(19)
(11)EP 3 555 241 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.11.2020 Bulletin 2020/46

(21)Application number: 17821965.5

(22)Date of filing:  14.12.2017
(51)Int. Cl.: 
C10L 1/02  (2006.01)
C10L 1/185  (2006.01)
C10L 10/12  (2006.01)
C10L 1/16  (2006.01)
C10L 10/02  (2006.01)
(86)International application number:
PCT/FI2017/050887
(87)International publication number:
WO 2018/115575 (28.06.2018 Gazette  2018/26)

(54)

A MULTICOMPONENT DIESEL COMPOSITION

MEHRKOMPONENTIGE DIESELZUSAMMENSETZUNG

COMPOSITION DE DIESEL À CONSTITUANTS MULTIPLES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 19.12.2016 FI 20165984

(43)Date of publication of application:
23.10.2019 Bulletin 2019/43

(73)Proprietor: Neste Oyj
02150 Espoo (FI)

(72)Inventors:
  • KIISKI, Ulla
    06101 Porvoo (FI)
  • KURONEN, Markku
    06101 Porvoo (FI)
  • LEHTO, Kalle
    06101 Porvoo (FI)
  • HARTIKKA, Tuukka
    06101 Porvoo (FI)

(74)Representative: Espatent Oy 
Kaivokatu 10 D
00100 Helsinki
00100 Helsinki (FI)


(56)References cited: : 
EP-A1- 1 398 364
JP-A- H1 135 954
US-A1- 2010 242 347
WO-A1-2012/074925
US-A- 5 520 710
  
  • BJÖRN LUMPP ET AL: "OXYMETHYLENE ETHERS AS DIESEL FUEL ADDITIVES OF THE FUTURE", MTZ WORLDWIDE, vol. 72, no. 3, 1 March 2011 (2011-03-01), pages 34-38, XP055449585, DOI: 10.1365/s38313-011-0027-z
  • Deresse Firew: "The performance evaluation of diethyl-ether (DEE) additive with Diesel blends using Diesel Engine test rig", International Journal of Scientific & Engineering Research, 1 June 2016 (2016-06-01), pages 23-29, XP055449591, Retrieved from the Internet: URL:https://www.ijser.org/researchpaper/Th e-performance-evaluation-of-diethyl-ether- DEE-additive-with-Diesel-blends-using-Dies el-Engine-test-rig.pdf [retrieved on 2018-02-08]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

FIELD OF THE INVENTION



[0001] The present invention is related to the field of diesel compositions and to manufacturing diesel composition having improved properties. More specifically, it is related to diesel compositions comprising at least three components, a fossil diesel component, a renewable paraffinic diesel component and an oxygenate, providing benefits with diesel emissions. It is also related to a method for producing said compositions. Further, it is related to use of a combination of renewable paraffinic diesel component and oxygenate as fuel blending components to fossil fuel.

BACKGROUND



[0002] Oxygenates have been studied as diesel components for fossil fuels, before renewable diesels rose attention. Typically, an improvement achieved with an oxygenate in one of diesel characteristics, for example higher cetane number, better cold properties or reduced emissions, have been compromised by a deficit in another. For example, certain ethers combined with fossil diesel have been shown to reduce particulate matter (PM) emissions, but such an advantage is burdened with an increase in NOx emissions.

[0003] On the other hand, recently the regulations and concern for environment have encouraged the use of renewable fuels. Oxygenates have been studied as components in renewable diesel or biodiesel as well. Publication WO2012074925 envisions a composition comprising renewable diesel, which they call RHE, and oxygenates. Both components are discussed very generally. As possible oxygenates, it discusses esters, ethers and/or hemiacetals comprising alcohols, polyols or combinations thereof. However, in experimental part, no actual tests are conducted. Publication WO2012074925 also lists several references to measuring techniques and possible outcome thereof.

[0004] Publication EP1398364 claims a composition comprising 0.1 - 99% paraffinic diesel component, 0 - 20% compound containing oxygen and the rest can be regular crude oil based diesel. Said component containing oxygen may be selected from aliphatic alcohols, ethers, fatty acid esters, water or mixtures thereof. A blend of fossil diesel fuel 40 % and hydrogenated and isomerized tall oil fatty acids (TOFA) 60 % was characterized. In another example, a 70/30 blend of fossil diesel fuel and an ester was compared to another blend, 70/30, of fossil diesel and TOFA, which showed how the ester seemed to affect an increase in both NOx and PM emissions. The desired result in reduced emissions was obtained only by the two component blend of fossil diesel and hydrogenated and isomerized TOFA. No results from blends comprising three components were presented.Thus, there is a need to provide further diesel fuel compositions comprising oxygenates while reducing harmful effects typically related thereto.

SUMMARY



[0005] According to the first aspect of the invention there is provided a diesel composition comprising:
  1. a) fossil diesel component
  2. b) oxygenate component from 1 vol-% to 10 vol-%, preferably from 5 vol-% to 10 vol-% of the total fuel composition volume, wherein
    1. i. said oxygenate is a monoether having molar mass from 128 to 300 g/mol, and
    2. ii. said oxygenate is of structure

              R1-O-R2     (formula 1),

      in which formula R1 and R2 are same or different and selected from C1-C15 alkyl groups, and
  3. c) renewable paraffinic diesel component from 5 vol-% to 15 vol-% of the total fuel composition volume,
wherein the sum of said oxygenate component and said renewable paraffinic diesel component is from 6 to 25 vol-%, preferably from 10 vol-% to 20 vol-% of the total fuel composition volume.

[0006] Against expectations, compositions containing renewable paraffinic diesel fuel from 5 to 15%, a monoether oxygenate component having molar mass from 128 to 300 g/mol from 1 to 10% and fossil diesel, have been shown to reduce NOx emissions. Without being bound to a theory, the surprising reduction in NOx emissions with this specific blend is considered to be due to renewable paraffinic diesel component present in said composition.

[0007] According to a preferred embodiment, composition comprises renewable paraffinic diesel fuel from 5 to 15 vol-%, a monoether oxygenate component 1 - 10 vol-% and regular (fossil) diesel from 75 to 94 vol-%, wherein the renewable paraffinic diesel component is produced by a hydrogenation process of vegetable oil, animal fat, fish fat, fish oil, algae oil, microbial oil and/or wood and/or other plant based oil as well as recyclable waste and/or residue or a combination thereof, or preferably by a hydrodeoxygenation-isomerization process thereof, which have shown excellent performance in emission experiments. Without binding to any theory, the results indicate that the characteristic paraffin profile of the renewable paraffinic diesel component acts synergistically with the monoether having molar mass from 128 to 300 g/mol providing a beneficial effect on the cetane number in fuel blends.

