(19)
(11)EP 3 566 062 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 18700979.0

(22)Date of filing:  08.01.2018
(51)International Patent Classification (IPC): 
G01R 27/08(2006.01)
G01R 27/14(2006.01)
(86)International application number:
PCT/EP2018/050333
(87)International publication number:
WO 2018/127581 (12.07.2018 Gazette  2018/28)

(54)

A POSITION CORRECTION METHOD AND A SYSTEM FOR POSITION CORRECTION IN RELATION TO FOUR-POINT RESISTANCE MEASUREMENTS

POSITIONSKORREKTURVERFAHREN UND SYSTEM ZUR POSITIONSKORREKTUR IN BEZUG AUF VIERSPITZEN-WIDERSTANDSMESSUNGEN

PROCÉDÉ DE CORRECTION DE POSITION ET SYSTÈME DE CORRECTION DE POSITION PAR RAPPORT À MESURES QUATRE-POINTES DE RÉSISTANCE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 09.01.2017 EP 17150630
10.02.2017 EP 17155668

(43)Date of publication of application:
13.11.2019 Bulletin 2019/46

(73)Proprietor: Capres A/S
2800 Kgs. Lyngby (DK)

(72)Inventors:
  • ØSTERBERG, Frederik Westergaard
    2900 Hellerup (DK)
  • CAGLIANI, Alberto
    2100 København Ø (DK)
  • PETERSEN, Dirch Hjorth
    2730 Herlev (DK)
  • HANSEN, Ole
    2970 Hørsholm (DK)

(74)Representative: Budde Schou A/S 
Dronningens Tvaergade 30
1302 Copenhagen K
1302 Copenhagen K (DK)


(56)References cited: : 
WO-A1-2007/045246
WO-A1-2015/067818
  
  • WORLEDGE D C: "Reduction of positional errors in a four-point probe resistance measurement", APPLIED PHYSICS LETTERS, A I P PUBLISHING LLC, US, vol. 84, no. 10, 8 March 2004 (2004-03-08) , pages 1695-1697, XP012060715, ISSN: 0003-6951, DOI: 10.1063/1.1655697
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The present invention relates to a position correction method and a system for position correction in relation to four-point resistance measurements.

Background of the invention



[0002] Multi-electrode probes are commonly used to determine one or more electrical parameters of a test sample. When performing such measurements the multi-electrode probe is brought into contact with the sample surface in order to create electrical contact.

[0003] The actual location of contact between the electrodes and the sample surface will invariably differ from the designed positions at each given electrodes-surface engage in a random fashion, giving rise to geometrical errors, which translate into the finite repeatability and reproducibility of the sample electrical parameters estimation. In particular, when a multi-electrode probe with collinear electrodes is used, it is possible to distinguish in-line and off-line position errors. The in-line position errors give the major contribution, while the off-line position errors give a second order contribution. The present invention provides a method and system for reducing the impact of in-line positional errors especially for multi-electrode probe electrical measurements.

[0004] The current prior art methods to perform position error correction of multi-electrode probe measurements on electrically conductive samples have been described by L. J. van der Pauw in the well-known publications Philips Res. Rep. 13, 1 1958 and Philips Tech. Rev. 20, 220 1958, and D.C. Worledge in Appl. Phys. Lett. 84, 1695 (2004) and in US patent application US 2004/0183554. A typical formulation of the so-called van der Pauw method relies on the following relationship:

where RA and RB are the resistance measurements done in the well known A and B configurations, whereas R0 is the sheet resistance to be estimated. D.C. Worledge gave a simplified version as:

where the α, γA and γB are coefficients that depend only on the four designed electrode coordinates.

[0005] The above prior art position correction methods assume that the sample is an infinite sheet composed of a single layer. If such assumption is satisfied and if such probe is placed at a distance from any sample boundary much bigger than the largest distance between two electrodes, the position correction methods developed in the prior art work adequately when using the multi-electrode probe on single layered test sample.

[0006] However, it should be noticed that the two position correction methods in the prior art do not estimate the actual relative distances between the electrodes, but they rather rely on the relation between the geometrical logarithmic terms that fully describe the resistance value measured, given the sheet resistance. In other words, the prior art position correction methods work efficiently only when the resistance measured value RA and RB can be written as:



[0007] However, when the measurements are not performed under these ideal conditions, such as on a Magnetic Tunnel Junction (MTJ) stack comprising two or more sheets separated by a non-conductive tunnelling barrier layer, or close to the boundary of a single sheet, or in case the sheet is about the same size or just slightly larger than the multi-electrode probe or under similar geometrical constraints, the above methods will in the best case only yield a rough position correction or not yield any position correction at all, or in the worst case, the measurements will be distorted due to a faulty position correction.

[0008] Approaching the boundary of the test sample will depart from the ideal infinite single layer assumption of the prior art since the current will be limited by the boundary and thus the resistance will be higher near the boundary. Correspondingly, using a multi layered test sample will allow the current to redistribute in multiple layers according to their individual layer sheet resistance and the distance from the current injection electrodes, introducing a characteristic length scale absent in the case of single infinite sheet.

[0009] The relevant mathematical models for two of the mentioned cases are described in the publication by D.C. Worledge and P.L. Trouilloud, Appl. Phys. Lett 83 84 (2003), where it presents a resistance model for magnetic tunnel junctions (MTJ) using tunnel in plane tunnelling (CIPT), and in US 8,907,690 B2 and in the publication by D.H. Petersen et al, J. Appl. Phys. 104 (2008), which describe a resistance model for a micro-Hall effect measurement near a boundary. It can be clearly seen how the electrical resistance model for four-point probe measurement cannot be described simply as in the expression above.

[0010] It is thus an object of the present invention to provide technologies which enable an effective geometrical position correction also for the above mentioned special cases, i.e. using multi layered test samples or in cases when the test sample cannot be considered to be infinite, i.e. close to the boundary of a large test sample or when the test sample is small comparable to the four-point probe. The inventors have found out that the existing methods begin to fail when measuring closer to a boundary that is about 2-3 probe widths.

[0011] Related systems and methods may be found in publications such as US 6,943,571, US 4,703,252, US 5,691,648, US 6,747,445, US 7,034,519 B2, US 2005/0151552, US 2005/0081609. Reference is made to all of the above-mentioned US patent publications, all of which are hereby incorporated in the present specification by reference in their entirety for all purposes.

