(19)
(11)EP 3 571 993 A1

(12)EUROPEAN PATENT APPLICATION
published in accordance with Art. 153(4) EPC

(43)Date of publication:
27.11.2019 Bulletin 2019/48

(21)Application number: 17892308.2

(22)Date of filing:  09.08.2017
(51)Int. Cl.: 
A61B 5/117  (2016.01)
G01N 21/64  (2006.01)
(86)International application number:
PCT/CN2017/096564
(87)International publication number:
WO 2018/133389 (26.07.2018 Gazette  2018/30)
(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
MA MD

(30)Priority: 22.01.2017 CN 201710045379

(71)Applicant: Suzhou Xiaosong Science & Technology Development Co., Ltd.
Suzhou, Jiangsu 215003 (CN)

(72)Inventor:
  • HU, Xiaosong
    Suzhou Jiangsu 215003 (CN)

(74)Representative: Cabinet Bleger-Rhein-Poupon 
4a rue de l'Industrie
67450 Mundolsheim
67450 Mundolsheim (FR)

  


(54)METHOD FOR DEVELOPING BIOLOGICAL TRACE EVIDENCE ON POROUS OBJECT


(57) A method for developing biological trace evidence on a porous object comprises: spraying a biological fluorescent development reagent on a porous object or immersing the porous object in the biological fluorescent development reagent; drying the porous object in an environment having a relative humidity of less than 40% at a temperature of 50-120°C; irradiating the dried porous object with a laser having a wavelength of 532 nm and a full-width-half-maximum of less than 1 nm; controlling such that a surface of the porous object is illuminated with an illuminance of over 300,000 lux, such that biological trace evidence on the porous object can be developed using a filter only allowing light having wavelengths greater than 540 nm to pass through. The biological fluorescent development reagent is formed from a raw material formulation comprising the following components, in percent by weight: 0.02-0.5% of indolindione; 4-10% of ethylacetate; 0.5-1.5% of glycerol; 5-15.5% of absolute alcohol; and 73.5-90% of petroleum ether. The biological fluorescent development reagent used in the present invention produces no strong acid odor, and thus does not cause an unpleasant experience to an operator.




Description

Technical Field of the Invention



[0001] The present invention relates to a method for developing biological trace evidence on a porous object.

Background of the Invention



[0002] In the field of criminal evidence reconnaissance, it is necessary to discover and obtain criminal evidences left by suspects, including fingerprint evidence, palmprint evidence, and trace evidence that can reflect DNA characteristics, thereby constructing an evidence chain of criminal facts and laying a legal evidence basis for punishing crimes.

[0003] In the prior art, there were reports on the use of indanedione for developing a handprint, and the inventor had also proposed a method for developing a handprint using indanedione in Chinese Patent CN201510093460.8, which uses indanedione, glacial acetic acid, ethyl acetate and petroleum ether as raw materials to prepare a fluorescent development reagent, and which can well extract a handprint on a brick, a wooden stick, a fabric and a leather. However, during use, it was found that the fluorescent development reagent used in the method has a strong irritating odor, which is easy to cause discomfort to the operator, and the storage period of the fluorescent development reagent is only 2 weeks, which also requires to be stored at 4 °C low temperature, the prepared fluorescent development reagent can only be used within 2 weeks, and when more than 2 weeks, the fluorescent development reagent may crystallize or produce other variations, and cannot be used, which is easy to cause waste. Further, when the fluorescent development reagent is sprayed, the phenomenon that the precipitated crystals block the nozzle is likely to occur, resulting in uneven spraying.

Summary of the Invention



[0004] The technical problem to be solved by the present invention is to provide a method for developing biological trace evidence on a porous object, and a biological fluorescent development reagent used in this method produces no obvious acid odor, and thus does not cause any unpleasant experience to operator.

[0005] The present invention further provides a biological fluorescent development reagent.

[0006] To solve the above technical problems, the present invention employs the following technical solution:
a method for developing biological trace evidence on a porous object, comprises immersing a porous object in a biological fluorescent development reagent or spraying a biological fluorescent development reagent on the porous object, drying the porous object in an environment having a relative humidity of less than 40% at a temperature of 50 °C - 120 °C, irradiating the dried porous object with a laser having a wavelength of 532 nm and a full width at half-maximum of less than 1 nm, controlling a surface of the porous object with an illuminance of over 300,000 lux, and using a cut-off filter under 540 nm to develop biological trace evidence on the porous object, and a raw material formulation of the biological fluorescent development reagent is, in percent by weight, 0.02% - 0.5% of indanedione, 4% - 10% of ethyl acetate, 0.5% - 1.5% of glycerol, 5% - 15.5% of pure alcohol, and 73.5% - 90% of petroleum ether.

[0007] In the present invention, the biological trace evidence comprises a handprint.

[0008] In the present implementations, the handprint refers to a fingerprint or a palmprint.

[0009] In the present implementations, a cut-off filter under 540 nm refers to a cut-off filter that allows only light waves of or above 540 nm to pass through, while other light waves cannot pass.