[0008] The oxygenate component is advantageously selected to provide desired characteristics to the blend. Monoethers studied for their properties in blends showed some variability as to cetane number and cold properties. Depending on the desired diesel characteristics, selections among monoethers could be made. Symmetrical and asymmetrical straight chain monoethers provide increase in cetane number in addition to desired emission effects. According to unexpected results in emission tests, the most preferable oxygenate is di-n-pentyl-ether (DNPE).

[0009] According to the second aspect of the invention there is provided a method for producing a blend fuel, wherein the renewable paraffinic diesel component is produced from a renewable feedstock by a process selected from
  1. a) hydrogenation or deoxygenation of vegetable oil, animal fat, fish fat, fish oil, algae oil, microbial oil and/or wood and/or other plant based oil as well as recyclable waste and/or residue or combinations thereof to obtain a paraffinic C9-C24 hydrocarbon fraction, which is optionally subjected to isomerization, or
  2. b) gasification of biomass to produce syngas and production of paraffins from said syngas by Fischer-Tropsch synthesis to obtain a paraffinic C9-C24 hydrocarbon fraction, or
  3. c) a combination thereof,
and blending the renewable paraffinic diesel component thereby obtained, with a monoether oxygenate component having molar mass from 128 to 300 g/mol; and with fossil diesel componentto obtain a diesel composition as described above.

[0010] According to the third aspect, herein is provided use of a monoether oxygenate having molar mass from 128 to 300 g/mol and renewable paraffinic diesel as fuel blending components to fossil diesel component to obtain a fuel composition, wherein the total fuel composition comprises from 1 vol-% to 10 vol-% of monoether oxygenate, and from 5 vol-% to 15 vol-% renewable paraffinic diesel and the sum of said oxygenate component and said renewable paraffinic diesel component is from 6 to 25 vol-%, preferably from 10 vol-% to 20 vol-%, wherein vol-% is calculated of the total fuel composition volume.

[0011] An advantage achieved by the present fuel composition, method and use is the decrease in NOx emissions. As evidenced by the examples, the oxygenate content of fuel compositions could be increased with composition containing said components in said proportions, but NOx emissions were not increased as expected. The advantageous effect was observed in particular in blends comprising fossil fuel.

[0012] According to a further aspect, in composition or use the oxygenate component or raw material therefor, is derived from biomass, whereby it can be considered as renewable component. Together with renewable paraffinic diesel component it contributes to the percentage of renewable, non-fossil components in the total fuel composition.

BRIEF DESCRIPTION OF THE FIGURES



[0013] Fig 1 shows how a blend comprising 10 vol-% of DNPE, 10 vol-% renewable paraffinic diesel and 80 vol-% fossil diesel component unexpectedly reduced NOx emissions in experiments conducted.

DETAILED DESCRIPTION



[0014] A fuel composition as used herein refers to diesel fuel complying with standards. The proportions of components are discussed here as percentages of the total fuel composition volume.

[0015] In the context of fuel composition, the sum amount of the oxygenate component as defined in claim 1, and said renewable paraffinic diesel component is of special interest. In the context of diesel blends, they can be considered as the most relevant blend components to fossil diesel, the sum amount of which is from 6 to 25 %, preferably from 10 vol-% to 20 vol-% of the total fuel composition volume.

[0016] According to a preferable embodiment, in which the oxygenate component consists of ethers derived from renewable sources, i. e. biomass, the sum amount of said oxygenate and said renewable paraffinic diesel sets also the amount of renewable components or biocomponents of the total fuel composition, varying from 6 to 25 vol-%, preferably from 10 vol-% to 20 vol-% of the total fuel composition volume.

[0017] Parameters measured herein comprise both physical and chemical characteristics of diesel fuel and components thereof as well as analyses relating to combustion in a diesel engine and emissions. Common emissions include unburned hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx) or particulate matter (PM). Emissions are regulated by variable standards depending on geographics, international agreements, engine types etc. Effects obtained herein are not dependent on a specific standard, but instead evidenced as decrease against a reference fuel for which experiments were conducted exactly the same manner.

RENEWABLE PARAFFINIC DIESEL COMPONENT



[0018] Renewable paraffinic diesel component refers here to paraffinic hydrocarbons, n-paraffins or a mixture of straight chain and branched paraffins, derived from biomass. Two approaches dominate, hydrotreating oils or fats of bio-origin or fuels made by Fischer-Tropsch synthesis of gasified biomass (BTL).

[0019] It is noted that paraffins exist also in fossil diesel fuels which additionally contain significant amounts of aromatics and naphthenics. Renewable paraffinic diesel component is practically free of aromatics and has properties quite similar to GTL and BTL diesel fuels made by Fischer Tropsch synthesis from natural gas and gasified biomass.

GTL



[0020] Gas to liquid, GTL, is a Fischer-Tropsch derived fuel having a similar cloud point than a fuel derived by hydrotreating triglycerides, fatty acids and fatty acid derivatives. GTL is characterized by broad distribution of paraffinic hydrocarbons in the range C9-C24. GTL has typically a cetane number in the range 73-81.

BTL



[0021] When the synthesis gas used in Fischer-Tropsch process originates from gasification of biomass, the process may be referred to as "biomass to liquid", "BTL". Broad distribution of n-paraffinic hydrocarbons in the range C9-C24 is obtainable, even though selection of a fraction or fractions could be more specific. In an embodiment, product or a part of it may be subject to isomerization, wherein n-paraffins are at least partly converted to branched chain paraffins, i. e. isomerized.

Hydrotreated renewable paraffinic diesel component



[0022] The hydrotreated renewable paraffinic diesel component is obtainable by hydrotreating vegetable oil, animal fat, fish fat, fish oil, algae oil, microbial oil and/or wood and/or other plant based oil as well as recyclable waste and/or residue or a combination thereof. "Hydrotreated Vegetable Oil" or "Hydrogenated Vegetable Oil" was a common term used during last decade when only vegetable oils were used as feedstocks. Currently more and more ofrenewable paraffinic diesel is produced by hydrotreatment from waste and residue fat fractions coming from food, fish and slaughterhouse industries, as well as from non-food grade vegetable oil fractions.

[0023] In an embodiment the renewable paraffinic diesel component comprises hydrotreated renewable diesel, or consists of hydrotreated renewable diesel. Hydrotreating typically produces bio based middle distillate fuels. The hydrotreated renewable diesels are distinct from "bio-diesel" which is a term reserved for the fatty acid methyl esters (FAME). Chemically hydrotreated vegetable oils are mixtures of paraffinic hydrocarbons and have a very low quantity of sulfur and aromatics. Cold properties of hydrotreated renewable paraffinic diesel can be improved to meet any local requirements by increasing the amount of i-paraffins by controlling the process parameters or by additional catalytic processing.

