(19)
(11)EP 3 557 333 B1

(12)FASCICULE DE BREVET EUROPEEN

(45)Mention de la délivrance du brevet:
04.11.2020  Bulletin  2020/45

(21)Numéro de dépôt: 18167501.8

(22)Date de dépôt:  16.04.2018
(51)Int. Cl.: 
G04B 1/14(2006.01)
G04B 21/06(2006.01)

(54)

PROCÉDÉ DE FABRICATION D'UN RESSORT MOTEUR D'HORLOGERIE

HERSTELLUNGSVERFAHREN EINER ZUGFEDER FÜR EINE UHR

METHOD FOR MANUFACTURING A TIMEPIECE MAINSPRING


(84)Etats contractants désignés:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date de publication de la demande:
23.10.2019  Bulletin  2019/43

(73)Titulaire: Patek Philippe SA Genève
1204 Genève (CH)

(72)Inventeurs:
  • JEANNERET, Sylvain
    2013 Colombier (CH)
  • MAIER, Frédéric
    2000 Neuchâtel (CH)
  • BUCAILLE, Jean-Luc
    74160 Présilly (FR)

(74)Mandataire: Micheli & Cie SA 
Rue de Genève 122 Case Postale 61
1226 Genève-Thônex
1226 Genève-Thônex (CH)


(56)Documents cités: : 
CH-A2- 699 476
JP-A- 2017 111 131
CH-B1- 706 020
  
      
    Il est rappelé que: Dans un délai de neuf mois à compter de la date de publication de la mention de la délivrance de brevet européen, toute personne peut faire opposition au brevet européen délivré, auprès de l'Office européen des brevets. L'opposition doit être formée par écrit et motivée. Elle n'est réputée formée qu'après paiement de la taxe d'opposition. (Art. 99(1) Convention sur le brevet européen).


    Description


    [0001] La présente invention concerne un procédé de fabrication d'un ressort moteur pour pièce d'horlogerie.

    [0002] Par ressort moteur on entend tout ressort, autre qu'un ressort exerçant une simple fonction de rappel, capable d'emmagasiner de l'énergie pour alimenter le fonctionnement d'un mécanisme. Un exemple typique de ressort moteur est le ressort de barillet.

    [0003] Dans l'horlogerie mécanique, le ressort de barillet apporte l'énergie permettant d'entretenir l'oscillateur de la montre. Le ressort de barillet est logé dans un tambour de barillet et fournit son énergie par l'intermédiaire d'un système de roues et pignons qui engrène avec le tambour de barillet. La place disponible pour stocker l'énergie, à savoir le volume du tambour de barillet, est limitée, surtout dans les montres-bracelets, ceci d'autant plus lorsque la montre est fine. De cette place disponible dépend la quantité d'énergie emmagasinable. Cette quantité d'énergie est utilisée pour garantir une certaine durée de marche de la montre. La précision de la marche est, elle, déterminée par la fréquence et l'inertie de l'oscillateur. Un oscillateur à haute fréquence et haute inertie aura une très bonne précision de marche mais nécessitera un apport d'énergie conséquent, ce qui peut pénaliser la durée de marche. Un compromis doit donc être opéré entre la durée de marche et la précision de l'oscillateur.

    [0004] La quantité d'énergie emmagasinable est aussi liée au matériau dans lequel on fabrique le ressort de barillet. Depuis plusieurs années, des fabricants utilisent le Nivaflex®, un alliage à base de Co, Ni, Cr et Fe développé par la société Vacuumschmelze GmbH & Co. KG. Cet alliage a pour avantage notable de présenter une très haute limite élastique, d'environ 3,7 GPa, donnée par l'écrouissage et les traitements thermiques, tout en conservant une part de ductilité. Quelques améliorations (Nivaflex Plus, demande de brevet DE 102009014442) ou matériaux alternatifs (Bioflex®, brevet CH 704471) sont maintenant proposés, mais sans permettre un gain significatif des propriétés mécaniques et de la quantité d'énergie stockée. Il est également proposé de réaliser des ressorts de barillet en verre métallique (brevets CH 698962 et CH 704391) ou en un matériau composite comprenant une portion de support en un matériau métallique ou en un métalloïde tel que le carbone, le silicium ou le germanium, cette portion de support étant recouverte par une deuxième portion, en diamant, supportant l'essentiel des contraintes de déformation (brevet CH 706020 de la demanderesse).