[0012] Reference is also made to the applicant's own patent US 7852093 B2 and related PCT application WO 2007/045246 which relates to a method for calculating a correction factor for reduction of positioning errors in resistance measurements using four-point probes. The method involves measuring a first and a second four-point resistance and calculating a correction factor based on these measurements.

[0013] Further, the international applications WO 2009/030230 A1 and WO 2012/083955 A1 as well as the publications Micro four point probe Hall effect measurement method, Journal of applied physics 104 (2008), Characterization of magnetic tunnel junction test pads, F.W. 0sterberg et al, J. Appl. Phys. 118 2015 and High precision micro scale Hall effect characterization method using in-line micro four point probes, D.H. Petersen et al.,16th IEEE international conference on advanced thermal processing of semiconductors, all provide further useful background information to the present patent application.

[0014] Further relevant background information can be found in WO 2015/067818 A1.

Summary of the invention



[0015] The above need and the above object is according to the teachings of the present invention achieved in a first aspect of the present invention by a method of establishing specific electrode positions by providing a multi-point probe and a test sample, the multi-point probe having a probe body and a plurality of probe arms extending parallel from the body and each including one electrode, the plurality of probe arms and electrodes, respectively, being greater than four, the test sample defining a surface, the method comprising the steps of:

positioning the multi-point probe such that the electrodes are in contact with the surface of the test sample,

determining a distance between two of the electrodes of the multi-point probe, preferably the two outermost electrodes of the multi-point probe,

establishing a resistance model representative of the test sample, the resistance model having the specific electrode positions of the multi-point probe relative to the surface of the test sample included as unknown parameters, the resistance model representing the test sample as a finite sheet and/or a multilayered sheet,

performing at least four different resistance measurements, each of the resistance measurement including:

selecting four different electrodes of the plurality of electrodes,

dividing the four different electrodes into a first pair of electrodes and a second pair of electrodes,

applying a current propagating through the test sample between the first pair of electrodes,

detecting an voltage induced between the second pair of electrodes, and

establishing a measured resistance based on a ratio of the voltage and the current,

establishing for each of the different resistance measurement a corresponding predicted resistance based on the resistance model,

establishing a set of differences constituting the difference between each of the predicted resistance and its corresponding measured resistance, and

deriving the specific electrode positions of the multi-point probe on the surface of the test sample by using the distance and performing a data fit by minimizing an error function constituting the sum of the set of differences.



[0016] The present method is preferably computer implemented and may be used in conjunction with prior art measurement methods and position correction methods. It is understood that if the measurement takes place under conditions in which the test sample may be assumed to be infinite and single sheet, the above-mentioned prior art methods may be used. In the present context, a multi-point probe is understood to be the same as a multi-electrode probe. The method establishes the electrode positions by an estimation of the electrode positions.

[0017] In the present method, it is assumed that the measurement takes place under conditions at which it is not advisable to assume that the test sample is an infinite single sheet, i.e. when the measurement takes place adjacent the boundary of the test sheet or in case the test sheet is multi-layered. Thus, the resistance model to be used in the present case should not assume an infinite sheet and/or a single layer, but assume a non-infinite sheet, i.e. a finite sheet and/or a non-single sheet, i.e. multi-layer sheet having at least two conductive layers.

[0018] The multi-point probe used in the present computerized method is generally known in the art and comprises at least five parallel probe arms each having an electrode. The electrode is simply the point of contact between the probe arm and the test sample. Thus, the electrodes typically define a straight line between themselves. However, there may be an error in the positioning of the probe arm/electrode such that the point of contact is not as expected but differs by an error from the expected position. The method assumes that the physical distance between two of the probe arms, i.e. electrodes, is known, e.g. by physical measurement or otherwise. Typically, the distance between two outermost electrodes is used since it will be the largest distance and thus the relative error will be as small as possible. In other words, the determination of the distance between two of the electrodes may be made by assuming a distance. Such assumption may be based on measurements, data sheets or any appropriate method.

[0019] The resistance model uses the electrode position of each electrode as an unknown variable. Depending on the number of probe arms of the multi-point probe, a number of different and independent measurements may be made. Using five probe arms and corresponding electrodes, i.e. the specified minimum, four independent measurements may be made. Using twelve probe arms and corresponding electrodes, a total of eleven independent measurements may be made as a minimum. More measurements may be made, such as typically 14.

[0020] For each independent measurement, four out of the at least five electrodes are used, two of which are used for driving a current between themselves and the remaining two for measuring a voltage. From this, a resistance may be calculated. The exact positions of the four electrodes are crucial for the precision of the measurement. By different measurement is meant that all of the measurements use different configurations of the four probes, i.e. in relation to driving a current and measuring a voltage.

[0021] The error function of the data fit to be minimized is the sum of the difference between the electrical resistance values as measured by the multi-point probe and the model prediction. It is understood that each difference to be included in the sum, i.e. each difference between a measured value and its corresponding predicted value, is a positive value. Such difference can be calculated in several ways. The most common ways of calculating the sum of the differences are to use a sum of the absolute value of each difference, using the sum of the square value of the difference or use any even power of the difference greater than power two. Usable methods include the least square method and the least absolute deviation method.

[0022] According to a further embodiment of the first aspect, the test sample is a multi-layered sheet constituting a magnetic tunnel junction and the resistance model represents a magnetic tunnel junction. It is understood that a multi-layered sheet is a sheet having two conductive layers, which is separated by a thin insulation layer. Such sheet will depart from the idealized single layer sheet of the prior art and thus, the presently suggested position correction/determination method is usable. The multi-layered sheets are used in e.g. fabrication of wafers for Magnetic Random Access Memory.

[0023] According to a further embodiment of the first aspect, the test sample has two or more conductive layers, such as three, four or five layers. Two conductive layers will be separated by a thin insulating film. The layers are designated as top layer and bottom layer where the top layer defines the surface at which the measurement is taking place, i.e. which is contacted by the electrodes. It is also feasible to use three layers, one top layer, one middle layer and one bottom layer. The top layer and the middle layer are separated by a thin insulating film and similarly also the middle layer and the bottom layer are separated by a thin insulating film. Likewise, the test sample may comprise more than three conductive layers, which are separated by insulating films.

[0024] According to a further embodiment of the first aspect, the resistance model for more than a single infinite conductive layer, i.e. using a magnetic tunnel junction and current in plane tunnelling (CIPT), may be written as:

where RT is the top-layer resistance, RB is the bottom-layer resistance and λ is the transition length. K0 is the modified Bessel function of the second kind, 0'th order. The values xi, yi, zi and wi are here the distances between probe arms in a given configuration and λ is given by

where RA is the resistance area product.