[0024] In an embodiment the renewable paraffinic diesel component in the fuel composition comprises hydrotreated vegetable oil, hydrotreated animal fat, hydrotreated fish fat, hydrotreated fish oil, hydrotreated algae oil, hydrotreated microbial oil, hydrotreated wood and/or other plant based oil, hydrotreated recyclable waste and /or residue or a combination thereof. In a preferred embodiment said renewable paraffinic diesel component consists of hydrotreated vegetable oil, hydrotreated wood and/or other plant based oil, hydrotreated animal fat, hydrotreated fish fat and oil, hydrotreated algae oil, hydrotreated microbial oil, hydrotreated recyclable waste, hydrotreated recyclable residue, or a combination thereof.

[0025] In an embodiment in the hydrotreated renewable paraffinic diesel component the amount of the paraffinic components in the range of carbon number C15-C18 is at least 70 vol-%, more preferably more than 80 vol-%, most preferably more than 90 vol-%. When a hydrotreated renewable paraffinic diesel component having said paraffinic component profile is used, a fuel composition of increased cetane number is obtained.

[0026] In an embodiment the amount of the paraffinic components in the hydrotreated renewable paraffinic diesel component in the range of carbon number C3-C14 is less than 25 vol-%, such as less than 20 vol-%, less than 10% vol-%, or less than 7 vol-%. Optionally in the hydrotreated renewable paraffinic diesel component the amount of the paraffinic components in the range of carbon number C19-C24 is less than 25 vol-%, such as less than 20 vol-%, less than 10 vol-%, or less than 5 vol-%.

[0027] In an embodiment the renewable paraffinic diesel component consists of renewable paraffinic diesel component having a cetane number of at least 70, preferably at least 75. By using a renewable paraffinic diesel component having high cetane number, a smaller addition of renewable paraffinic diesel component and a monoether oxygenate having molar mass from 128 to 300 g/mol provides increased cetane number in a blend comprising a fossil diesel component, but is not compromised by a NOx emission increase.

[0028] In an embodiment the content of the hydrotreated renewable paraffinic diesel component in the fuel composition is in the range of 5-15 vol-%. In an embodiment the content of the hydrotreated renewable paraffinic diesel component in the total fuel composition is 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 vol-%.

[0029] In an embodiment fatty acids or triglycerides are first hydrogenated to n-paraffins and n-paraffins are then at least partly converted to branched chain paraffins, i. e. isomerized.

MONOETHER



[0030] The ether component contributes to the fuel composition as an oxygenate. Generally oxygenates used in fuels include various alcohols, ethers, esters and carbonates. However, since hydrocarbons comprising oxygen is a very broad and versatile group of chemicals, different oxygenates contribute to different diesel properties and a trade-off to others is often unavoidable. Typically oxygenates decrease particulate emissions, but have a tendency to increase NOx emissions at the same time.

[0031] To be compatible and soluble to diesel, the oxygenate is selected from monoethers having molar mass from 128 to 300 g/mol, preferably from 150 to 250 g/mol, and more preferably from 150 to 190 g/mol. This molar mass range provides best compatibility to diesels. Monoether refers to a compound comprising only one ether functionality. Said monoethers may be characterized by a formula R1-O-R2, wherein R1 and R2 are same or different and selected from straight chain or branched C1-C15 alkyls, also known as C1-C15 n-alkyls and i-alkyls respectively.

[0032] Ethers suitable for present diesel composition comprise symmetrical or unsymmetrical monoethers. In the context of the present fuel composition, the oxygenate component may comprise substantially one monoether or a mixture of monoethers within above definition.

[0033] According to one embodiment, R1 and R2 are selected form straight chain C1-C15 alkyls, also known as C1-C15 n-alkyls. Straight chain ethers have ignition properties better than typical fossil diesel fuel as such. Straight chain ethers having total carbon number of at least 10 are known to have excellent properties as diesel components.

[0034] Preferably the oxygenate herein used comprises one of straight chain symmetrical monoethers, wherein formula 1 is of form R1-O-R1. Such monoethers comprise compounds known to have a high cetane number, such as di-n-pentyl-ether (DNPE), di-n-hexyl-ether (DNHE), di-n-heptyl-ether (DNHpE), di-n-octyl-ether (DNOE), di-n-nonyl-ether (DNNE) and di-n-decyl-ether (DNDE). Furthermore, production of symmetrical monoethers from one alcohol only provides advantages both as non-complexity and economics. DNPE was used as oxygenate in present experiments and provided unexpected decrease in NOx emissions as certain blend with fossil diesel component and renewable paraffinic diesel component. Symmetric monoethers of formula R1-O-R1 can be produced according to known methods. Typically symmetrical ethers may be prepared from their corresponding alcohols over acid catalysts. At high temperatures, reactions catalyzed by aluminium oxide are also known.

[0035] Asymmetrical straight chain monoethers, i.e. ethers according to formula R1-O-R2, wherein R1 and R2 are both straight chain C1-C15 alkyls but different in carbon chain length, may be produced by well-known standard processes. A well-known example is the reaction of an alkyl halide with a sodium alkoxide, by Williamson ether synthesis. Suitable asymmetrical monoethers comprise those of high cetane number within molar mass range specified. Asymmetrical straight chain monoethers may be selected from compounds according to above specifications, such as ethyl-dodecyl ether, ethyl-undecyl ether, ethyl-decyl ether, ethyl-nonyl ether (ENE), ethyl-octyl ether, propyl-dodecyl ether, propyl-undecyl ether, propyl-decyl ether, propyl-nonyl ether, propyl-octyl ether, propyl-heptyl ether, butyl-dodecyl ether, butyl-undecyl ether, butyl-dekyl ether (BDE), butyl-nonyl ether, butyl-heptyl ether, butyl-hexyl ether, pentyl-dodecyl ether, pentyl-undecyl ether, pentyl-decyl ether (PDE), pentyl-nonyl ether, pentyl-octyl ether, pentyl-heptyl ether, or pentyl-hexyl ether.

[0036] Monoethers comprising straight carbon chain alkyls are preferred, since they provide better cetane number to blends than monoethers comprising at least one branched carbon chain.

[0037] The oxygenate component may be selected from asymmetrical branched monoethers i.e. ethers according to formula R1-O-R2, wherein R1 and R2 are different C1-C15 alkyls and at least one of which is branched. Within the molar mass range from 128 to 300 g/mol, such ethers comprise among others, ethers comprising tert-butyl as one of the carbon chains, i.e. as R1 or R2, such as octyl-tert-butyl ether (OTBE), dodecyl-tert-butyl ether (DOTBE) and ethyl-hexyl-tert-butyl ether (EHTBE). Preferably the molar mass range is from 150 to 190 g/mol.

[0038] According to another embodiment, the oxygenate component may be selected from symmetrical branched monoethers i.e. ethers according to formula R1-O-R2, wherein R1 and R2 are the same C1-C15 alkyls and branched. An example of branched symmetrical monoethers within range comprise i.e. di-ethylhexyl ether (DEHE).