[0010] The method of the present invention is applicable to various porous objects such as porous objects with high permeability, specifically including napkin, toilet paper, thermal paper, invoice paper, etc.; such as porous objects with moderate permeability, specifically including writing paper, cloth, etc.; such as porous objects with weak permeability, specifically including brick, wood, and stone.

[0011] For the porous objects with high permeability, a biological fluorescent development reagent with a relatively low mass concentration of indanedione can be used; for the porous objects with moderate permeability, a biological fluorescent development reagent with a moderate mass concentration of indanedione can be used; for the porous objects with weak permeability, a biological fluorescent development reagent with a relatively high mass concentration of indanedione can be used. However, if the concentration of indanedione is too high, the resulting handprint pattern is easily blurred and cannot be used, and when a low concentration of indanedione is used, a clear handprint pattern is easily generated, and if the concentration is too low, the handprint may also be unclear or cannot be seen.

[0012] In a specific implementation, when the porous object is a napkin, toilet paper, thermal paper or invoice paper, the raw material formulation of the biological fluorescent development reagent is, in percent by weight, 0.02% - 0.15% of indanedione, 4% - 10% of ethyl acetate, 0.5% - 1.5% of glycerol, 5% - 15.5% of pure alcohol, and 74% - 90% of petroleum ether.

[0013] When the porous object is a writing paper or cloth, the raw material formulation of the biological fluorescent development reagent is, in percent by weight, 0.05% - 0.25% of indanedione, 4% - 10% of ethyl acetate, 0.5% - 1.5% of glycerol, 5% - 15.5% of pure alcohol, and 74% - 90% of petroleum ether.

[0014] When the porous object is a brick, wood or stone, the raw material formulation of the biological fluorescent development reagent is, in percent by weight, 0.2% - 0.5% of indanedione, 4% - 10% of ethyl acetate, 0.5% - 1.5% of glycerol, 5% - 15.5% of pure alcohol, and 73.5% - 89% of petroleum ether.

[0015] In the present invention, pure alcohol refers to > 99.7% absolute ethanol, C2H5OH. Preferably, when immersing the porous object in the biological fluorescent development reagent, the immersing time is controlled to be 5 -10 sec.

[0016] Preferably, before immersing in the biological fluorescent development reagent or spraying the biological fluorescent development reagent, a moisture content of the porous object is controlled to be less than 8%.

[0017] More preferably, before immersing in the biological fluorescent development reagent or spraying the biological fluorescent development reagent, the moisture content of the porous object is controlled to be 6 - 7%.

[0018] Preferably, the porous object is dried in an environment having a relative humidity of less than 30% at a temperature of 50 °C - 90 °C.

[0019] Preferably, a method for preparing the biological fluorescent development reagent comprises following steps:
  1. (1) dissolving glycerin in pure alcohol to obtain a solution 1;
  2. (2) dissolving indanedione in ethyl acetate to obtain a solution 2;
  3. (3) mixing the solution 1 obtained in the step (1) and the solution 2 obtained in the step (2), adding petroleum ether, and uniformly stirring the mixture to give the biological fluorescent development reagent.


[0020] The present invention provides another technical solution:
A biological fluorescent development reagent for developing biological trace evidence on a porous object is provided, and a raw material formulation of the biological fluorescent development reagent is, in percent by weight, 0.02% - 0.5% of indanedione, 4% - 10% of ethyl acetate, 0.5% - 1.5% of glycerol, 5% - 15.5% of pure alcohol, and 73.5% - 90% of petroleum ether.

[0021] The present invention further provides an alternative technical solution:
a method for developing biological trace evidence on a porous object comprises immersing a porous object in a biological fluorescent development reagent or spraying a biological fluorescent development reagent on the porous object, drying the porous object in an environment having a relative humidity of less than 40% at a temperature of 50 °C - 120 °C, irradiating the dried porous object with a laser having a wavelength of 532 nm and a full width at half-maximum of less than 1 nm, controlling a surface of the porous object with an illuminance of over 300,000 lux, and using a cut-off filter under 540 nm to develop the biological trace evidence on the porous object, a raw material formulation of the biological fluorescent development reagent is indanedione, ethyl acetate, glycerol, pure alcohol and petroleum ether; wherein, in volume ratio, ethyl acetate: glycerol: pure alcohol: petroleum ether = (3 - 8): (0.3 - 0.8): (5 - 15): (60 - 80); when preparing, indanedione is dissolved in ethyl acetate at a mass concentration of 0.0025 - 0.1 g/mL.

[0022] When the porous object is a napkin, toilet paper, thermal paper or invoice paper, the biological fluorescent development reagent is prepared by dissolving indanedione in ethyl acetate at a mass concentration of 0.0025 - 0.0333 g/mL. In a specific implementation, a preferable formulation of the biological fluorescent development reagent is, 0.02 - 0.10 g of indanedione; 3 - 8 mL of ethyl acetate, 0.3 - 0.8 mL of glycerol, 5 - 15 mL of pure alcohol, and 60 - 80 mL of petroleum ether.