[0025] According to a further embodiment of the first aspect, the test sample is an MRAM wafer. The above-mentioned magnetic tunnel junction is preferably used in relation to MRAM wafers. MRAM has several advantages compared to existing RAM types, such as low power consumption, high radiation resistance, scalable production, as fast as SRAM and being non-volatile, i.e. no need for refresh and allowing fast start-up. The application for MRAM includes level 3 cache in CPUs and dedicated embedded memories in the near future and as replacement of SRAM and DDRAM in the far future.

[0026] According to a further embodiment of the first aspect, the electrodes are placed adjacent a boundary of the surface of the test sample and the resistance model represents a micro-Hall effect measurement. It is understood that a micro-Hall effect measurement in close proximity of a boundary, i.e. an insulating barrier, will depart from the idealized single infinite layer sheet of the prior art and thus the presently suggested position correction/determination method is usable.

[0027] According to a further embodiment of the first aspect, the surface of the test sample extends in any direction less than twice the distance between the two outermost electrodes of the multi-point probe, or alternatively, wherein at least one of the electrodes is located closer to the boundary than twice the distance between the two outermost electrodes of the multi-point probe.

[0028] According to a further embodiment of the first aspect, the resistance model is:

where R0 is the sheet resistance, RH is the Hall effect sheet resistance, xi, yi, zi and wi are the distances between probe arms in a given configuration, while I is the distance between the collinear probe and a parallel insulating sample boundary.

[0029] According to a further embodiment of the first aspect, the test sample is of a semiconductor material. Typically, the measurements are made on a silicon wafer or a germanium wafer.

[0030] According to a further embodiment of the first aspect, the plurality of probe arms and electrodes, respectively, is between 5-100, preferably between 6-50, more preferably between 8-25, most preferably between 10-15, such as 12. More than four probe arms and associated electrodes are required in order to achieve a sufficient number of independent measurements. The more probe arms used, the more independent measurements can be obtained. Ideally, twelve probe arms and electrodes are used.

[0031] According to a further embodiment of the first aspect, the number of different sheet resistance measurements is between 3-50, preferably between 4-25, more preferably between 5-15, most preferably between 6-10, such as 8. By using twelve probe arms and associated electrodes, a total of eight independent measurements can be made, and the position of the electrodes can be resolved with a high accuracy.

[0032] According to a further embodiment of the first aspect, the error function e to be minimized during the fitting of the resistance model to the data is:



[0033] The first term in the sum f(α,βn) represents the model predicted resistances and the second term Rn(βn) represents the corresponding measured resistances. f is the resistance model function, α represents a vector containing the sample parameters and βn represents a vector containing the positions of the four probes used in any independent measurement n. m is the number of four-point measurements made. This equation implements a multi-variable least square data fit method to extract at the same time the relevant electrical sample parameters and the actual positions of the electrodes, which are not considered fixed. The least square method allows a high precision at reasonable computational time.

[0034] According to a further embodiment of the first aspect, the method comprises the additional step of determining electrical parameters such as voltage, current or resistance. When the position of the electrodes has been derived with high accuracy, the sample electrical parameters may be determined. The sample electrical parameters may be determined at the same time or subsequent to the previous steps.

[0035] According to a further embodiment of the first aspect, the method comprises the further additional step of determining a sheet resistance. The sheet resistance of the sample, as well as other sample parameters, may be determined by using the current, the voltage and the electrode positions from the measurements.

[0036] The above need and the above object are according to the teachings of the present invention achieved in a second aspect of the present invention by a computer-based system for establishing specific electrode positions, the system including a multi-point probe, the multi-point probe having a probe body and a plurality of probe arms extending parallel from the body and each including one electrode, the plurality of probe arms and electrodes, respectively, being greater than four, the multi-point probe being positionable such that the electrodes are in contact with a surface of a test sample, two of the electrodes of the multi-point probe, preferably the two outermost electrodes of the multi-point probe, defining a distance between themselves, the system including a resistance model representative of the test sample, the resistance model having the specific electrode positions of the multi-point probe relative to the surface of the test sample included as unknown parameters, the resistance model representing the test sample as a finite sheet and/or a multilayered sheet, the system further including:

means for performing at least four different resistance measurements, each of the resistance measurements involving:

selecting four different electrodes of the plurality of electrodes,

dividing the four different electrodes into a first pair of electrodes and a second pair of electrodes,

applying a current propagating through the test sample between the first pair of electrodes,

detecting a voltage induced between the second pair of electrodes, and

establishing a measured resistance based on a ratio of the voltage and the current,

means for establishing for each of the different resistance measurement a corresponding predicted resistance based on the resistance model,

means for establishing a set of differences constituting the difference between each of the predicted resistance and its corresponding measured resistance, and

means for deriving the specific electrode positions of the multi-point probe on the surface of the test sample by using the distance and performing a data fit by minimizing an error function constituting the sum of the set of differences.



[0037] The above computer-based system according to the second aspect is preferably used for executing any of the methods according to the first aspect. The method may also be implemented in the form of a software pack for an existing computer-based system.

Brief description of the drawings



[0038] 

FIG. 1 is a schematic perspective view of a computer-based system according to the present invention.

FIG. 2A is a schematic view of a first embodiment of a multi probe measurement setup performing a Hall effect measurement adjacent the boundary.

FIG. 2B is a schematic view of a second embodiment of a multi probe measurement setup performing a current in plane tunnelling (CIPT) measurement.

FIG. 2C is a schematic view of a third embodiment of a multi probe measurement setup 12'" in accordance with the present invention. In the present setup 12"', a Hall effect measurement is made on a small test sample 24"'.

FIG. 2D is a schematic view of the ideal electrode positions versus the real electrode positions for an occasional probe landing.

FIG. 3A is a flow chart showing the steps of performing a current in place tunnelling measurement for magnetic tunnel junctions.

FIG. 3B is a flow chart showing the steps of performing a micro Hall effect measurement for semiconductors.

FIG. 4A is a schematic view of a twelve point probe according to the present invention.

FIG. 4B is a schematic view of first measurement with the above probe in which four probe arms are selected.

FIG. 4C is a schematic view of second measurement with the above probe in which four probe arms are selected.

FIG. 4D is a schematic view of third measurement with the above probe in which four probe arms are selected.