[0039] According to one embodiment, the oxygenate component of the composition comprises a renewable oxygenate, preferably the oxygenate component consists of a renewable oxygenate. Oxygenates may be produced by selecting the starting materials, typically alcohols, originating from biomass or biomass waste streams. When the oxygenate component is derived from biomass, it can be classified as renewal and thereby contributes to total share of renewal components in the composition. In such a case, sum of renewable components, i.e. sum of the renewable oxygenate and the renewable paraffinic diesel is from 6 to 25vol-% and preferably from 10 vol-% to 20 vol-% of the total fuel composition volume.

FOSSIL DIESEL COMPONENT



[0040] The fossil diesel component means a component or composition, which is naturally occurring and derived from non-renewable sources. Examples of such non-renewable resources include petroleum oil/gas, shale oil/gas, natural gas or coal deposits, and the like, and combinations thereof, including any hydrocarbon-rich deposits that can be utilized from ground/underground sources. The term fossil also refers to recycling material of non-renewable sources.

[0041] In an embodiment the fossil diesel component is fossil middle distillate, preferably fossil diesel. Diesel fuel in general is any liquid fuel suitable for use in diesel engines, where fuel ignition takes place without spark, as a result of compression of the inlet air mixture and then injection of fuel. The most common type of diesel fuel is a specific fractional distillate of fossil fuel, preferably petroleum fuel oil. Distillation characteristics define how fuel is evaporated when it is sprayed into the combustion chamber of a diesel engine. Standards (e.g. EN590) include information about typical distillation characteristics.

[0042] To distinguish from alternative diesel fuels not derived from petroleum, petroleum-derived diesel is called herein as fossil diesel. It may also be called as e.g. petrodiesel, mineral diesel or petroleum distillate. Fossil diesel can comprise atmospheric or vacuum distillates. The distillate can comprise cracked gas oil or a blend of any proportion of straight run or thermally or catalytically cracked distillates. The distillate fuel can be subjected to further processing such as hydrogen-treatment or other processes to improve fuel properties. Typically fossil diesel comprise naphtenics about 10-50 weight %, monoaromatics about 5-30 weight %, other polyaromatics about 0-8 weight % and paraffins about 10-50 weight %.

[0043] The present diesel fuel composition comprises fossil diesel component from 75 vol-% to 94 vol-%. Because of the predominant proportion, fossil diesel component in also referred to as the blend base to which renewable paraffinic diesel component and oxygenate component are mixed as blend components. Use of a high fossil diesel component content is beneficial, because fossil diesels are well known and compatible with diesel engines. According to an embodiment the diesel fuel composition comprises fossil diesel component from 85 vol-% to 94 vol-% of the total fuel volume.

[0044] Final fuel composition may contain refinery and performance additives such as lubricity, cold flow, antistatic and detergent additives.

EXAMPLES



[0045] The following examples are provided to illustrate various aspects of the present invention. They are not intended to limit the invention, which is defined by the accompanying claims.

Example 1. Combustion experiments


Method / Measurements



[0046] Engine tests were performed with a single cylinder test engine. Four test fuels having the same components as different blend proportions were analyzed. Fossil EN 590 summer grade was used as reference fuel and represented the fossil diesel component in blends. The renewable paraffinic diesel and a monoether as oxygenate were further components. In the test procedure the test matrix was designed to combine two speeds and three loads per speed.

[0047] For exhaust measurements a single cylinder test engine with free valve lift and timing and fully adjustable injection parameters was used. Charge and exhaust pressure were also adjustable. Cylinder pressure, fuel consumption and four different emissions, CO, HC, NOx, and particulates were measured.

[0048] Particulate mass (PM) emission measurements were performed according to ISO8178-1:2006.

[0049] AVL SPC472 Smart Sampler was used for the measurements. Sample was taken from raw exhaust gas and diluted with a dilution factor of 6. Sampling time varied from 90 to 600 seconds depending on particulate concentration and pressure drop of the sample filter. Samples were collected on 47 mm TX40HI20-WW Pallflex filters. The filter flow was set to 1.3 g/s (60 nl/min) and the filter temperature was kept in between 42-50 °C. Sample filters were weighed before and after the measurements in a climatic room in which the temperature and humidity were controlled. Minimum of 2 hours stabilisation time were used for the filters before weighing.

[0050] The flow calibration of Smart Sampler was checked on daily basis and adjusted when needed. During the measurements campaign the need for adjustments was negligible. On each measurement point 2-3 samples were collected. The reference fuel was measured in the beginning and after the measurement period. Test matrix is given in table 1.
Table 1.Parameters for test points studied.
Test pointCharge air mass flowCharge air temperatureCharge air back pressureInjection timingInjection pressure
[kg/h][Deg C][bar][DBTDC][bar]
1700 rpm 70% load 163 28 1,81 12 1400
1700 rpm 50% load 104 28 0,69 9 1399
1300 rpm 100% load 138 28 1,78 10 1200
1300 rpm 80% load 115 28 0,95 8 1200
1300 rpm 65% load 80 28 0,53 7 1200

Results



[0051] The emission results measured with reference fuel are not presented alone, but used as reference level in figure 1 presenting overall performance of different blend compositions. The exact compositions shown in Figure 1 are compiled in table 2. The final results have been calculated according to ISO8178-1:2006. Individual load/rpm points are not presented here. Instead, averages for each mixture are shown in figure 1.
Table 2. Compositions of blends tested and shown in figure 1.
SampleOxygenateRenewable dieselFossil diesel 1Density (15°C)Viscosity (40°C)Cetane numberDistillation IBPDistillation FBPLower heating value
unitvol-%vol-%vol-%kg/m3mm2/s °C°CMJ/kg
standard   EN ISO 12185EN ISO 3104ASTM D6890EN ISO 3405EN ISO 3405ASTMD 4809
1 10 10 80 824,5 3,04 63,4 179,8 359,5 42,8
2 10 30 60 813,6 2,907 67,7 184,9 356,1 42.9
3 20 10 70 820,3 2,662 68,5 178,2 347,1 42,4
4 20 30 50 808,5 2,517 74,5 179,6 353,2 42,4
5 - 100 - 779,8 2,919 78,9 209,9 301,9 43,8


[0052] The present experiments show unexpected decrease in NOx emissions result, wherein the total amount of blend components was only 20 vol-% leaving the fossil diesel component content as high as 80 vol-%. Figure 1 shows surprisingly that a reduction in NOx emissions was observed with mixture comprising 10 vol-% of DNPE and 10 vol-% of renewable paraffinic diesel in 80 vol-% of fossil diesel component. Other mixtures showed increase in NOx emissions, even though it is considerably lower increase than expected.

[0053] It is acknowledged also, that potential for further NOx emission reduction by engine calibration may exist.