    [0005] Le silicium est un matériau de plus en plus utilisé dans l'horlogerie et qui présente de nombreux avantages. Cependant, sa limite élastique et le rapport de sa limite élastique au carré sur son module d'élasticité (σ2/E) sont trop bas pour pouvoir emmagasiner suffisamment d'énergie pour alimenter le fonctionnement d'un mouvement horloger. C'est pourquoi, dans le brevet CH 706020, on l'associe avec du diamant, mais sans que cela donne en pratique entière satisfaction en termes de résistance mécanique.

    [0006] La présente invention vise à remédier à ces inconvénients, au moins en partie, et propose à cette fin un procédé selon la revendication 1 ou la revendication 2.

    [0007] Un mode de réalisation particulier du procédé de fabrication d'un ressort moteur d'horlogerie, de préférence un ressort de barillet, selon l'invention va maintenant être décrit.

    [0008] Une première étape consiste à graver dans une plaquette de silicium, de préférence par gravure ionique réactive profonde (DRIE), une pièce ayant la forme souhaitée, typiquement en spirale, et sensiblement les dimensions souhaitées du ressort moteur.

    [0009] Le silicium peut être monocristallin, polycristallin ou amorphe. S'il est monocristallin, son orientation cristalline est de préférence {111} pour que son module de Young soit isotrope. Le silicium polycristallin est préféré au silicium monocristallin pour son isotropie et sa plus grande résistance mécanique. Le silicium utilisé dans l'invention peut en outre être dopé ou non.

    [0010] Une deuxième étape du procédé consiste à oxyder thermiquement la pièce, typiquement à une température comprise entre 600°C et 1300°C, de préférence entre 800°C et 1200°C, de manière à la recouvrir d'une couche d'oxyde de silicium (SiO2). Cette couche d'oxyde de silicium se forme en consommant du silicium, ce qui fait reculer l'interface entre le silicium et l'oxyde de silicium et atténue les défauts de surface du silicium.

    [0011] A une troisième étape, la couche d'oxyde de silicium est éliminée, par exemple par gravure humide, gravure en phase vapeur ou gravure sèche.

    [0012] A une quatrième étape, on applique à la pièce le traitement de recuit décrit dans la demande de brevet CH 702431. Ce traitement de recuit (« thermal annealing » en anglais) est effectué dans une atmosphère réductrice, de préférence à une pression strictement supérieure à 100 Torr et inférieure ou égale à la pression atmosphérique (760 Torr), mais qui peut être de l'ordre de la pression atmosphérique, et de préférence à une température comprise entre 800°C et 1300°C. La durée du traitement de recuit peut être de quelques minutes à plusieurs heures. L'atmosphère réductrice peut être constituée principalement ou totalement d'hydrogène. Elle peut comprendre aussi de l'argon ou tout autre gaz neutre.

    [0013] La combinaison des deuxième, troisième et quatrième étapes (oxydation, désoxydation et recuit) confère à la pièce des propriétés mécaniques remarquables pour un ressort moteur. Les ébréchures et autres défauts susceptibles de créer des amorces de rupture sont fortement réduits voire supprimés. La rugosité des surfaces est lissée. Les vaguelettes que crée la gravure DRIE sur les flancs de la pièce sont atténuées voire supprimées. Les arêtes sont arrondies, ce qui diminue les concentrations de contraintes. La limite à la rupture du silicium, correspondant à sa limite élastique, est augmentée.

    [0014] A une cinquième étape du procédé, on forme sur la pièce une couche d'oxyde de silicium (SiO2) permettant d'augmenter sa résistance mécanique. Cette couche d'oxyde de silicium peut être formée par oxydation thermique, de la même manière qu'à la deuxième étape, ou par dépôt, notamment dépôt chimique ou physique en phase vapeur (CVD, PVD). Elle est de préférence formée sur toute ou presque toute la surface de la pièce. Son épaisseur est par exemple de quelques micromètres.

    [0015] Typiquement, ladite pièce fait partie d'un lot de pièces réalisées dans une même plaquette de silicium. A une dernière étape du procédé, la pièce et les autres pièces du lot sont détachées de la plaquette.

    [0016] Le procédé selon l'invention, grâce aux traitements de surface décrits ci-dessus, permet l'obtention de ressorts moteurs atteignant des limites élastiques en flexion supérieures à 3 GPa et pouvant même aller jusqu'à 6 GPa. La capacité de stockage d'énergie (σ2/E) est augmentée.

