electric machine (2) comprising:

    - a hydraulic unit (9) that comprises an impeller (12) configured for propelling the liquid,

    - a drive unit (10) that comprises a drive unit housing (17) defining a motor compartment (18), an electric motor (19) arranged in the motor compartment (18) and drive shaft (20) connected to the electric motor (19), the drive shaft (20) extending from the electric motor (19) to the hydraulic unit (9) and being connected to the impeller (12),

    - a top unit (11) that comprises a top unit housing (23) defining an electronics chamber (24), the electronics chamber (24) being separated from the motor compartment (18) by a dividing structural wall (25), and

    - a vibration sensor (29)

    characterized in that the vibration sensor (29) is directly or indirectly connected to a partition (30) arranged in the electronics chamber (24), is configured to monitor vibrations in at least two dimensions [2D] and is configured to monitor vibrations at frequencies ranging up to 500 Hz, and in that the partition (30) is made of metal, is connected to the top unit housing (23) and has a natural frequency equal to or more than 500 Hz.
     
    2. The submersible electric machine (2) according to claim 1, wherein the natural frequency of the partition (30) is equal to or more than 700 Hz.
     
    3. The submersible electric machine (2) according to claim 1 or 2, wherein the partition (30) is made of aluminum.
     
    4. The submersible electric machine (2) according to any preceding claim, wherein the submersible electric machine (2) comprises a terminal block (32) arranged in the electronics chamber (24), wherein a minimum distance between the terminal block (32) and the partition (30) is equal to or more than 7 millimeters, preferably equal to or more than 10 millimeters.
     
    5. The submersible electric machine (2) according to claim 4, wherein an insulating coating is coated onto the surface of the partition (30) facing the terminal block (32).
     
    6. The submersible electric machine (2) according to claim 5, wherein the insulating coating has a thickness equal to or more than 0,2 millimeters, preferably equal to or more than 0,4 millimeters.
     
    7. The submersible electric machine (2) according to any preceding claim, wherein the partition (30) is arranged to divide the electronics chamber (24) into a high voltage section and a low voltage section, preferably the high voltage section of the electronics chamber (24) being located intermediate the motor compartment (18) and the low voltage section.
     
    8. The submersible electric machine (2) according to any of claims 4-7, wherein the partition (30) is arranged to divide the electronics chamber (24) into a high voltage section and a low voltage section, the terminal block (32) being arranged in the high voltage section and the vibration sensor (29) being arranged in the low voltage section.
     
    9. The submersible electric machine (2) according to any preceding claim, wherein the top unit (11) comprises an electronic module (36) configured for monitoring the operation of the submersible electric machine (2), the electronic module (36) being attached to the partition (30), and wherein the vibration sensor (29) is integrated into the electronic module (36).
     
    10. The submersible electric machine (2) according to claim 4, wherein the submersible electric machine (2) comprises an electric power cable (7), wherein the power wires (34) of the electric power cable (7) are connected to the terminal block (32), preferably the electric power cable (7) comprises a first pair of communication wires (35) operatively connected to the vibration sensor (29) and to the base unit (3).
     
    11. The submersible electric machine (2) according to any preceding claim, wherein the vibration sensor (29) is configured to monitor vibrations in three dimensions [3D].
     
    12. The submersible electric machine (2) according to any preceding claim, wherein the submersible electric machine (2) is constituted by a submersible pump, the hydraulic unit (9) comprising a volute (13) defining a pump chamber (14), the pump chamber (14) having an inlet opening (15) and an outlet opening (16), and the impeller (12) being located in the pump chamber (14), preferably the pump chamber (14) is separated from the motor compartment (18) by a liquid seal chamber (26).
     
    13. A system (1) for transporting a liquid, characterized in that the system (1) comprises:

    - at least one submersible electric machine assembly that comprises a submersible electric machine (2) according to any of claims 1-12 and a base unit (3), the base unit (3) being operatively connected to the vibration sensor (29) of the submersible electric machine (2) and being configured to break/close the current to the submersible electric machine (2),

    - a central unit (4) operatively connected to the base unit (3) of each of the at least one submersible electric machine assembly, and

    - an operator interface (5) operatively connected to the central unit (4).


     
    14. The system (1) according to claim 13, wherein the central unit (4) comprises embedded web page, wherein the operator interface (5) comprises an operator panel connected to the central unit (4) via a data cable and/or comprises a remote operator device operatively connected to a wireless router that is connected to the central unit (5) via a data cable, the operator panel and/or the remote operator device being configured to interact with the embedded web page.
     
    15. The system (2) according to any of claims 13-14, wherein the submersible electric machine assembly comprises a Variable Frequency Drive (6) connected to the submersible electric machine (2) via an electric power cable, the base unit (3) being connected to a circuit breaker (8) that is arranged to break/close the power wires of the electric power cable (7).
     