Example 2: Ether testing



[0054] Several ethers, both symmetrical and asymmetrical, were tested in fossil diesel for their characteristics as mixtures containing oxygen from 1 to 2 wt-% in fossil diesel. The fossil diesel used as both reference diesel and blend base varied slightly for different experiment series (fossil diesel 2 and 3). Both straight and branched chain ethers were studied. Depending on the carbon chain length, the desired oxygen content was achieved with different ether concentrations in diesel. Standard methods were applied and the results are compiled in tables 3 and 4 (symmetrical straight chain), table 5 (asymmetrical straight chain) and table 6 (asymmetrical branched).
Table 3. Characteristics measured for ether-diesel mixtures for straight chain symmetrical monoethers according to the present invention.
  Fossil diesel 289,3% Fossil diesel 284,7% Fossil diesel 269,3% Fossil diesel 281,3% Fossil diesel 2
ASTM 10,7 % DNPE15,3% DNOE30,7 % DNOE18,7% DNDE
Density (15°C) kg/m3 D4052 816.1 812.6 815.2 814.4 816.9
kV (15°C) mm2/s D445 2,62 2,35 2,79 3,06 3,26
Cloud point °C D2500 -48 <-46 -41 -30 -9
Flash point°C D93 75       76
Distillation IBP°C D86 174 189 195 199 181
Distillation FBP°C   291 283 286 286 335
Cetane number D613 48 53.9 59.9 70 57.8
Oxyg. blend cetane number bCN     104.7 125.8 119.7 100.4
Oxygen (calc) %-wt   0 1 1 2 1
Carbon (calc) %-wt   85.9 84.8 84.8 83.8 84.8
Hydrogen (calc) %-wt   14,1 14 14 14 14
Table 4. Further straight chain symmetrical monoether characteristics and some values concerning ether-diesel mixture.
 MethodFossil diesel 390% Fossil diesel 3
10% DNHE
Density (15°C) kg/m3 EN ISO12185 818,4 816,3
Cloud point °C ASTM D7689 -28,6 -29,5
Cetane number ASTM D6890 47,5 57
Oxyg. blend cetane number bCN     142
Oxygen (calc) %-wt   0 0,8
Table 5. Characteristics measured for ether-diesel mixtures for straight chain asymmetrical monoethers according to the present invention.
  Fossil diesel 288,3% Fossil diesel 286,0% Fossil diesel 286,0% Fossil diesel 2
ASTM 11,7% ENE14,0% BDE14,0% PDE
Density (15°C) kg/m3 D4052 816.1 813.3 814.7 814.6
kV (15°C) mm2/s D445 2,62 2,44 2,73 2,83
Cloud point °C D2500 -48 <-46 <-45 -47
Flash point°C D93 75   76  
Distillation IBP°C D86 174 194 205 197
Distillation FBP°C   291 285 286 284
Cetane number D613 48 53.4 56 56.3
Oxyg. blend cetane number bCN     94.1 105.1 107.3
Oxygen (calc) %-wt   0 1,1 1 2
Carbon (calc) %-wt   85.9 84.8 84.8 84.8
Hydrogen (calc) %-wt   14,1 14 14 14


[0055] All compounds mentioned here were soluble in diesel fuel. During cold storage, (about -18 °C), no crystallization or phase separation was observed with any of said ethers studied. These results together with parametres in tables 3 - 5, indicate that with these ethers, similar emission results may be achieved as achieved in example 1 for compositions comprising fossil diesel, renewable paraffinic diesel and a symmetrical, straight chain monoether, DNPE. It can be deduced that monoethers having molar mass within range from 128 to 300 g/mol such as symmetrical DNOE, DNDE, asymmetrical ENE, BDE, and PDE, perform similarly to DNPE in diesel blends.
Table 6. Characteristics measured for ether-diesel mixtures for branched chain asymmetrical monoethers according to the present invention.
  Fossil diesel 288,0% Fossil diesel 276,0% Fossil diesel 276,0% Fossil diesel 284,7% Fossil diesel 2
ASTM12,0% EHTBE24,0% EHTBE24,0% OTBE15,3% DOTBE
Density (15°C) kg/m3 D4052 816.1 813.6 810.9 810.4 814.9
kV (15°C) mm2/s D445 2,62 2,55 2,43 2,56 2,96
Cloud point °C D2500 -48 <-45 <-45 <-45 <-45
Flash point°C D93 75 71 72 74 74
Distillation IBP°C D86 174 178 170 186 182
Distillation FBP°C   291 286 285 286 287
Cetane number D613 48 45.3 44.3 48.3 52.1
Oxyg. blend cetane number bCN     25.5 32.6 49.3 74.8
Oxygen (calc) %-wt   0 1 2 2 1
Carbon (calc) %-wt   85.9 84.8 83.8 83.8 84.8
Hydrogen (calc) %-wt   14,1 14 14 14 14


[0056] Since several ethers listed in the above tables have cetane number greater than that of fossil diesel, they contribute to increase in cetane number of claimed compositions. As another advantage, it can be concluded that with such ethers lower blend ratio of components contributing to cetane number are required in compositions according to present compositions in order to meet cetane number requirements in EN590 and ASTM D975. It is especially beneficial in producing premium diesel grades with higher cetane number. Based on this reasoning, the oxygenate component is preferable selected from the group of DNPE, DNOE, DNDE, BDE, DNHE, and PDE.

[0057] As summary, ethers tested for their desirable blend characteristics comprised di-n-dekyl ether, di-n-octyl ether, di-n-pentyl ether, di-n-hexyl ether, ethyl-nonyl ether, butyl-dekyl ether, pentyl-dekyl ether, octyl-tert-butyl ether, dodecyl-tert-butyl ether, ethyl-hexyl-tert-butyl ether. The foregoing description has provided by way of non-limiting examples of particular implementations and embodiments of the invention a full and informative description of the best mode presently contemplated by the inventors for carrying out the invention.

[0058] Furthermore, some of the features of the above-disclosed embodiments of this invention may be used to advantage without the corresponding use of other features. As such, the foregoing description should be considered as merely illustrative of the principles of the present invention, and not in limitation thereof. Hence, the scope of the invention is only restricted by the appended patent claims.


Claims

1. A fuel composition comprising

a) fossil diesel component

b) oxygenate component in an amount from 1 vol-% to 10 vol-%, preferably from 5 vol-% to 10 vol-% of the total fuel composition volume, wherein

i. said oxygenate is a monoether having a molar mass from 128 to 300 g/mol, and

ii. said oxygenate is of structure

        R1-O-R2     (formula 1),

in which formula R1 and R2 are same or different and selected from C1-C15 alkyl groups,

c) renewable paraffinic diesel component in an amount from 5 vol-% to 15 vol-% of the total fuel composition volume,

wherein the sum amount of said oxygenate component and said renewable paraffinic diesel component is from 6 to 25 vol-%, preferably from 10 vol-% to 20 vol-% of the total fuel composition volume.
 