FIG. 4E is a schematic view of fourth measurement with the above probe in which four probe arms are selected.

FIG. 4F is a schematic view of fifth measurement with the above probe in which four probe arms are selected.

FIG. 4G is a schematic view of sixth measurement with the above probe in which four probe arms are selected.

FIG. 4H is a schematic view of seventh measurement with the above probe in which four probe arms are selected.

FIG. 4I is a schematic view of eighth measurement with the above probe in which four probe arms are selected.

FIG. 5A are B are graphs showing on the ordinate axis, the simulated relative error in percent and on the abscissa, the pin spacing index.

FIG. 6A is a bar diagram showing on the ordinate axis, the relative standard deviation of the estimated magnetoresistance (MR) and resistance area product (RA) and on the abscissa, different characteristic length scales of the test sample.

FIG. 6B is a bar diagram showing on the ordinate axis, the mean value of the estimated magnetoresistance (MR) and resistance area product (RA) and on the abscissa, different characteristic length scales of the test sample.

FIG. 7A is a graph showing on the ordinate axis, the resistance area product (RA) and on the abscissa, the number of the probe landing for MTJ sample.

FIG. 7B is a graph showing on the ordinate axis, the magnetoresistance (MR) and on the abscissa, the number of the probe landing for MTJ sample.

FIG. 7C is a graph showing on the ordinate axis, the resistance area product (RA) and on the abscissa, the number of the probe landing for MTJ sample.

FIG. 7D is a graph showing on the ordinate axis, the magnetoresistance (MR) and on the abscissa, the number of the probe landing for MTJ sample.


Detailed description of the drawings



[0039] FIG. 1 shows a schematic perspective view of a computer-based system 10 according to the present invention, illustrating schematically the multi probe measurement setup 12 used for performing a multi-probe resistance measurement. The computer-based system 10 comprises the multi-probe measurement setup 12 connected to a stationary computer 14 for controlling the measurements. The stationary computer 14 may be located in a separate cabinet as illustrated here or alternatively be integrated as a part of the multi probe measurement setup 12. The stationary computer 14 may be connected to a laptop computer 16 for providing an easy user interface for illustrating and controlling the measurements, however, the laptop computer 16 may evidently be replaced by a monitor and a keyboard, or other suitable interfaces.

[0040] The multi probe measurement setup 12 is located in a controlled clean environment and includes a probe body 18. The probe body 18 in turn includes a plurality of probe arms, in the present case five probe arms 20a-e. Each of the probe arms 20a-e includes an electrode 22a-e constituting the tip of the respective probe arm 20a-e. The electrodes 22a-e contact the surface of a test sample 24.

[0041] FIG. 2A shows a first embodiment of a multi probe measurement setup 12' in accordance with the present invention. In the present setup 12', a micro-Hall effect measurement is made adjacent to a boundary of the test sample 24' meaning that the electrodes 22a-e are contacting the surface of the test sample 24' adjacent an outer edge of the test sample 24' or alternatively adjacent an insulating barrier of the test sample 24'. The test sample 24' is a single semi-infinite layer test sheet.

[0042] FIG. 2B shows a second embodiment of a multi probe measurement setup 12" in accordance with the present invention. In the present setup 12", a current in plane tunnelling (CIPT) measurement is made on the test sample 24". The test sample 24 comprises multiple layers constituting a top conductive layer 24a, a bottom conductive layer 24b and an insulating layer 24c in-between the top layer 24a and the bottom layer 24b. This constitutes a magnetic tunnel junction. The electrodes are contacting the surface of the top layer 24a of the test sample 24'. Additional layers are possible.

[0043] FIG. 2C shows a third embodiment of a multi probe measurement setup 12'" in accordance with the present invention. In the present setup 12"', a Hall effect measurement is made on a small test sample 24'" meaning that the test sample has approximately the same size as the distance between the outermost probe arms 20a and 20e, or slightly larger. The test sample 24'" is a single layer test sheet.

[0044] FIG. 2D shows the ideal electrode positions as a + and one example of real electrode positions for an occasional probe landing. The difference between the ideal and real electrode positions is designated δx and δy.

[0045] FIG. 3A shows the steps of performing a current in place tunnelling measurement for magnetic tunnel junctions. The steps are described below:

1: The sample is provided and a model is established corresponding to the sample and the measurement.

2: Resistance measurements are performed using the multi probe measurement setup.

3: The industry is moving towards smaller characteristic length scales of the test samples in order to be able to design compact devices.

4: The obvious solution to perform accurate measurement would be to use a smaller electode distance, increase the measurement current or fabricate probes with more pins in order to keep a high accuracy of the measurement.

5: In the prior art, electrode position corrections were made according to van der Pauw or Rymaszewski, which assume an infinite single layer test sample.

6: The sample parameters derived for multi-layered test samples (MTJ) or micro-Hall measurements near the boundary will be incorrect.

7: Instead, it is suggested that the exact geometry is used for the position correction, i.e. the test sample, probe position is taken into account for establishing a better model used in the measurement setup.

8: Better results are achieved by better position correction.



[0046] FIG. 3B shows the steps of performing a micro Hall effect measurement for semiconductors. The steps are described below:
  1. 1: The sample is provided and a model is established corresponding to the sample and the measurement.
  2. 2: Resistance measurements are performed using the multi probe measurement setup.
  3. 3: The industry is moving towards smaller characteristic length scales of the test samples in order to be able to design compact devices.
  4. 4: The obvious solution to perform accurate measurement would be to use a smaller electrode distance, increase the measurement current or fabricate probes with more pins in order to keep a high accuracy of the measurement.
  5. 5: A correction free Hall effect approximation is made.
  6. 6: In the prior art, electrode position corrections were made according to van der Pauw or Rymaszewski, which assume an infinite single layer test sample.
  7. 7: The sample parameters derived for multi-layered test samples (CIPT) or Hall measurements near the boundary will be incorrect.
  8. 8: Instead, it is suggested that the exact geometry is used for the position correction, i.e. the test sample, probe position is taken into account for establishing a better model used in the measurement setup.
  9. 9: Better results are achieved by better position correction, allows fully automatic tools, higher quality control, better precision, MTJ stack with one or multiple tunnelling barrier, smaller test samples and thicker electrodes.


[0047] FIG. 4A shows a twelve point probe according to the present invention. The twelve-point probe has twelve probe arms 20a-I, each having an electrode 22a-I.