    Ansprüche

    1. Tauchfähige elektrische Maschine (2) zum Transportieren einer Flüssigkeit, wobei die tauchfähige elektrische Maschine (2) aufweist:

    - eine Hydraulikeinheit (9), die ein Laufrad (12) aufweist, die eingerichtet ist, das Laufrad vorzutreiben,

    - eine Antriebseinheit (10), die ein Antriebseinheitsgehäuse (17), das einen Motorraum (18) definiert, einen in dem Motorraum (18) angeordneten Elektromotor (19) und eine mit dem Elektromotor (19) verbundene Antriebswelle (20) aufweist, wobei sich die Antriebswelle (20) von dem Elektromotor (19) zu der Hydraulikeinheit (9) erstreckt und mit dem Laufrad (12) verbunden ist,

    - eine obere Einheit (11), die ein Gehäuse der oberen Einheit (23) aufweist, welches eine Elektronikkammer (24) definiert, wobei die Elektronikkammer (24) von dem Motorraum (18) durch eine Trennstrukturwand (25) getrennt ist, und

    - einen Schwingungssensor (29),

    dadurch gekennzeichnet, dass der Schwingungssensor (29) mittelbar oder unmittelbar mit einer Abtrennung (30) verbunden ist, die in der Elektronikkammer (24) angeordnet ist, eingerichtet ist, Schwingungen in zumindest zwei Dimensionen [2D] zu überwachen, und eingerichtet ist, Vibrationen bei Frequenzen zu überwachen, die bis zu 500 Hz betragen, und dass die Abtrennung (30) aus Metall hergestellt ist, mit dem Gehäuse der oberen Einheit (23) verbunden ist und eine Eigenfrequenz von größer gleich 500 Hz besitzt.
     
    2. Tauchfähige elektrische Maschine (2) nach Anspruch 1, wobei die Eigenfrequenz der Abtrennung (30) größer gleich 700 Hz ist.
     
    3. Tauchfähige elektrische Maschine (2) nach Anspruch 1 oder 2, wobei die Abtrennung (30) aus Aluminium hergestellt ist.
     
    4. Tauchfähige elektrische Maschine (2) nach einem der vorstehenden Ansprüche, wobei die tauchfähige elektrische Maschine (2) einen Anschlussblock (32) aufweist, der in der Elektronikkammer (24) angeordnet ist, wobei ein Minimalabstand zwischen dem Anschlussblock (32) und der Abtrennung (30) größer gleich 7 Millimeter, bevorzugt größer gleich 10 mm ist.
     
    5. Tauchfähige elektrische Maschine (2) nach Anspruch 4, wobei die Oberfläche der Abtrennung (30), die dem Anschlussblock (32) zugewandt ist, mit einer Isolierbeschichtung beschichtet ist.
     
    6. Tauchfähige elektrische Maschine (2) nach Anspruch 5, wobei die Isolierbeschichtung eine Dicke von größer gleich 0,2 mm, bevorzugt größer gleich 0,4 mm aufweist.
     
    7. Tauchfähige elektrische Maschine (2) nach einem der vorstehenden Ansprüche, wobei die Abtrennung (30) angeordnet ist, um die Elektronikkammer (24) in einen Hochspannungsabschnitt und einen Niederspannungsabschnitt zu teilen, wobei sich der Hochspannungsabschnitt der Elektronikkammer (24) bevorzugt zwischen dem Motorraum (18) und dem Niederspannungsabschnitt befindet.
     
    8. Tauchfähige elektrische Maschine (2) nach einem der Ansprüche 4 bis 7, wobei die Abtrennung (30) angeordnet ist, um die Elektronikkammer (24) in einen Hochspannungsabschnitt und einen Niederspannungsabschnitt zu teilen, wobei der Anschlussblock (32) in dem Hochspannungsabschnitt angeordnet ist und der Schwingungssensor (29) in dem Niederspannungsabschnitt angeordnet ist.
     
    9. Tauchfähige elektrische Maschine (2) nach einem der vorstehenden Ansprüche, wobei die obere Einheit (11) ein Elektronikmodul (36) aufweist, das eingerichtet ist, den Betrieb der tauchfähigen elektrischen Maschine (2) zu überwachen, wobei das Elektronikmodul (36) an der Abtrennung (30) angeordnet ist, und wobei der Schwingungssensor (29) in das Elektronikmodul (36) integriert ist.
     
    10. Tauchfähige elektrische Maschine (2) nach Anspruch 4, wobei die tauchfähige elektrische Maschine (2) ein Stromkabel (7) aufweist, wobei die Stromleitungen (34) des Stromkabels (7) mit dem Anschlussblock (32) verbunden sind, das Stromkabel (7) bevorzugt ein erstes Paar von Kommunikationsleitungen (35) aufweist, die betriebswirksam mit dem Schwingungssensor (29) und der Basiseinheit (3) verbunden sind.
     