2. The composition according to claim 1 wherein said oxygenate component is selected from symmetrical or asymmetrical straight chain monoethers, having molar mass from 150 to 300 g/mol, preferably from 150 to 250 g/mol.
 
3. The composition according to claim 1 or 2 wherein said oxygenate component is selected from group of di-n-nonyl ether, di-n-decyl ether, di-n-octyl ether, di-n-heptyl ether, di-n-pentyl ether, di-n-hexyl ether, ethyl-dodecyl ether, ethyl-undecyl ether, ethyl-decyl ether, ethyl-octyl ether, propyl-dodecyl ether, propyl-undecyl ether, propyl-decyl ether, propyl-nonyl ether, propyl-octyl ether, propyl-heptyl ether, butyl-dodecyl ether, butyl-undecyl ether, butyl-nonyl ether, butyl-heptyl ether, butyl-hexyl ether, pentyl-dodecyl ether, pentyl-undecyl ether, pentyl-nonyl ether, pentyl-octyl ether, pentyl-heptyl ether, or pentyl-hexyl ether, ethyl-nonyl ether, butyl-decyl ether, pentyl-decyl ether, octyl-tert-butyl ether, dodecyl-tert-butyl ether, ethyl-hexyl-tert-butyl ether, di-ethylhexyl ether, and mixtures thereof.
 
4. The composition according to claim 1, wherein said oxygenate component is selected from symmetrical or asymmetrical straight chain monoethers, preferably said oxygenate component comprises di-n-pentyl ether.
 
5. The composition according to any one of the preceding claims wherein said renewable paraffinic diesel component comprises hydrocarbons produced from biomass with a process selected from gasification of biomass to produce syngas and production of paraffins from said syngas by Fischer-Tropsch synthesis to obtain a paraffinic C9-C24 hydrocarbon fraction, hydrotreatment of vegetable oil, animal fat, fish fat, fish oil, algae oil, microbial oil and/or wood and/or other plant based oil as well as recyclable waste and/or residue or a combination thereof to obtain a paraffinic C9-C24 hydrocarbon fraction, optionally followed by isomerization, or a combination thereof.
 
6. The composition according to any one of the preceding claims, wherein said renewable paraffinic diesel component comprises hydrotreated vegetable oil, hydrotreated wood and/or other plant based oil, hydrotreated animal fat, hydrotreated fish fat and oil, hydrotreated algae oil, hydrotreated microbial oil, hydrotreated recyclable waste, hydrotreated recyclable residue, or a combination thereof.
 
7. The composition according to any one of the preceding claims, wherein in said renewable paraffinic diesel component the amount of the paraffinic C15-C18 hydrocarbons is at least 70 vol-%, more preferably at least 80 vol-%, most preferably at least 90 vol-%.
 
8. The composition according to any one of the preceding claims, wherein in said renewable paraffinic diesel component the amount of the paraffinic components in the range of carbon number C3-C14 is less than 25 vol-%, such as less than 20 vol-%, less than 10% vol-%, or less than 7 vol-%.
 
9. The composition according to any one of the preceding claims, wherein in said renewable paraffinic diesel component the amount of the paraffinic components in the range of carbon number C19-C24 is less than 25 vol-%, such as less than 20 vol-%, less than 10 vol-%, or less than 5 vol-%.
 
10. A method for producing a fuel composition according to claim 1, wherein the renewable paraffinic diesel component is produced from a renewable feedstock by a process selected from

i) hydrogenation or deoxygenation of vegetable oil, animal fat, fish fat, fish oil, algae oil, microbial oil and/or wood and/or other plant based oil as well as recyclable waste and/or residue or a combination thereof to obtain a paraffinic C9-C24 hydrocarbon fraction, which is optionally subjected to isomerization, or

ii) gasification of biomass to produce syngas and production of paraffins from said syngas by Fischer-Tropsch synthesis to obtain a paraffinic C9-C24 hydrocarbon fraction, or

iii) a combination thereof,

and blending the renewable paraffinic diesel component thereby obtained, a monoether oxygenate component having molar mass from 128 to 300 g/mol, and fossil diesel component.
 
11. The method according to claim 10, wherein the feedstock for renewable paraffinic diesel component comprises vegetable oil, wood and/or other plant based oil, animal fat, fish fat and oil, algae oil, microbial oil, recyclable waste, recyclable residue, or a combination thereof.
 
12. Use of a monoether oxygenate component having molar mass from 128 to 300 g/mol and renewable paraffinic diesel component as fuel blending components to fossil fuel for reducing NOx emissions, wherein the total fuel composition comprises from 1 vol-% to 10 vol-% of a monoether oxygenate component having molar mass from 128 to 300 g/mol and from 5 vol-% to 15 vol-% renewable paraffinic diesel and the sum amount of said oxygenate and said renewable paraffinic diesel component from 6 to 25vol-%, preferably from 10 vol-% to 20vol-% of the total fuel composition weigh and vol-% is calculated of the total fuel composition.
 


Ansprüche

1. Kraftstoffzusammensetzung umfassend

a. eine fossile Dieselkomponente

b. eine Oxygenatkomponente in einem Anteil von 1 Vol.-% bis 10 Vol.-%, bevorzugt von 5 Vol.-% bis 10 Vol.-% des Gesamtvolumens der Kraftstoffzusammensetzung, wobei

i. besagtes Oxygenat ein Monoether mit einer molaren Masse von 128 bis 300 g/mol ist, und

ii. besagtes Oxygenat von der Struktur

        R1-O-R2     (Formel 1)

ist, in der Formel R1 und R2 gleich oder unterschiedlich und aus C1-C15 Alkylgruppen ausgewählt sind,

c. eine erneuerbare paraffinische Dieselkomponente in einem Anteil von 5 Vol.-% bis 15 Vol.-% des Gesamtvolumens der Kraftstoffzusammensetzung,

wobei der Summenanteil besagter Oxygenatkomponente und besagter erneuerbarer paraffinischer Dieselkomponente von 6 bis 25 Vol.-%, bevorzugt von 10 Vol.-% bis 20 Vol.-% des Gesamtvolumens der Kraftstoffzusammensetzung ist.
 
2. Zusammensetzung gemäß Anspruch 1, wobei besagte Oxygenatkomponente ausgewählt ist aus symmetrischen oder unsymmetrischen geradkettigen Monoethern mit einer molaren Masse von 150 bis 300 g/mol, bevorzugt von 150 bis 250 g/mol.
 