[0048] FIG. 4B shows a first measurement with the above probe, in which four of the twelve probe arms 20a-I and corresponding electrodes 22a-I are selected, and of which two will constitute current electrodes between which a current is injected, and the other two will contribute voltage electrodes between which a voltage is measured. The selected electrodes are a, d, i, and I.

[0049] FIG. 4C shows a second measurement with the above probe, in which four of the twelve probe arms 20a-I and corresponding electrodes 22a-I are selected. The selected electrodes are a, c, h, and k.

[0050] FIG. 4D shows a second measurement with the above probe, in which four of the twelve probe arms 20a-I and corresponding electrodes 22a-I are selected. The selected electrodes are c, g, j, and l.

[0051] FIG. 4E shows a second measurement with the above probe, in which four of the twelve probe arms 20a-I and corresponding electrodes 22a-I are selected. The selected electrodes are a, b, d, and g.

[0052] FIG. 4F shows a second measurement with the above probe, in which four of the twelve probe arms 20a-I and corresponding electrodes 22a-I are selected. The selected electrodes are b, d, g, and i.

[0053] FIG. 4G shows a second measurement with the above probe, in which four of the twelve probe arms 20a-I and corresponding electrodes 22a-I are selected. The selected electrodes are b, c, e, and g.

[0054] FIG. 4H shows a second measurement with the above probe, in which four of the twelve probe arms 20a-I and corresponding electrodes 22a-I are selected. The selected electrodes are h, i, j, and k.

[0055] FIG. 4I shows a second measurement with the above probe, in which four of the twelve probe arms 20a-I and corresponding electrodes 22a-I are selected. The selected electrodes are c, d, e, and f.

[0056] FIG. 5A and B are two graphs, representing two proof of concept experiments, each showing on the ordinate axis the position error (in micrometers) of the electrode positions for two simulated CIPT measurements and on the abscissa an index that identifies each electrode. The dash-dotted line represents the simulated real position error of each electrode for two specific simulated CIPT measurements, the dashed and solid lines represent the position error estimations done by the position correction method according to the present invention. As can be seen the estimated position errors follow remarkably well the real position errors.

[0057] FIG. 6A is a bar diagram showing on the ordinate axis the relative standard deviations of the estimated magnetoresistance (MR) and resistance area product (RA) and on the abscissa different characteristic length scales in µm for the corresponding four test samples under test.. As proof of concept of the benefit of the invention for CIPT measurements, the experiment was conducted by measuring on four different MTJ samples 100 data points and the repeatability (defined as the relative standard deviation) has been calculated. The filled bar designates RA derived according to the prior art technique, the coarsely hatched bar designates MR derived according to the prior art technique, the finely hatched bar designates RA derived according to the technique claimed according to present invention and the non-filled bar designates MR derived according to the technique claimed according to present invention. For each of the four samples there is a drastic reduction in the relative standard deviations both on the MR and RA parameter implies a much improved repeatability of the CIPT measurement. The improvement for the sample with lambda 0.46 µm is about 80% on the repeatability of MR.

[0058] FIG. 6B is a bar diagram showing on the ordinate axis the mean values of the estimated magnetoresistance (MR) and resistance area product (RA) and on the abscissa different characteristic length scales in µm for the corresponding four test samples under test. As proof of concept of the benefit of the invention for CIPT measuremtns, the experiment was conducted by measuring on four different MTJ samples 100 data points and the mean values have been calculated. The filled bar designates RA derived according to the prior art technique, the coarsely hatched bar designates MR derived according to the prior art technique, the finely hatched bar designates RA derived according to the technique claimed according to present invention and the non-filled bar designates MR derived according to the technique claimed according to present invention. As can be seen, the mean values calculated using the prior art methods for position correction are the same as the mean values estimated using the invention to compensate for position errors. Clearly the mean values should be dependent only on the sample and not from the error position correction method used.

[0059] FIG. 7A is a graph showing on the ordinate axis, the resistance area product (RA) in Ωµm2 and on the abscissa, the number of the probe landing. 100 probe landings are made in total in this proof of concept experiment using a test sample having a lambda of 0.46 µm. The filled squares designate RA derived according to the prior art technique, whereas the line designates RA derived according to the technique claimed according to the present invention.

[0060] FIG. 7B is a graph showing on the ordinate axis, the magnetoresistance (MR) in % and on the abscissa, the number of the probe landing. 100 probe landings are made in total in this proof of concept experiment using a test sample having a lambda of 0.46 µm. The filled squares designate MA derived according to the prior art technique, whereas the line designates MA derived according to the technique claimed according to the present invention.

[0061] FIG. 7C is a graph showing on the ordinate axis, the resistance area product (RA) in Ωµm2 and on the abscissa, the number of the probe landing. 100 probe landings are made in total in this proof of concept experiment using a test sample having a lambda of 0.8 µm. The filled squares designate RA derived according to the prior art technique, whereas the line designates RA derived according to the technique claimed according to the present invention.

[0062] FIG. 7D is a graph showing on the ordinate axis, the magnetoresistance (MR) in % and on the abscissa, the number of the probe landing. 100 probe landings are made in total in this proof of concept experiment using a test sample having a lambda of 0.8 µm. The filled squares designate MA derived according to the prior art technique, whereas the line designates MA derived according to the technique claimed according to present invention.

[0063] The above graphs illustrate the drastically improved precision, in particular the repeatability, of the technique claimed according to present invention.

[0064] The above-described embodiments describe specific realizations according to the present invention showing specific features, however, it is apparent to the skilful individual that the above-described embodiments may be modified, combined or aggregated to form numerous further embodiments.

Reference numerals:



[0065] 

10. Computer-based measurement system

12. Multi probe measurement setup

14. Stationary computer

16. Laptop computer

18. Probe body

20. Probe arms

22. Electrodes

24. Test sample




Claims

1. A method of establishing specific electrode positions by providing a multi-point probe and a test sample, said multi-point probe having a probe body and a plurality of probe arms extending parallel from said body and each including one electrode, said plurality of probe arms and electrodes, respectively, being greater than four, said test sample defining a surface, said method comprising the steps of:

positioning said multi-point probe such that said electrodes are in contact with said surface of said test sample,

determining a distance between two of said electrodes of said multi-point probe, preferably the two outermost electrodes of said multi-point probe,

establishing a resistance model representative of said test sample, said resistance model having said specific electrode positions of said multi-point probe relative to said surface of said test sample included as unknown parameters, said resistance model representing said test sample as a finite sheet and/or a multilayered sheet,

performing at least four different resistance measurements, each of said resistance measurement including:

selecting four different electrodes of said plurality of electrodes,

dividing said four different electrodes into a first pair of electrodes and a second pair of electrodes,

applying a current propagating through said test sample between said first pair of electrodes,

detecting an voltage induced between said second pair of electrodes, and

establishing a measured resistance based on a ratio of said voltage and said current,

establishing for each of said different resistance measurement a corresponding predicted resistance based on said resistance model,

establishing a set of differences constituting the difference between each of said predicted resistance and its corresponding measured resistance, and

deriving said specific electrode positions of said multi-point probe on said surface of said test sample by using said distance and performing a data fit by minimizing an error function constituting the sum of said set of differences.