    11. Tauchfähige elektrische Maschine (2) nach einem der vorstehenden Ansprüche, wobei der Schwingungssensor (29) eingerichtet ist, Schwingungen in drei Dimensionen [3D] zu überwachen.
     
    12. Tauchfähige elektrische Maschine (2) nach einem der vorstehenden Ansprüche, wobei die tauchfähige elektrische Maschine (2) durch eine tauchfähige Pumpe gebildet ist, wobei die Hydraulikeinheit (19) einen Diffusor (13) aufweist, der eine Pumpkammer (14) definiert, wobei die Pumpkammer (14) eine Einlassöffnung (15) und eine Auslassöffnung (16) aufweist, und wobei sich das Laufrad (12) in der Pumpkammer (14) befindet, bevorzugt die Pumpkammer (14) von dem Motorraum (18) durch eine Flüssigkeitsdichtungskammer (26) getrennt ist.
     
    13. System (1) zum Transportieren einer Flüssigkeit, dadurch gekennzeichnet, dass das System (1) aufweist:

    - zumindest eine tauchfähige elektrische Maschinenbaugruppe, die eine tauchfähige elektrische Maschine (2) nach einem der Ansprüche 1-12 und eine Basiseinheit (3) aufweist, wobei die Basiseinheit (3) betriebswirksam mit dem Schwingungssensor (29) der tauchfähigen elektrischen Maschine (2) verbunden und eingerichtet ist, den Strom an die tauchfähige elektrische Maschine (2) zu unterbrechen/schließen,

    - eine Haupteinheit (4), die betriebswirksam mit der Basiseinheit (3) von jeder der zumindest einen tauchfähigen elektrischen Maschinenbaugruppe verbunden ist, und

    - eine Bedienerschnittstelle (5), die betriebswirksam mit der Haupteinheit (4) verbunden ist.


     
    14. System (1) nach Anspruch 13, wobei die Haupteinheit (4) eine eingebettete Webseite aufweist, wobei die Bedienerschnittstelle (5) ein Bedienfeld aufweist, das mit der Haupteinheit (4) über ein Datenkabel verbunden ist, und/oder eine Fernbedienungsvorrichtung aufweist, die betriebswirksam mit einem Drahtlosrouter verbunden ist, der über ein Datenkabel mit der Haupteinheit (5) verbunden ist, wobei das Bedienfeld und/oder die Fernbedienungsvorrichtung eingerichtet sind, mit der eingebetteten Webseite zu interagieren.
     
    15. System (2) nach einem der Ansprüche 13 bis 14, wobei die tauchfähige elektrische Maschinenbaugruppe einen Antrieb mit variabler Frequenz (6) aufweist, der über ein Stromkabel mit der tauchfähigen elektrischen Maschine (2) verbunden ist, wobei die Basiseinheit (3) mit einer Überstromschutzeinrichtung (8) verbunden ist, die eingerichtet ist, die Stromleitungen des elektrischen Stromkabels (7) zu unterbrechen/zu schließen.
     


    Revendications

    1. Machine électrique submersible (2) destinée à transporter un liquide, la machine électrique submersible (2) comprenant :

    - une unité hydraulique (9) qui comprend une roue à aubes (12) configurée pour propulser le liquide,

    - une unité d'entraînement (10) qui comprend un boîtier d'unité d'entraînement (17) définissant un compartiment moteur (18), un moteur électrique (19) agencé dans le compartiment moteur (18) et un arbre d'entraînement (20) raccordé au moteur électrique (19), l'arbre d'entraînement (20) s'étendant du moteur électrique (19) à l'unité hydraulique (9) et étant raccordé à la roue à aubes (12),

    - une unité supérieure (11) qui comprend un boîtier d'unité supérieure (23) définissant une chambre d'électronique (24), la chambre d'électronique (24) étant séparée du compartiment moteur (18) par une paroi structurelle de division (25), et

    - un capteur de vibrations (29)

    caractérisée en ce que le capteur de vibrations (29) est raccordé directement ou indirectement à une cloison (30) agencée dans la chambre d'électronique (24), est configuré pour surveiller des vibrations dans au moins deux dimensions [2D] et est configuré pour surveiller des vibrations à des fréquences allant jusqu'à 500 Hz, et en ce que la cloison (30) est constituée de métal, est raccordée au boîtier d'unité supérieure (23) et présente une fréquence naturelle égale ou supérieure à 500 Hz.
     
    2. Machine électrique submersible (2) selon la revendication 1, dans laquelle la fréquence naturelle de la cloison (30) est égale ou supérieure à 700 Hz.
     