[0023] When the porous object is a writing paper or cloth, the biological fluorescent development reagent is prepared by dissolving indanedione in ethyl acetate at a mass concentration of 0.00625 - 0.05 g/mL. In a specific implementation, a preferable formulation of the biological fluorescent development reagent is, 0.05 - 0.15 g of indanedione; 3 - 8 mL of ethyl acetate, 0.3 - 0.8 mL of glycerol, 5 - 15 mL of pure alcohol, and 60 - 80 mL of petroleum ether.

[0024] When the porous object is a brick, wood or stone, the biological fluorescent development reagent is prepared by dissolving indanedione in ethyl acetate at a mass concentration of 0.01875 - 0.1 g/mL. In a specific implementation, a preferable formulation of the biological fluorescent development reagent is, 0.15 - 0.30 g of indanedione; 3 - 8 mL of ethyl acetate, 0.3 - 0.8 mL of glycerol, 5 - 15 mL of pure alcohol, and 60 - 80 mL of petroleum ether.

[0025] The present invention further provides another alternative technical solution:
A biological fluorescent development reagent for developing biological trace evidence on a porous object, a raw material formulation of the biological fluorescent development reagent is indanedione, ethyl acetate, glycerol, pure alcohol and petroleum ether; wherein, in volume ratio, ethyl acetate: glycerol: pure alcohol: petroleum ether = (3 - 8): (0.3 - 0.8): (5 - 15): (60 - 80); when preparing, indanedione is dissolved in ethyl acetate at a mass concentration of 0.0025 - 0.1 g/mL.

[0026] Due to the implementation of the above technical solution, the present invention has the following advantages over the prior art:
The biological fluorescent development reagent used in the present invention produces no obvious acid odor, and thus does not cause any unpleasant experience to operator.

[0027] Glycerol is used in the biological fluorescent development reagent used in the method of the present invention, and glycerol has a function of slow volatility, and therefore, when the spraying method is employed, the phenomenon that the precipitated crystals block the nozzle will not occur after spraying a plurality of times (four times or more).

[0028] The storage condition of the fluorescent development reagent of the present invention is widened, and the appearance of crystallization will not occur after storage at room temperature (25 °C) for 30 days.

Brief Description of the Drawings



[0029] 

Fig. 1 is a photo of a fingerprint of Embodiment 1;

Fig. 2 is a photo of a fingerprint of Embodiment 2;

Fig. 3 is a photo of a fingerprint of Embodiment 3;

Fig. 4 is a state diagram of a reagent used in Embodiment 1 after being stored for 30 days;

Fig. 5 is a state diagram of a reagent used in Embodiment 2 after being stored for 30 days;

Fig. 6 is a state diagram of a reagent used in Embodiment 3 after being stored for 30 days;

Fig. 7 is a photo of a fingerprint of Embodiment 4;

Fig. 8 is a photo of a fingerprint of Embodiment 5;

Fig. 9 is a photo of a fingerprint of Embodiment 6;

Fig. 10 is a state diagram of a reagent used in Embodiment 4 after being stored for 30 days;

Fig. 11 is a state diagram of a reagent used in Embodiment 5 after being stored for 30 days;

Fig. 12 is a state diagram of a reagent used in Embodiment 6 after being stored for 30 days;

Fig. 13 is a photo of a fingerprint of Embodiment 7;

Fig. 14 is a photo of a fingerprint of Embodiment 8;

Fig. 15 is a photo of a fingerprint of Embodiment 9;

Fig. 16 is a state diagram of a reagent used in Embodiment 7 after being stored for 30 days;

Fig. 17 is a photo of a fingerprint of Embodiment 10;

Fig. 18 is a photo of a fingerprint of Embodiment 11;

Fig. 19 is a photo of a fingerprint of Embodiment 12;

Fig. 20 is a state diagram of a reagent used in Embodiment 10 after being stored for 30 days;

Fig. 21 is a photo of a fingerprint of Embodiment 13;

Fig. 22 is a photo of a fingerprint of Embodiment 14;

Fig. 23 is a photo of a fingerprint of Embodiment 15;

Fig. 24 is a state diagram of a reagent used in Embodiment 13 after being stored for 30 days;

Fig. 25 is a photo of a fingerprint of Control 1;

Fig. 26 is a photo of a fingerprint of Control 2;

Fig. 27 is a photo of a fingerprint of Control 3;

Fig. 28 is a photo of a fingerprint of Control 4;

Fig. 29 is a photo of a fingerprint of Control 5.


Detailed Description of Exemplary Embodiments



[0030] In the following, the present invention is further explained in detail combining with the specific embodiments, but not limited to these embodiments.

Embodiment 1 (the sample is a napkin with a fingerprint)



[0031] This embodiment provides a method for developing a handprint on a porous object, and a formulation of a biological fluorescent development reagent used in this method was: indanedione 0.02 g; ethyl acetate 3 mL; glycerol 0.3 mL; pure alcohol 5 mL; petroleum ether 75 mL.