3. Zusammensetzung gemäß Anspruch 1 oder 2, wobei besagte Oxygenatkomponente ausgewählt ist aus einer Gruppe von Di-n-nonylether, Di-n-decylether, Di-n-octylether, Di-n-heptylether, Di-n-pentylether, Di-n-hexylether, Ethyldodecylether, Ethylundecylether, Ethyldecylether, Ethyloctylether, Propyldodecylether, Propylundecylether, Propyldecylether, Propylnonylether, Propyloctylether, Propylheptylether, Butyldodecylether, Butylundecylether, Butylnonylether, Butylheptylether, Butylhexylether, Pentyldodecylether, Pentylundecylether, Pentylnonylether, Pentyloctylether, Pentylheptylether, oder Pentylhexylether, Ethylnonyl-ether, Butyldecylether, Pentyldecylether, Octyl-tert-butylether, Dodecyl-tert-butylether, Ethylhexyltert-butylether, Diethylhexylether, und Mischungen davon.
 
4. Zusammensetzung gemäß Anspruch 1, wobei besagte Oxygenatkomponente ausgewählt ist aus symmetrischen oder unsymmetrischen geradkettigen Monoethern, bevorzugt umfasst besagte Oxygenatkomponente Di-n-pentylether.
 
5. Zusammensetzung gemäß einem der vorhergehenden Ansprüche, wobei besagte erneuerbare paraffinische Dieselkomponente Kohlenwasserstoffe umfasst, die aus Biomasse hergestellt sind mit einem Prozess ausgewählt aus der Vergasung von Biomasse, um Syngas herzustellen und der Herstellung von Paraffinen aus besagtem Syngas durch Fischer-Tropsch-Synthese, um eine paraffinische C9-C24 Kohlenwasserstofffraktion zu erhalten, Hydrotreating von Pflanzenöl, Tierfett, Fischfett, Fischöl, Algenöl, mikrobiellem Öl und/oder Holz und/oder anderem pflanzenbasiertem Öl, sowie recycelbarem Abfall und/oder Rest oder einer Kombination davon, um eine paraffinische C9-C24 Kohlenwasserstofffraktion zu erhalten, optional gefolgt von Isomerisierung, oder einer Kombination davon.
 
6. Zusammensetzung gemäß einem der vorhergehenden Ansprüche, wobei besagte erneuerbare paraffinische Dieselkomponente hydrogetreatetes Pflanzenöl, hydrogetreatetes Holz und/oder anderes pflanzenbasiertes Öl, hydrogetreatetes Tierfett, hydrogetreatetes Fischfett und -öl, hydrogetreatetes Algenöl, hydrogetreatetes mikrobielles Öl, hydrogetreateten recycelbaren Abfall, hydrogetreateten recycelbaren Rest, oder eine Kombination davon, umfasst.
 
7. Zusammensetzung gemäß einem der vorhergehenden Ansprüche, wobei in besagter erneuerbarer paraffinischer Dieselkomponente der Anteil der paraffinischen C15-C18 Kohlenwasserstoffe zumindest 70 Vol.-%, mehr bevorzugt zumindest 80 Vol.-%, am meisten bevorzugt zumindest 90 Vol.-% ist.
 
8. Zusammensetzung gemäß einem der vorhergehenden Ansprüche, wobei in besagter erneuerbarer paraffinischer Dieselkomponente der Anteil der paraffinischen Komponenten im Bereich der Kohlenstoffzahl C3-C14 weniger als 25 Vol.-%, wie etwa weniger als 20 Vol.-%, weniger als 10 Vol.-%, oder weniger als 7 Vol.-% ist.
 
9. Zusammensetzung gemäß einem der vorhergehenden Ansprüche, wobei in besagter erneuerbarer paraffinischer Dieselkomponente der Anteil der paraffinischen Komponenten im Bereich der Kohlenstoffzahl C19-C24 weniger als 25 Vol.-%, wie etwa weniger als 20 Vol.-%, weniger als 10 Vol.-%, oder weniger als 5 Vol.-% ist.
 
10. Verfahren zum Herstellen einer Kraftstoffzusammensetzung gemäß Anspruch 1, wobei die erneuerbare paraffinische Dieselkomponente hergestellt wird aus einem erneuerbaren Rohstoff durch einen Prozess ausgewählt aus

i) der Hydrierung oder Desoxygenierung von Pflanzenöl, Tierfett, Fischfett, Fischöl, Algenöl, mikrobiellem Öl und/oder Holz und/oder anderem pflanzenbasiertem Öl, sowie recycelbarem Abfall und/oder Rest oder einer Kombination davon, um eine paraffinische C9-C24 Kohlenwasserstofffraktion zu erhalten, die optional Isomerisierung unterworfen wird, oder

ii) der Vergasung von Biomasse, um Syngas herzustellen und der Herstellung von Paraffinen aus besagtem Syngas durch Fischer-Tropsch-Synthese, um eine paraffinische C9-C24 Kohlenwasserstofffraktion zu erhalten, oder

iii) einer Kombination davon,

und Mischen der dadurch erhaltenen erneuerbaren paraffinischen Dieselkomponente, einer Monoether-Oxygenatkomponente mit einer molaren Masse von 128 bis 300 g/mol, und einer fossilen Dieselkomponente.
 
11. Verfahren gemäß Anspruch 10, wobei der Rohstoff für die erneuerbare paraffinische Dieselkomponente Pflanzenöl, Holz und/oder anderes pflanzenbasiertes Öl, Tierfett, Fischfett und -öl, Algenöl, mikrobielles Öl, recycelbaren Abfall, recycelbaren Rest, oder einer Kombination davon, umfasst.
 
12. Verwendung einer Monoether-Oxygenatkomponente mit einer molaren Masse von 128 bis 300 g/mol und einer erneuerbaren paraffinischen Dieselkomponente als Kraftstoffmischkomponenten zu fossilem Kraftstoff zum Reduzieren von NOx-Emissionen, wobei die gesamte Kraftstoffzusammensetzung von 1 Vol.-% bis 10 Vol.-% einer Monoether-Oxygenatkomponente mit einer molaren Masse von 128 bis 300 g/mol und von 5 Vol.-% bis 15 Vol.-% einer erneuerbare Dieselkomponente umfasst, und der Summenanteil von besagtem Oxygenat und besagter erneuerbarer paraffinischer Dieselkomponente von 6 bis 25 Vol.-%, bevorzugt von 10 Vol.-% bis 20 Vol.-% des Gesamtgewichts der Kraftstoffzusammensetzung und Vol.-% aus der gesamten Kraftstoffzusammensetzung berechnet wird.
 


Revendications

1. Composition de carburant comprenant

a. un composant diesel fossile

b. un composant oxygéné en une quantité de 1% en volume à 10% en volume, de préférence de 5% en volume à 10% en volume du volume total de la composition de carburant, dans lequel

i. ledit composant oxygéné a une masse molaire de 128 à 300 g/mol, et

ii. ledit composant oxygéné est de structure

        R1-O-R2     (formule 1),

dans laquelle les groupes R1 et R2 sont identiques ou différents et choisis parmi les groupes alkyle en C1-C15,

c. un composant diesel paraffinique renouvelable en une quantité de 5% en volume à 15% en volume du volume total de la composition de carburant,

dans lequel la quantité totale dudit composant oxygéné et dudit composant diesel paraffinique renouvelable est de 6 à 25% en volume, de préférence de 10% en volume à 20% en volume du volume total de la composition de carburant.
 