 
2. The method according to claim 1, wherein said test sample is a multi-layered sheet constituting a magnetic tunnel junction and said resistance model represents a magnetic tunnel junction.
 
3. The method according to claim 2, wherein said test sample has two or more conductive layers, such as three, four or five layers.
 
4. The method according to any of the claims 2-3, wherein said resistance model is:


 
5. The method according to claim 1, wherein said eletrodes are placed adjacent a boundary of said surface of said test sample and said resistance model represents a micro-Hall effect measurement.
 
6. The method according to claim 5, wherein said surface of said test sample extends in any direction less than twice the distance between the two outermost electrodes of said multi-point probe, or alternatively, wherein at least one of said electrodes is located closer to said boundary than twice the distance between the two outermost electrodes of said multi-point probe.
 
7. The method according to any of the claims 5-6, wherein said resistance model is:


 
8. The method according to any of the preceding claims, wherein said test sample is of a semiconductor material.
 
9. The method according to any of the preceding claims, wherein said plurality of probe arms and electrodes, respectively, is between 5-100, preferably between 6-50, more preferably between 8-25, most preferably between 10-15, such as 12.
 
10. The method according to any of the preceding claims, wherein said number of different resistance measurements is between 3-50, preferably between 4-25, more preferably between 5-15, most preferably between 6-10, such as 8.
 
11. The method according to any of the preceding claims, wherein said error function is:

in which α constitutes the electrical sample parameters and βn the specific electrode positions.
 
12. The method according to any of the preceding claims, wherein said method comprises the additional step of determining electrical parameters such as voltage, current or resistance.
 
13. The method according to any of the preceding claims, wherein said method comprises the further additional step of determining a sheet resistance
 
14. A computer-based system (10) for establishing specific electrode positions, said system including a multi-point probe, said multi-point probe having a probe body (18) and a plurality of probe arms (20a-e) extending parallel from said body and each including one electrode (22a-e), said plurality of probe arms and electrodes, respectively, being greater than four, said multi-point probe being positionable such that said electrodes are in contact with a surface of a test sample (24), two of said electrodes of said multi-point probe, preferably the two outermost electrodes of said multi-point probe, defining a distance between themselves, said system including a resistance model representative of said test sample, said resistance model having said specific electrode positions of said multi-point probe relative to said surface of said test sample included as unknown parameters, said resistance model representing said test sample as a finite sheet and/or a multilayered sheet, said system further including:

means for performing at least four different resistance measurements, each of said resistance measurement involving:

selecting four different electrodes of said plurality of electrodes,

dividing said four different electrodes into a first pair of electrodes and a second pair of electrodes,

applying a current propagating through said test sample between said first pair of electrodes,

detecting a voltage induced between said second pair of electrodes, and

establishing a measured resistance based on a ratio of said voltage and said current,

means for establishing for each of said different resistance measurement, a corresponding predicted resistance based on said resistance model,

means for establishing a set of differences constituting the difference between each of said predicted resistance and its corresponding measured resistance, and

means for deriving said specific electrode positions of said multi-point probe on said surface of said test sample by using said distance and performing a data fit by minimizing an error function constituting the sum of said set of differences.


 
15. The system according to claim 14, further comprising any of the features of any of the claims 2-13.
 


Ansprüche

1. Verfahren zum Erschaffen spezifischer Elektrodenpositionen durch Bereitstellen einer Mehrpunktsonde und einer Testprobe, wobei die Mehrpunktsonde einen Sondekörper und eine Vielzahl von Sondearmen aufweist, die sich parallel vom Körper erstrecken und jeder eine Elektrode einbezieht, wobei die Vielzahl von Sondearmen und Elektroden jeweils grösser als vier sind, wobei die Testprobe eine Oberfläche absteckt, wobei das Verfahren die Schritte umfasst:

Positionierung der Mehrpunktsonde so dass die Elektroden mit der Oberfläche der Testprobe in Verbindung stehen,

Festlegen eines Abstands zwischen zwei der Elektroden der Mehrpunktsonde, vorzugsweise die zwei äussersten Elektroden der Mehrpunktsonde,

Erschaffen eines Widerstandsmusters, das für die Testprobe typisch ist, wobei das Widerstandsmuster die spezifischen Elektrodenpositionen der Mehrpunktsonde im Verhältnis zur Oberfläche der Testprobe als unbekannte Parameter einbezieht, wobei das Widerstandsmuster die Testprobe als ein finites Blatt und/oder ein vielschichtiges Blatt darstellt,

Durchführen von wenigstens vier verschiedenen Widerstandsmessungen, wobei jede der Widerstandsmessungen einbezieht:

Auswählen vier verschiedener Elektroden aus der Vielzahl von Elektroden,

Einteilen der vier verschiedenen Elektroden in einen ersten Satz von Elektroden und einen zweiten Satz von Elektroden,

Einsetzen von einem Strom, der sich durch die Testprobe zwischen dem ersten Satz von Elektroden verbreitet,

Erkennung einer zwischen dem zweiten Satz von Elektroden induzierten Spannung, und

Erschaffen von einem Widerstandsmessungsergebnis auf Grundlage des Grössenverhältnis zwischen der Spannung und dem Strom,

Erschaffen von einem entsprechenden vorhergesagten Widerstand für jede der verschiedenen Widerstandsmessungen auf Grundlage des Widerstandsmusters,

Erschaffen von einem Satz von Unterschieden, der den Unterschied zwischen jedem der vorhergesagten Widerstanden und deren entsprechenden Widerstandsmessungsergebnissen darstellt, und
Ableiten der spezifischen Elektrodenpositionen der Mehrpunktsonde an der Oberfläche der Testprobe durch Anwendung des Abstands und Durchführen einer Datenanpassung durch Minimierung einer Fehlfunktion, die die Summe von dem Satz von Unterschieden darstellt.