[0032] The developing method comprises the following steps:
  1. (1) The moisture content of the napkin was controlled by drying to be less than 7%.
  2. (2) In an environment of 25 °C and a relative humidity of 60%, 0.3 mL glycerol was added into 5 mL pure alcohol, and the solution was thoroughly stirred and dissolved to prepare a solution 1; 0.02 g indanedione was sufficiently dissolved in 3 mL ethyl acetate to prepare a solution 2, and the mass concentration of indanedione was 0.0067 g/mL; the solution 1 and the solution 2 were mixed, then 75 mL petroleum ether was added, stirred and dissolved, and formulated into a biological fluorescent development reagent, and the biological fluorescent development reagent was used after it was ready, and if storage was required, it was stored in a brown light-proof bottle at normal temperature 25 °C or below 25 °C and used up within 30 days.
  3. (3) The napkin was immersed in the biological fluorescent development reagent for 5 sec.
  4. (4) After the attached reagent on the soaked napkin was volatilized under the ambient temperature (25 °C), the napkin was dried in an environment with a relative humidity of less than 30% and a temperature of 50 °C - 55 °C for 10 min.
  5. (5) The dried napkin was irradiated with a laser having a wavelength of 532 nm and a full width at half-maximum of less than 1 nm, an illuminance of 300,000 lux was controlled to be formed on a surface of the napkin, and the handprint was obtained by photographing under a 540 nm filter, see Fig. 1.


[0033] The state of the biological fluorescent development reagent used in the method of this embodiment after 30 days of storage is shown in Fig. 4, and it was found that there was no crystallization or other variation appeared in the reagent.

Embodiment 2 (the sample is a napkin with a fingerprint)



[0034] This embodiment provides a method for developing a handprint on a porous object, and a formulation of a biological fluorescent development reagent used in this method was: indanedione 0.05 g; ethyl acetate 5 mL; glycerol 0.5 mL; pure alcohol 10mL; petroleum ether 75 mL.

[0035] The developing method comprises the following steps:
  1. (1) The moisture content of the napkin was controlled by drying to be less than 7%.
  2. (2) In an environment of 25 °C and a relative humidity of 60%, 0.5 mL glycerol was added into into 10 mL pure alcohol, and the solution was thoroughly stirred and dissolved to prepare a solution 1; 0.05 g indanedione was sufficiently dissolved in 5 mL ethyl acetate to prepare a solution 2, and the mass concentration of indanedione was 0.01 g/mL; the solution 1 and the solution 2 were mixed, then 75 mL petroleum ether was added, stirred and dissolved, and formulated into a biological fluorescent development reagent, and the biological fluorescent development reagent was used after it was ready, and if storage was required, it was stored in a brown light-proof bottle at normal temperature 25 °C or below 25 °C and used up within 30 days.
  3. (3) The napkin was immersed in the fluorescent development reagent for 5 sec.
  4. (4) After the attached reagent on the soaked napkin was volatilized under the ambient temperature (25 °C), the napkin was dried in an environment with a relative humidity of less than 30% and a temperature of 50 °C - 55 °C for 10 min.
  5. (5) The dried napkin was irradiated with a laser having a wavelength of 532 nm and a full width at half-maximum of less than 1 nm, an illuminance of 300,000 lux was controlled to be formed on a surface of the napkin, and the handprint was obtained by photographing under a 540 nm filter, see Fig. 2.


[0036] The state of the biological fluorescent development reagent used in the method of this embodiment after 30 days of storage is shown in Fig. 5, and it was found there was no crystallization or other variation appeared in the reagent.

Embodiment 3 (the sample is a napkin with a fingerprint)



[0037] This embodiment provides a method for developing a handprint on a porous object, and a formulation of a biological fluorescent development reagent used in this method was: indanedione 0.10 g; ethyl acetate 8mL; glycerol 0.8mL; pure alcohol 15 mL; petroleum ether 75 mL.

[0038] The developing method comprises the following steps:
  1. (1) The moisture content of the napkin was controlled by drying to be less than 7%.
  2. (2) In an environment of 25 °C and a relative humidity of 60%, 0.8mL glycerol was added into 15 mL pure alcohol, and the solution was thoroughly stirred and dissolved to prepare a solution 1; 0.10 g indanedione was sufficiently dissolved in 8mL ethyl acetate to prepare a solution 2, and the mass concentration of indanedione was 0.0125 g/mL; the solution 1 and the solution 2 were mixed, then 75 mL petroleum ether was added, stirred and dissolved, and formulated into a biological fluorescent development reagent, and the biological fluorescent development reagent was used after it was ready, and if storage was required, it was stored in a brown light-proof bottle at normal temperature 25 °C or below 25 °C and used up within 30 days.
  3. (3) The napkin was immersed in the fluorescent development reagent for 5 sec.
  4. (4) After the attached reagent on the soaked napkin was volatilized under the ambient temperature (25 °C), the napkin was dried in an environment with a relative humidity of less than 30% and a temperature of 50 °C - 55 °C for 10 min.
  5. (5) The dried napkin was irradiated with a laser having a wavelength of 532 nm and a full width at half-maximum of less than 1 nm, an illuminance of 300,000 lux was controlled to be formed on a surface of the napkin, and the handprint was obtained by photographing under a 540 nm filter, see Fig. 3.