    [0017] Le(s) ressort(s) moteur(s) obtenu(s) selon le procédé selon l'invention peut(peuvent) comprendre des parties remplissant des fonctions supplémentaires par rapport au stockage et à la restitution d'énergie, par exemple des parties servant de bonde ou de bride comme décrit dans le brevet CH 705368.

    [0018] Dans une variante de l'invention, la quatrième étape (recuit) est mise en œuvre avant la deuxième étape (oxydation thermique).


    Revendications

    1. Procédé de fabrication d'un ressort moteur d'horlogerie comprenant les étapes suivantes :

    a) réaliser en silicium une pièce ayant la forme souhaitée du ressort moteur,

    b) oxyder thermiquement la pièce,

    c) désoxyder la pièce,

    d) effectuer un recuit de la pièce dans une atmosphère réductrice,

    e) former une couche d'oxyde de silicium sur la pièce.


     
    2. Procédé de fabrication d'un ressort moteur d'horlogerie comprenant les étapes suivantes :

    a) réaliser en silicium une pièce ayant la forme souhaitée du ressort moteur,

    b) effectuer un recuit de la pièce dans une atmosphère réductrice,

    c) oxyder thermiquement la pièce,

    d) désoxyder la pièce,

    e) former une couche d'oxyde de silicium sur la pièce.


     
    3. Procédé selon la revendication 1 ou 2, dans lequel l'étape a) comprend une opération de gravure, de préférence une opération de gravure ionique réactive profonde.
     
    4. Procédé selon l'une des revendications 1 à 3, dans lequel l'étape d'oxydation thermique est effectuée à une température comprise entre 600°C et 1300°C, de préférence entre 800°C et 1200°C.
     
    5. Procédé selon l'une des revendications 1 à 4, dans lequel l'étape de désoxydation comprend une opération de gravure, de préférence une opération de gravure humide, de gravure en phase vapeur ou de gravure sèche.
     
    6. Procédé selon l'une des revendications 1 à 5, dans lequel l'étape de recuit est effectuée à une pression strictement supérieure à 100 Torr.
     
    7. Procédé selon l'une des revendications 1 à 6, dans lequel l'étape de recuit est effectuée à une pression inférieure ou égale à la pression atmosphérique.
     
    8. Procédé selon l'une des revendications 1 à 7, dans lequel l'étape de recuit est effectuée à une température comprise entre 800°C et 1300°C.
     
    9. Procédé selon l'une des revendications 1 à 8, dans lequel ladite atmosphère réductrice comprend de l'hydrogène.
     
    10. Procédé selon la revendication 9, dans lequel ladite atmosphère réductrice comprend également un gaz neutre, par exemple de l'argon.
     
    11. Procédé selon l'une des revendications 1 à 10, dans lequel l'étape e) est effectuée par oxydation thermique.
     
    12. Procédé selon l'une des revendications 1 à 11, dans lequel le silicium est monocristallin ou polycristallin.
     
    13. Procédé selon l'une des revendications 1 à 12, dans lequel le ressort moteur est un ressort de barillet.
     


    Ansprüche

    1. Verfahren zur Herstellung einer Zugfeder für eine Uhr, das die folgenden Schritte umfasst:

    a) Ausführen eines Teils aus Silizium, das die gewünschte Form der Zugfeder aufweist,

    b) thermisches Oxidieren des Teils,

    c) Desoxidieren des Teils,

    d) Durchführen eines Glühens des Teils in einer reduzierenden Atmosphäre,

    e) Bilden einer Siliziumoxidschicht auf dem Teil.


     
    2. Verfahren zur Herstellung einer Zugfeder für eine Uhr, das die folgenden Schritte umfasst:

    a) Ausführen eines Teils aus Silizium, das die gewünschte Form der Zugfeder aufweist,

    b) Durchführen eines Glühens des Teils in einer reduzierenden Atmosphäre,

    c) thermisches Oxidieren des Teils,

    d) Desoxidieren des Teils,

    e) Bilden einer Siliziumoxidschicht auf dem Teil.


     
    3. Verfahren nach Anspruch 1 oder 2, wobei der Schritt a) einen Ätzvorgang, vorzugsweise einen Vorgang zum reaktiven Ionentiefenätzen, umfasst.
     