 
2. Verfahren nach Anspruch 1, wobei die Testprobe ein vielschichtiges Blatt ist, das magnetischen Tunnelkontakt darstellt, und wobei das Widerstandsmuster einen magnetischen Tunnelkontakt darstellt.
 
3. Verfahren nach Anspruch 2, wobei die Testprobe zwei oder mehr Leitungsschichten aufweist, wie drei, vier oder fünf Schichten.
 
4. Verfahren nach einem jeglichen der Ansprüche 2-3, wobei das Widerstandsmuster folgendes ist:


 
5. Verfahren nach Anspruch 1, wobei die Elektroden neben einer Grenze der Testprobeoberfläche angebracht sind, und wobei das Widerstandsmuster eine Mikro-Hall-Effektmessung darstellt.
 
6. Verfahren nach Anspruch 5, wobei die Oberfläche der Testprobe sich in eine jegliche Richtung weniger als zweimal des Abstands zwischen den zwei äussersten Elektroden der Mehrpunktsonde erstreckt, oder ersatzweise, wobei wenigstens eine der Elektroden näher an der Grenze als zweimal des Abstands zwischen den zwei äussersten Elektroden der Mehrpunktsonde angebracht ist.
 
7. Verfahren nach einem jeglichen der Ansprüche 5-6, wobei das Widerstandsmuster folgendes ist:


 
8. Verfahren nach einem jeglichen der vorherstehenden Ansprüche, wobei die Testprobe aus einem Halbleitermaterial besteht.
 
9. Verfahren nach einem jeglichen der vorherstehenden Ansprüche, wobei die Vielzahl von jeweils Sondearmen und Elektroden zwischen 5-100, vorzugsweise zwischen 6-50, mehr vorzugsweise zwischen 8-25, noch mehr vorzugsweise zwischen 10-15, wie zum Beispiel 12, liegt.
 
10. Verfahren nach einem jeglichen der vorherstehenden Ansprüche, wobei die Anzahl von verschiedenen Widerstandsmessungen zwischen 3-50, vorzugsweise zwischen 4-25, mehr vorzugsweise zwischen 5-15, noch mehr vorzugsweise zwischen 6-10, wie zum Beispiel 8, liegt.
 
11. Verfahren nach einem jeglichen der vorherstehenden Ansprüche, wobei die Fehlfunktion:

ist, wobei α die elektrischen Probeparameter darstellt und βn die spezifischen Elektrodenpositionen.
 
12. Verfahren nach einem jeglichen der vorherstehenden Ansprüche, wobei das Verfahren den zusätzlichen Schritt umfasst, elektrische Parameter wie zum Beispiel Spannung, Strom oder Widerstand festzulegen.
 
13. Verfahren nach einem jeglichen der vorherstehenden Ansprüche, wobei das Verfahren ferner den zusätzlichen Schritt umfasst, einen Blattwiderstand festzulegen.
 
14. Computerbasiertes System (10) für Erschaffen spezifischer Elektrodenpositionen, wobei das System eine Mehrpunktsonde einbezieht, wobei die Mehrpunktsonde einen Sondekörper (18) und eine Vielzahl von Sondearmen (20a-e), die sich parallel vom Körper erstrecken und jeder eine Elektrode (22a-e) einbezieht, aufweist, wobei die Vielzahl von jeweils Sondearmen und Elektroden grosser als vier ist, wobei die Mehrpunktsonde so positionierbar ist, dass die Elektroden in Verbindung mit einer Oberfläche einer Testprobe (24) stehen, wobei zwei der Elektroden der Mehrpunktsonde, vorzugsweise die zwei äussersten Elektroden der Mehrpunktsonde, einen Abstand zwischen sich abstecken, wobei das System ein Widerstandsmuster einbezieht, das für die Testprobe typisch ist, wobei das Widerstandsmuster die spezifischen Elektrodenpositionen der Mehrpunktsonde aufweist im Verhältnis zur Oberfläche der Testprobe als unbekannte Parameter einbezogen, wobei das Widerstandsmuster die Testprobe darstellt als ein finites Blatt und/oder ein vielschichtiges Blatt, wobei das System ferner umfasst:

Mittel zum Durchführen von wenigstens vier verschiedenen Widerstandsmessungen, wobei jede dieser Widerstandsmessungen einbezieht:

Auswählen von vier verschiedenen Elektroden aus der Vielzahl von Elektroden,

Einteilen der vier verschiedenen Elektroden in einen ersten Satz von Elektroden und einen zweiten Satz von Elektroden,

Einsetzen von einem Strom, der sich durch die Testprobe zwischen dem ersten Satz von Elektroden verbreitet,

Erkennung einer zwischen dem zweiten Satz von Elektroden induzierten Spannung, und

Erschaffen von einem Widerstandsmessungsergebnis auf Grundlage des Grössenverhältnis zwischen der Spannung und dem Strom,

Mittel zum Erschaffen von einem entsprechenden vorhergesagten Widerstand für jede der verschiedenen Widerstandsmessungen auf Grundlage des Widerstandsmusters,

Mittel zum Erschaffen von einem Satz von Unterschieden, der den Unterschied zwischen jedem der vorhergesagten Widerstanden und deren entsprechenden Widerstandsmessungsergebnissen darstellt, und

Mittel zum Ableiten der spezifischen Elektrodenpositionen der Mehrpunktsonde an der Oberfläche der Testprobe durch Anwendung des Abstands und Durchführen einer Datenanpassung durch Minimierung einer Fehlfunktion, die die Summe von dem Satz von Unterschieden darstellt.