[0039] The state of the biological fluorescent development reagent used in the method of this embodiment after 30 days of storage is shown in Fig. 6, and it was found that there was no crystallization or other variation appeared in the reagent.

Embodiment 4 (the sample is a cotton cloth with a fingerprint)



[0040] This embodiment provides a method for developing a handprint on a porous object, and a formulation of a biological fluorescent development reagent used in this method was: indanedione 0.05 g; ethyl acetate 3 mL; glycerol 0.3 mL; pure alcohol 5 mL; petroleum ether 75 mL.

[0041] The developing method comprises the following steps:
  1. (1) The moisture content of the cotton cloth was controlled by drying to be less than 7%.
  2. (2) In an environment of 25 °C and a relative humidity of 60%, 0.3 mL glycerol was added into 5mL pure alcohol, and the solution was thoroughly stirred and dissolved to prepare a solution 1; 0.05 g indanedione was sufficiently dissolved in 3 mL ethyl acetate to prepare a solution 2, and the mass concentration of indanedione was 0.0167g/mL; the solution 1 and the solution 2 were mixed, then 75 mL of petroleum ether was added, stirred and dissolved, and formulated into a biological fluorescent development reagent, and the biological fluorescent development reagent was used after it was ready, and if storage was required, it was stored in a brown light-proof bottle at normal temperature 25 °C or below 25 °C and used up within 30 days.
  3. (3) The cotton cloth was immersed in the fluorescent development reagent for 8 sec.
  4. (4) After the attached reagent on the soaked cotton cloth was volatilized under the ambient temperature (25 °C), the cotton cloth was dried in an environment with a relative humidity of less than 30% and a temperature of 60 °C - 65 °C for 10 min.
  5. (5) The dried cotton cloth was irradiated with a laser having a wavelength of 532 nm and a full width at half-maximum of less than 1 nm, an illuminance of 300,000 lux was controlled to be formed on a surface of the cotton cloth, and the handprint was obtained by photographing under a 540 nm filter, see Fig. 7.


[0042] The state of the biological fluorescent development reagent used in the method of this embodiment after 30 days of storage is shown in Fig. 10, and it was found that there was no crystallization or other variation appeared in the reagent.

Embodiment 5 (the sample is a cotton cloth with a fingerprint)



[0043] This embodiment provides a method for developing a handprint on a porous object, and a formulation of a biological fluorescent development reagent used in this method was: indanedione 0.10 g; ethyl acetate 5 mL; glycerol 0.5 mL; pure alcohol 10mL; petroleum ether 75 mL.

[0044] The developing method comprises the following steps:
  1. (1) The moisture content of the cotton cloth was controlled by drying to be less than 7%.
  2. (2) In an environment of 25 °C and a relative humidity of 60%, 0.5 mL glycerol was added into 10 mL pure alcohol, and the solution was thoroughly stirred and dissolved to prepare a solution 1; 0.10 g indanedione was sufficiently dissolved in 5 mL ethyl acetate to prepare a solution 2, and the mass concentration of indanedione was 0.02g/mL; the solution 1 and the solution 2 were mixed, then 75 mLpetroleum ether was added, stirred and dissolved, and formulated into a biological fluorescent development reagent, and the biological fluorescent development reagent was used after it was ready, and if storage was required, it was stored in a brown light-proof bottle at normal temperature 25 °C or below 25 °C and used up within 30 days.
  3. (3) The cotton cloth was immersed in the fluorescent development reagent for 8 sec.
  4. (4) After the attached reagent on the soaked cotton cloth was volatilized under the ambient temperature (25 °C), the cotton cloth was dried in an environment with a relative humidity of less than 30% and a temperature of 60 °C - 65 °C for 10 min.
  5. (5) The dried cotton cloth was irradiated with a laser having a wavelength of 532 nm and a full width at half-maximum of less than 1 nm, an illuminance of 300,000 lux was controlled to be formed on a surface of the cotton cloth, and the handprint was obtained by photographing under a 540 nm filter, see Fig. 8.


[0045] The state of the biological fluorescent development reagent used in the method of this embodiment after 30 days of storage is shown in Fig. 11, and it was found that there was no crystallization or other variation appeared in the reagent.

Embodiment 6 (the sample is a cotton cloth with a fingerprint)



[0046] This embodiment provides a method for developing a handprint on a porous object, and a formulation of a biological fluorescent development reagent used in this method was: indanedione 0.15 g; ethyl acetate 8mL; glycerol 0.8mL; pure alcohol 15 mL; petroleum ether 75 mL.