    4. Verfahren nach einem der Ansprüche 1 bis 3, wobei der Schritt des thermischen Oxidierens bei einer Temperatur zwischen 600 °C und 1300 °C, vorzugsweise zwischen 800 °C und 1200 °C, durchgeführt wird.
     
    5. Verfahren nach einem der Ansprüche 1 bis 4, wobei der Schritt des Desoxidierens einen Ätzvorgang, vorzugsweise einen Vorgang zum Nassätzen, Gasphasenätzen oder Trockenätzen, umfasst.
     
    6. Verfahren nach einem der Ansprüche 1 bis 5, wobei der Schritt des Glühens bei einem Druck von strikt über 100 Torr durchgeführt wird.
     
    7. Verfahren nach einem der Ansprüche 1 bis 6, wobei der Schritt des Glühens bei einem Druck von niedriger als oder gleich dem atmosphärischen Druck durchgeführt wird.
     
    8. Verfahren nach einem der Ansprüche 1 bis 7, wobei der Schritt des Glühens bei einer Temperatur zwischen 800 °C und 1300 °C durchgeführt wird.
     
    9. Verfahren nach einem der Ansprüche 1 bis 8, wobei die reduzierende Atmosphäre Wasserstoff umfasst.
     
    10. Verfahren nach Anspruch 9, wobei die reduzierende Atmosphäre auch ein Neutralgas, zum Beispiel Argon, umfasst.
     
    11. Verfahren nach einem der Ansprüche 1 bis 10, wobei der Schritt e) durch thermisches Oxidieren durchgeführt wird.
     
    12. Verfahren nach einem der Ansprüche 1 bis 11, wobei das Silizium monokristallines oder polykristallines Silizium ist.
     
    13. Verfahren nach einem der Ansprüche 1 bis 12, wobei die Zugfeder eine Federhausfeder ist.
     


    Claims

    1. Method for manufacturing a timepiece mainspring, comprising the following steps:

    a) producing a part, having the desired shape of the mainspring, from silicon,

    b) thermally oxidising the part,

    c) deoxidising the part,

    d) thermally annealing the part in a reducing atmosphere,

    e) forming a layer of silicon oxide on the part.


     
    2. Method for manufacturing a timepiece mainspring, comprising the following steps:

    a) producing a part, having the desired shape of the mainspring, from silicon,

    b) thermally annealing the part in a reducing atmosphere,

    c) thermally oxidising the part,

    d) deoxidising the part,

    e) forming a layer of silicon oxide on the part.


     
    3. Method as claimed in claim 1 or 2, wherein step a) comprises an etching step, preferably a deep reactive ion etching step.
     
    4. Method as claimed in any one of claims 1 to 3, wherein the thermally oxidising step is performed at a temperature between 600°C and 1300°C, preferably between 800°C and 1200°C.
     
    5. Method as claimed in any one of claims 1 to 4, wherein the deoxidising step comprises an etching step, preferably a wet etching, vapour phase etching or dry etching step.
     
    6. Method as claimed in any one of claims 1 to 5, wherein the thermal annealing step is performed at a pressure strictly greater than 100 Torr.
     
    7. Method as claimed in any one of claims 1 to 6, wherein the thermal annealing step is performed at a pressure less than or equal to atmospheric pressure.
     
    8. Method as claimed in any one of claims 1 to 7, wherein the thermal annealing step is performed at a temperature between 800°C and 1300°C.
     
    9. Method as claimed in any one of claims 1 to 8, wherein said reducing atmosphere comprises hydrogen.
     
    10. Method as claimed in claim 9, wherein said reducing atmosphere also comprises an inert gas, e.g. argon.
     
    11. Method as claimed in any one of claims 1 to 10, wherein step e) is performed by thermal oxidation.
     
    12. Method as claimed in any one of claims 1 to 11, wherein the silicon is monocrystalline or polycrystalline.
     
    13. Method as claimed in any one of claims 1 to 12, wherein the mainspring is a barrel spring.
     






    Références citées

    RÉFÉRENCES CITÉES DANS LA DESCRIPTION



    Cette liste de références citées par le demandeur vise uniquement à aider le lecteur et ne fait pas partie du document de brevet européen. Même si le plus grand soin a été accordé à sa conception, des erreurs ou des omissions ne peuvent être exclues et l'OEB décline toute responsabilité à cet égard.

    Documents brevets cités dans la description