2. Composition selon la revendication 1, dans laquelle ledit composant oxygéné est choisi parmi les mono-éthers à chaîne droite symétrique ou asymétrique, ayant une masse molaire de 150 à 300 g/mol, de préférence de 150 à 250 g/mol.
 
3. Composition selon la revendication 1 ou 2, dans laquelle ledit composant oxygéné est choisi dans le groupe du di-n-nonyl éther, du di-n-décyl éther, du di-n-octyl éther, du di-n-heptyl éther, du di-n-pentyl éther, du di-n-hexyl éther, de l'éthyl-dodécyl éther, de l'éthyl-undécyl éther, de l'éthyl-décyl éther, de l'éthyl-octyl éther, du propyl-dodécyl éther, du propyl-undécyl éther, du propyl-décyl éther, du propyl-nonyl éther, du propyl-octyl éther, du propyl-heptyl éther, du butyl-dodécyl éther, du butyl-undécyl éther, du butyl-nonyl éther, du butyl-heptyl éther, du butyl-hexyl éther, du pentyl-dodécyl éther, du pentyl-undécyl éther, du pentyl-nonyl éther, du pentyl-octyl éther, du pentyl-heptyl éther ou du pentyl-hexyl éther , de l'éthyl-nonyl éther, du butyl-décyl éther, du pentyl-décyl éther, de l'octyl-tert-butyl éther, du dodécyl-tert-butyl éther, de l'éthyl-hexyl-tert-butyl éther, du di-éthyl-hexyl éther, et leurs mélanges.
 
4. Composition selon la revendication 1, dans laquelle ledit composant oxygéné est choisi parmi les mono-éthers à chaîne droite symétrique ou asymétrique, de préférence ledit composant oxygéné comprend le di-n-pentyl éther.
 
5. Composition selon l'une quelconque des revendications précédentes, dans laquelle ledit composant diesel paraffinique renouvelable comprend des hydrocarbures produits à partir de biomasse avec un procédé choisi parmi la gazéification de la biomasse pour produire du gaz de synthèse et la production de paraffines à partir dudit gaz de synthèse par synthèse Fischer-Tropsch pour obtenir une fraction hydrocarbonée paraffinique en C9-C24, de l'huile végétale obtenu par hydrotraitement, de la graisse animale, de la graisse de poisson, de l'huile de poisson, de l'huile d'algue, de l'huile microbienne et / ou de l'huile de bois et / ou une autre huile végétale ainsi que de déchets recyclables et / ou de résidus recyclables ou d'une combinaison de ceux-ci pour obtenir une fraction hydrocarbonée paraffinique en C9-C24, éventuellement suivie d'une isomérisation, ou une combinaison de celles-ci.
 
6. Composition selon l'une quelconque des revendications précédentes, dans laquelle ledit composant diesel paraffinique renouvelable comprend une huile végétale hydrotraitée, une huile de bois hydrotraitée et / ou une autre huile végétale, de la graisse animale hydrotraitée, de la graisse et de l'huile de poisson hydrotraitées, de l'huile d'algue hydrotraitée, de l'huile microbienne hydrotraitée, des déchets recyclables hydrotraités, des résidus recyclables hydrotraités ou une combinaison de ceux-ci.
 
7. Composition selon l'une quelconque des revendications précédentes, dans laquelle, dans ledit composant diesel paraffinique renouvelable, la quantité d'hydrocarbures paraffiniques en C15-C18 est d'au moins 70% en volume, plus préférablement d'au moins 80% en volume, le plus préférablement d'au moins 90% en volume.
 
8. Composition selon l'une quelconque des revendications précédentes, dans laquelle, dans ledit composant diesel paraffinique renouvelable, la quantité des composants paraffiniques dans la gamme du nombre de carbone C3-C14 est inférieure à 25% en volume, par exemple inférieure à 20% en volume, moins de 10% en volume ou moins de 7% en volume.
 
9. Composition selon l'une quelconque des revendications précédentes, dans laquelle, dans ledit composant diesel paraffinique renouvelable, la quantité des composants paraffiniques dans la gamme du nombre de carbone C19-C24 est inférieure à 25% en volume, par exemple inférieure à 20% en volume, moins de 10% en volume ou moins de 5% en volume.
 
10. Procédé de production d'une composition de carburant selon la revendication 1, dans lequel le composant diesel paraffinique renouvelable est produit à partir d'une matière première renouvelable par un procédé choisi parmi

i) l'hydrogénation ou la désoxygénation d'huile végétale, de graisse animale, de graisse de poisson, d'huile de poisson, d'huile d'algue, d'huile microbienne et / ou d'huile de bois et / ou d'une autre huile végétale ainsi que des déchets recyclables et / ou des résidus recyclables ou une combinaison de ceux-ci pour obtenir une fraction hydrocarbonée paraffinique en C9-C24, éventuellement soumise à une isomérisation, ou

ii) la gazéification de la biomasse pour produire du gaz de synthèse et la production de paraffines à partir dudit gaz de synthèse par synthèse Fischer-Tropsch pour obtenir une fraction hydrocarbonée paraffinique en C9-C24, ou

iii) une combinaison de ceux-ci,

et le mélange du composant diesel paraffinique renouvelable ainsi obtenu, avec un composant oxygéné mono-éther ayant une masse molaire de 128 à 300 g/mol, et avec un composant diesel fossile.
 
11. Procédé selon la revendication 10, dans lequel la matière première pour le composant diesel paraffinique renouvelable comprend de l'huile végétale, de l'huile de bois et / ou une autre huile végétale, de la graisse animale, de la graisse et de l'huile de poisson, de l'huile d'algues, de l'huile microbienne, des déchets recyclables, des résidus recyclables, ou une combinaison de ceux-ci.
 
12. Utilisation d'un composant oxygéné mono-éther ayant une masse molaire de 128 à 300g/mol et d'un composant diesel paraffinique renouvelable comme composants de mélange de carburant à un carburant fossile pour réduire les émissions de NOx, dans laquelle la composition totale du carburant comprend une quantité de 1% en volume à 10% en volume d'un composant mono-éther oxygéné ayant une masse molaire de 128 à 300 g/mol et une quantité de 5% en volume à 15% en volume d'un composant diesel paraffinique renouvelable et la quantité totale dudit composant oxygéné et dudit composant diesel paraffinique renouvelable représente de 6 à 25% en volume, de préférence de 10% en volume à 20% en volume du poids total de la composition de carburant et le % en volume est calculé sur la composition totale du carburant.
 




Drawing






REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description