[0047] The developing method comprises the following steps:
  1. (1) The moisture content of the cotton cloth was controlled by drying to be less than 7%.
  2. (2) In an environment of 25 °C and a relative humidity of 60%, 0.8mL of glycerol was added into 15 mL pure alcohol, and the solution was thoroughly stirred and dissolved to prepare a solution 1; 0.15 g indanedione was sufficiently dissolved in 8mL ethyl acetate to prepare a solution 2, and the mass concentration of indanedione was 0.01875 g/mL; the solution 1 and the solution 2 were mixed, then 75 mL petroleum ether was added, stirred and dissolved, and formulated into a biological fluorescent development reagent, and the biological fluorescent development reagent was used after it was ready, and if storage was required, it was stored in a brown light-proof bottle at normal temperature 25 °C or below 25 °C and used up within 30 days.
  3. (3) The cotton cloth was immersed in the fluorescent development reagent for 8 sec.
  4. (4) After the attached reagent on the soaked cotton cloth was volatilized under the ambient temperature (25 °C), the cotton cloth was dried in an environment with a relative humidity of less than 30% and a temperature of 60 °C - 65 °C for 10 min.
  5. (5) The dried cotton cloth was irradiated with a laser having a wavelength of 532 nm and a full width at half-maximum of less than 1 nm, an illuminance of 300,000 lux was controlled to be formed on a surface of the cotton cloth, and the handprint was obtained by photographing under a 540 nm filter, see Fig. 9.


[0048] The state of the biological fluorescent development reagent used in the method of this embodiment after 30 days of storage is shown in Fig. 12, and it was found that there was no crystallization or other variation appeared in the reagent.

Embodiment 7 (the sample is a brick with a fingerprint)



[0049] This embodiment provides a method for developing a handprint on a porous object, and a formulation of a biological fluorescent development reagent used in this method was: indanedione 0.15 g; ethyl acetate 3 mL; glycerol 0.3 mL; pure alcohol 5 mL; petroleum ether 75 mL.

[0050] The developing method comprises the following steps:
  1. (1) The moisture content of the brick was controlled by drying to be less than 7%.
  2. (2) In an environment of 25 °C and a relative humidity of 60%, 0.3 mL glycerol was added into 5 mL pure alcohol, and the solution was thoroughly stirred and dissolved to prepare a solution 1; 0.15 g indanedione was sufficiently dissolved in 3 mL ethyl acetate to prepare a solution 2, and the mass concentration of indanedione was 0.05 g/mL; the solution 1 and the solution 2 were mixed, then 75 mL petroleum ether was added, stirred and dissolved, and formulated into a biological fluorescent development reagent, and the biological fluorescent development reagent was used after it was ready, and if storage was required, it was stored in a brown light-proof bottle at normal temperature 25 °C or below 25 °C and used up within 30 days.
  3. (3) The brick was immersed in the fluorescent development reagent for 10 sec.
  4. (4) After the attached reagent on the soaked brick was volatilized under the ambient temperature (25 °C), the brick was dried in an environment with a relative humidity of less than 30% and a temperature of 80 °C - 85 °C for 12 min.
  5. (5) The dried brick was irradiated with a laser having a wavelength of 532 nm and a full width at half-maximum of less than 1 nm, an illuminance of 500,000 lux was controlled to be formed on a surface of the brick, and the handprint was obtained by photographing under a 540 nm filter, see Fig. 13.


[0051] The state of the biological fluorescent development reagent used in the method of this embodiment after 30 days of storage is shown in Fig. 16, and it was found that there was no crystallization or other variation appeared in the reagent.

Embodiment 8 (the sample is a wood with a fingerprint)



[0052] This embodiment provides a method for developing a handprint on a porous object, and the biological fluorescent development reagent used in this embodiment was the same with that used in Embodiment 7.

[0053] The developing method comprises the following steps:
  1. (1) The moisture content of the wood was controlled by drying to be less than 7%.
  2. (2) In an environment of 25 °C and a relative humidity of 60%, 0.3 mL glycerol was added into 5 mL pure alcohol, and the solution was thoroughly stirred and dissolved to prepare a solution 1; 0.15 g indanedione was sufficiently dissolved in 3 mL ethyl acetate to prepare a solution 2, and the mass concentration of indanedione was 0.05 g/mL; the solution 1 and the solution 2 were mixed, then 75 mL of petroleum ether was added, stirred and dissolved, and formulated into a biological fluorescent development reagent, and the biological fluorescent development reagent was used after it was ready, and if storage was required, it was stored in a brown light-proof bottle at normal temperature 25 °C or below 25 °C and used up within 30 days.
  3. (3) The wood was immersed in the fluorescent development reagent for 10 sec.
  4. (4) After the attached reagent on the soaked wood was volatilized under the ambient temperature (25 °C), the wood was dried in an environment with a relative humidity of less than 30% and a temperature of 70 °C - 75 °C for 12 min.
  5. (5) The dried wood was irradiated with a laser having a wavelength of 532 nm and a full width at half-maximum of less than 1 nm, an illuminance of 500,000 lux was controlled to be formed on a surface of the wood, and the handprint was obtained by photographing under a 540 nm filter, see Fig. 14.