 
15. System nach Anspruch 14, ferner umfassend ein jegliches der Kennzeichen von einem jeglichen der Ansprüche 2-13.
 


Revendications

1. Procédé pour établir des positions d'électrode spécifiques en fournissant une sonde multipoint et un échantillon d'essai, ladite sonde multipoint ayant un corps de sonde et une pluralité de bras de sondes s'étendant parallèlement dudit corps et chacun incluant une électrode, ladite pluralité de bras de sondes et d'électrodes, respectivement, étant supérieure à quatre, ledit échantillon d'essai définissant une surface, ledit procédé comprenant les étapes de:

positionner ladite sonde multipoint de manière à ce que lesdites électrodes sont en contact avec ladite surface dudit échantillon d'essai,

déterminer une distance entre deux desdites électrodes de ladite sonde multipoint, préférablement les deux électrodes les plus extérieures de ladite sonde multipoint,

établir un modèle de résistance représentatif dudit échantillon d'essai, ledit modèle de résistance ayant lesdites positions d'électrode spécifiques de ladite sonde multipoint par rapport à ladite surface dudit échantillon d'essai inclus comme des paramètres inconnus, ledit modèle de résistance représentant ledit échantillon d'essai comme une feuille finie et/ou une feuille multicouche,

effectuer au moins quatre mesures de résistance différentes, chacune desdites mesures de résistance incluant:

la sélection de quatre électrodes différentes de ladite pluralité d'électrodes,

la division desdites quatres électrodes différentes en une première paire d'électrodes et une deuxième paire d'électrodes,

l'application d'un courant propageant à travers ledit échantillon d'essai entre ladite première paire d'électrodes,

la détection d'une tension inclue entre ladite deuxième paire d'électrodes, et

l'établissement d'une résistance mesurée basée sur un ratio de ladite tension et ledit courant,

établir pour chacune desdites mesures de résistance différentes une résistance prédite correspondante basée sur le modèle de résistance,

établir un ensemble de différences constituant la différence entre chacune desdites résistances prédites et sa résistance mesurée correspondante, et

dériver lesdites positions d'électrode spécifiques de ladite sonde multipoint sur ladite surface dudit échantillon d'essai en utilisant ladite distance et effectuant une adéquation de données en minimisant une fonction d'erreur constituant la somme dudit ensemble de différences.


 
2. Procédé selon la revendication 1, où ledit échantillon d'essai est une feuille multicouches constituant une jonction par tunnel magnétique et ledit modèle de résistance représente une jonction par tunnel magnétique.
 
3. Procédé selon la revendication 2, où ledit échantillon d'essai a au moins deux couches conductrices, telles que trois, quatre ou cinq couches.
 
4. Procédé selon l'une quelconque des revendications 2 à 3, où ledit modèle de résistance est:


 
5. Procédé selon la revendication 1, où lesdites électrodes sont placées adjacentes une délimitation de ladite surface dudit échantillon d'essai et ledit modèle de résistance représente une mesure d'effet Hall-micro.
 
6. Procédé selon la revendication 5, où ladite surface dudit échantillon d'essai s'étend dans une direction quelconque moins de deux fois la distance entre les deux électrodes les plus extérieures de ladite sonde multipoint, ou alternativement, où au moins une desdites électrodes est placée plus proche de ladite délimitation que deux fois la distance entre les deux électrodes les plus extérieures de ladite sonde multipoint.
 
7. Procédé selon l'une quelconque des revendications 5 à 6, où ledit modèle de résistance est:


 
8. Procédé selon l'une quelconque des revendications précédentes, où ledit échantillon d'essai est fait d'un matériau semi-conducteur.
 
9. Procédé selon l'une quelconque des revendications précédentes, où ladite pluralité de bras de sondes et d'électrodes, respectivement, est entre 5 à 100, préférablement entre 6 à 50, plus préférablement entre 8 à 25, encore plus préférablement entre 10 à 15, telle que 12.
 
10. Procédé selon l'une quelconque des revendications précédentes, où ledit nombre de mesures de résistance différentes se trouve entre 3 à 50, préférablement entre 4 à 25, plus préférablement entre 5 à 15, encore plus préférablement entre 6 à 10, tel que 8.
 
11. Procédé selon l'une quelconque des revendications précédentes, où ladite fonction d'erreur est:

dans laquelle α constitutue les paramètres d'échantillon électrique et βn constitue les positions d'électrode spécifiques.
 
12. Procédé selon l'une quelconque des revendications précédentes, où ledit procédé comprend l'étape supplémentaire de déterminer des paramètres électriques tel que la tension, le courant ou la résistance.
 
13. Procédé selon l'une quelconque des revendications précédentes, où ledit procédé comprend l'étape supplémentaire ultérieure de déterminer la résistance d'une feuille.
 
14. Système informatique (10) pour établir des positions d'électrode spécifiques, ledit système incluant une sonde multipoint, ladite sonde multipoint ayant un corps de sonde (18) et une pluralité de bras de sondes (20a-e) s'étendant parallèlement dudit corps et chacun incluant une électrode (22a-e), ladite pluralité de bras de sondes et d'électrodes, respectivement, étant supérieure à quatre, ladite sonde multipoint étant positionnable de manière à ce que lesdites électrodes sont en contact avec une surface d'un échantillon d'essai (24), deux desdites électrodes de ladite sonde mulitpoint, préférablement les deux électrodes les plus extérieures de ladite sonde multipoint, définissant une distance entre elles-mêmes, ledit système incluant un modèle de résistance représentatif dudit échantillon d'essai, ledit modèle de résistance ayant lesdites positions d'électrode spécifiques de ladite sonde multipoint par rapport à ladite surface dudit échantillon d'essai inclus comme des paramètres inconnus, ledit modèle de résistance représentant ledit échantillon d'essai comme une feuille finie et/ou une feuille multicouche, ledit système incluant en outre:

des moyens pour effectuer au moins quatre mesures de résistance différentes, chacune desdites mesures de résistance comportant:

la sélection de quatre électrodes différentes de ladite pluralité d'électrodes,

la division desdites quatres électrodes différentes en une première paire d'électrodes et une deuxième paire d'électrodes,

l'application d'un courant propageant à travers ledit échantillon d'essai entre ladite première paire d'électrodes,

la détection d'une tension inclue entre ladite deuxième paire d'électrodes, et

l'établissement d'une résistance mesurée basée sur un ratio de ladite tension et ledit courant,

des moyens pour établir pour chacun desdites mesures de résistance différentes une résistance prédite correspondante basée sur le modèle de résistance,

des moyens pour établir un ensemble de différences constituant la différences entre chacune desdites résistances prédites et sa résistance mesurée correspondante, et

des moyens pour dériver lesdites positions d'électrode spécifiques de ladite sonde multipoint sur ladite surface dudit échantillon d'essai en utilisant ladite distance et effectuant une adéquation de données en minimisant une fonction d'erreur constituant la somme dudit ensemble de différences.


 
15. Système selon la revendication 14, comprenant en outre une quelconque des caractéristiques de l'une quelconque des revendications 2 à 13.
 




Drawing
































Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description