    3. Machine électrique submersible (2) selon la revendication 1 ou 2, dans laquelle la cloison (30) est constituée d'aluminium.
     
    4. Machine électrique submersible (2) selon l'une quelconque des revendications précédentes, dans laquelle la machine électrique submersible (2) comprend un bornier (32) agencé dans la chambre d'électronique (24), dans laquelle une distance minimale entre le bornier (32) et la cloison (30) est égale ou supérieure à 7 millimètres, de préférence égale ou supérieure à 10 millimètres.
     
    5. Machine électrique submersible (2) selon la revendication 4, dans laquelle un revêtement isolant est revêtu sur la surface de la cloison (30) face au bornier (32).
     
    6. Machine électrique submersible (2) selon la revendication 5, dans laquelle le revêtement isolant présente une épaisseur égale ou supérieure à 0,2 millimètre, de préférence égale ou supérieure à 0,4 millimètre.
     
    7. Machine électrique submersible (2) selon l'une quelconque des revendications précédentes, dans laquelle la cloison (30) est agencée pour diviser la chambre d'électronique (24) en une section haute tension et une section basse tension, de préférence la section haute tension de la chambre d'électronique (24) étant située entre le compartiment moteur (18) et la section basse tension.
     
    8. Machine électrique submersible (2) selon l'une quelconque des revendications 4 à 7, dans laquelle la cloison (30) est agencée pour diviser la chambre d'électronique (24) en une section haute tension et une section basse tension, le bornier (32) étant agencé dans la section haute tension et le capteur de vibrations (29) étant agencé dans la section basse tension.
     
    9. Machine électrique submersible (2) selon l'une quelconque des revendications précédentes, dans laquelle l'unité supérieure (11) comprend un module électronique (36) configuré pour surveiller le fonctionnement de la machine électrique submersible (2), le module électronique (36) étant attaché à la cloison (30), et dans laquelle le capteur de vibrations (29) est intégré dans le module électronique (36).
     
    10. Machine électrique submersible (2) selon la revendication 4, dans laquelle la machine électrique submersible (2) comprend un câble d'alimentation électrique (7), dans laquelle les fils d'alimentation (34) du câble d'alimentation électrique (7) sont connectés au bornier (32), de préférence le câble d'alimentation électrique (7) comprend une première paire de fils de communication (35) connectés fonctionnellement au capteur de vibrations (29) et à l'unité de base (3).
     
    11. Machine électrique submersible (2) selon l'une quelconque des revendications précédentes, dans laquelle le capteur de vibrations (29) est configuré pour surveiller des vibrations en trois dimensions [3D].
     
    12. Machine électrique submersible (2) selon l'une quelconque des revendications précédentes, dans laquelle la machine électrique submersible (2) est constituée par une pompe submersible, l'unité hydraulique (9) comprenant une enveloppe (13) définissant une chambre de pompe (14), la chambre de pompe (14) ayant une ouverture d'entrée (15) et une ouverture de sortie (16), et la roue à aubes (12) étant située dans la chambre de pompe (14), de préférence la chambre de pompe (14) est séparée du compartiment moteur (18) par une chambre à joint liquide (26).
     
    13. Système (1) destiné à transporter un liquide, caractérisé en ce que le système (1) comprend :

    - au moins un ensemble de machine électrique submersible qui comprend une machine électrique submersible (2) selon l'une quelconque des revendications 1 à 12 et une unité de base (3), l'unité de base (3) étant connectée fonctionnellement au capteur de vibrations (29) de la machine électrique submersible (2) et étant configurée pour interrompre/fermer le courant de la machine électrique submersible (2),

    - une unité centrale (4) connectée fonctionnellement à l'unité de base (3) de chacun de l'au moins un ensemble de machine électrique submersible, et

    - une interface d'opérateur (5) connectée fonctionnellement à l'unité centrale (4).


     
    14. Système (1) selon la revendication 13, dans lequel l'unité centrale (4) comprend une page Web incorporée, dans lequel l'interface d'opérateur (5) comprend un panneau d'opérateur connecté à l'unité centrale (4) via un câble de données et/ou comprend un dispositif d'opérateur distant connecté fonctionnellement à un routeur sans fil qui est connecté à l'unité centrale (5) via un câble de données, le panneau d'opérateur et/ou le dispositif d'opérateur distant étant configurés pour interagir avec la page Web incorporée.
     
    15. Système (2) selon l'une quelconque des revendications 13 et 14, dans lequel l'ensemble de machine électrique submersible comprend un variateur électronique de fréquence (6) connecté à la machine électrique submersible (2) via un câble d'alimentation électrique, l'unité de base (3) étant connectée à un disjoncteur (8) qui est agencé pour interrompre/fermer les fils d'alimentation du câble d'alimentation électrique (7).
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description