Embodiment 9 (the sample is a stone with a fingerprint)



[0054] This embodiment provides a method for developing a handprint on a porous object, and the biological fluorescent development reagent used in this embodiment was the same with that used in Embodiment 7.

[0055] The developing method comprises the following steps:
  1. (1) The moisture content of the stone was controlled by drying to be less than 7%.
  2. (2) In an environment of 25 °C and a relative humidity of 60%, 0.3 mL glycerol was added into 5 mL pure alcohol, and the solution was thoroughly stirred and dissolved to prepare a solution 1; 0.15 g indanedione was sufficiently dissolved in 3 mL ethyl acetate to prepare a solution 2, and the mass concentration of indanedione was 0.05 g/mL; the solution 1 and the solution 2 were mixed, then 75 mL petroleum ether was added, stirred and dissolved, and formulated into a biological fluorescent development reagent, and the biological fluorescent development reagent was used after it was ready, and if storage was required, it was stored in a brown light-proof bottle at normal temperature 25 °C or below 25 °C and used up within 30 days.
  3. (3) The stone was immersed in the fluorescent development reagent for 10 sec.
  4. (4) After the attached reagent on the soaked stone was volatilized under the ambient temperature (25 °C), the stone was dried in an environment with a relative humidity of less than 30% and a temperature of 80 °C - 85 °C for 15min.
  5. (5) The dried stone was irradiated with a laser having a wavelength of 532 nm and a full width at half-maximum of less than 1 nm, an illuminance of 500,000 lux was controlled to be formed on a surface of the stone, and the handprint was obtained by photographing under a 540 nm filter, see Fig. 15.

Embodiment 10 (the sample is a brick with a fingerprint)



[0056] This embodiment provides a method for developing a handprint on a porous object, and a formulation of a biological fluorescent development reagent used in this method was: indanedione 0.20 g; ethyl acetate 5 mL; glycerol 0.5 mL; pure alcohol 10mL; petroleum ether 75 mL.

[0057] The developing method comprises the following steps:
  1. (1) The moisture content of the brick was controlled by drying to be less than 7%.
  2. (2) In an environment of 25 °C and a relative humidity of 60%, 0.5 mL glycerol was added into 10 mL pure alcohol, and the solution was thoroughly stirred and dissolved to prepare a solution 1; 0.20 g indanedione was sufficiently dissolved in 5 mL ethyl acetate to prepare a solution 2, and the mass concentration of indanedione was 0.04 g/mL; the solution 1 and the solution 2 were mixed, then 75 mLpetroleum ether was added, stirred and dissolved, and formulated into a biological fluorescent development reagent, and the biological fluorescent development reagent was used after it was ready, and if storage was required, it was stored in a brown light-proof bottle at normal temperature 25 °C or below 25 °C and used up within 30 days.
  3. (3) The brick was immersed in the fluorescent development reagent for 10 sec.
  4. (4) After the attached reagent on the soaked brick was volatilized under the ambient temperature (25 °C), and then dried in an environment with a relative humidity of less than 30% and a temperature of 80 °C - 85 °C for 12 min.
  5. (5) The dried brick was irradiated with a laser having a wavelength of 532 nm and a full width at half-maximum of less than 1 nm, an illuminance of 500,000 lux was controlled to be formed on a surface of the brick, and the handprint was obtained by photographing under a 540 nm filter, see Fig. 17.


[0058] The state of the biological fluorescent development reagent used in the method of this embodiment after 30 days of storage is shown in Fig. 20, and it was found that there was no crystallization or other variation appeared in the reagent.

Embodiment 11 (the sample is a wood with a fingerprint)



[0059] This embodiment provides a method for developing a handprint on a porous object, and the biological fluorescent development reagent used in this embodiment was the same with that used in Embodiment 10.

[0060] The developing method comprises the following steps:
  1. (1) The moisture content of the wood was controlled by drying to be less than 7%.
  2. (2) In an environment of 25 °C and a relative humidity of 60%, 0.5 mL glycerol was added into 10 mL pure alcohol, and the solution was thoroughly stirred and dissolved to prepare a solution 1; 0.20 g indanedione was sufficiently dissolved in 5 mL of ethyl acetate to prepare a solution 2, and the mass concentration of indanedione was 0.04 g/mL; the solution 1 and the solution 2 were mixed, then 75 mL petroleum ether was added, stirred and dissolved, and formulated into a biological fluorescent development reagent, and the biological fluorescent development reagent was used after it was ready, and if storage was required, it was stored in a brown light-proof bottle at normal temperature 25 °C or below 25 °C and used up within 30 days.
  3. (3) The wood was immersed in the fluorescent development reagent for 10 sec.
  4. (4) After the attached reagent on the soaked wood was volatilized under the ambient temperature (25 °C), the wood was dried in an environment with a relative humidity of less than 30% and a temperature of 70 °C - 75 °C for 12 min.
  5. (5) The dried wood was irradiated with a laser having a wavelength of 532 nm and a full width at half-maximum of less than 1 nm, an illuminance of 500,000 lux was controlled to be formed on a surface of the wood, and the handprint was obtained by photographing under a 540 nm filter, see Fig. 18.

Embodiment 12 (the sample is a stone with a fingerprint)



[0061] This embodiment provides a method for developing a handprint on a porous object, and the biological fluorescent development reagent used in this embodiment was the same with that used in Embodiment 10.

[0062] The developing method comprises the following steps:
  1. (1) The moisture content of the stone was controlled by drying to be less than 7%.
  2. (2) In an environment of 25 °C and a relative humidity of 60%, 0.5 mL glycerol was added into 10 mL pure alcohol, and the solution was thoroughly stirred and dissolved to prepare a solution 1; 0.20 g indanedione was sufficiently dissolved in 5 mL ethyl acetate to prepare a solution 2, and the mass concentration of indanedione was 0.04 g/mL; the solution 1 and the solution 2 were mixed, then 75 mL petroleum ether was added, stirred and dissolved, and formulated into a biological fluorescent development reagent, and the biological fluorescent development reagent was used after it was ready, and if storage was required, it was stored in a brown light-proof bottle at normal temperature 25 °C or below 25 °C and used up within 30 days.
  3. (3) The stone was immersed in the fluorescent development reagent for 10 sec.
  4. (4) After the attached reagent on the soaked stone was volatilized under the ambient temperature (25 °C), and then dried in an environment with a relative humidity of less than 30% and a temperature of 80 °C - 85 °C for 15min.
  5. (5) The dried stone was irradiated with a laser having a wavelength of 532 nm and a full width at half-maximum of less than 1 nm, an illuminance of 500,000 lux was controlled to be formed on a surface of the stone, and the handprint was obtained by photographing under a 540 nm filter, see Fig. 19.

Embodiment 13 (the sample is a brick with a fingerprint)



[0063] This embodiment provides a method for developing a handprint on a porous object, and a formulation of a biological fluorescent development reagent used in this method was: indanedione 0.30 g; ethyl acetate 8 mL; glycerol 0.8 mL; pure alcohol 15 mL; petroleum ether 75 mL.

[0064] The developing method comprises the following steps:
  1. (1) The moisture content of the brick was controlled by drying to be less than 7%.
  2. (2) In an environment of 25 °C and a relative humidity of 60%, 0.8mL glycerol was added into 15 mL pure alcohol, and the solution was thoroughly stirred and dissolved to prepare a solution 1; 0.30 g indanedione was sufficiently dissolved in 8mL ethyl acetate to prepare a solution 2, and the mass concentration of indanedione was 0.0375 g/mL; the solution 1 and the solution 2 were mixed, then 75 mL petroleum ether was added, stirred and dissolved, and formulated into a biological fluorescent development reagent, and the biological fluorescent development reagent was used after it was ready, and if storage was required, it was stored in a brown light-proof bottle at normal temperature 25 °C or below 25 °C and used up within 30 days.
  3. (3) The brick was immersed in the fluorescent development reagent for 10 sec.
  4. (4) After the attached reagent on the soaked brick was volatilized under the ambient temperature (25 °C), and then dried in an environment with a relative humidity of less than 30% and a temperature of 80 °C - 85 °C for 12 min.
  5. (5) The dried brick was irradiated with a laser having a wavelength of 532 nm and a full width at half-maximum of less than 1 nm, an illuminance of 500,000 lux was controlled to be formed on a surface of the brick, and the handprint was obtained by photographing under a 540 nm filter, see Fig. 21.


[0065] The state of the biological fluorescent development reagent used in the method of this embodiment after 30 days of storage is shown in Fig. 24, and it was found that was no crystallization or other variation appeared in the reagent.

Embodiment 14 (the sample is a wood with a fingerprint)



[0066] This embodiment provides a method for developing a handprint on a porous object, and the biological fluorescent development reagent used in this embodiment was the same with that used in Embodiment 13.

[0067] The developing method comprises the following steps:
  1. (1) The moisture content of the wood was controlled by drying to be less than 7%.
  2. (2) In an environment of 25 °C and a relative humidity of 60%, 0.8mL glycerol wad added into 15 mL pure alcohol, and the solution was thoroughly stirred and dissolved to prepare a solution 1; 0.30 g indanedione was sufficiently dissolved in 8mL ethyl acetate to prepare a solution 2, and the mass concentration of indanedione was 0.0375 g/mL; the solution 1 and the solution 2 were mixed, then 75 mL petroleum ether was added, stirred and dissolved, and formulated into a biological fluorescent development reagent, and the biological fluorescent development reagent was used after it was ready, and if storage was required, it was stored in a brown light-proof bottle at normal temperature 25 °C or below 25 °C and used up within 30 days.
  3. (3) The wood was immersed in the fluorescent development reagent for 10 sec.
  4. (4) After the attached reagent on the soaked wood was volatilized under the ambient temperature (25 °C), the wood was dried in an environment with a relative humidity of less than 30% and a temperature of 70 °C - 75 °C for 12 min.
  5. (5) The dried wood was irradiated with a laser having a wavelength of 532 nm and a full width at half-maximum of less than 1 nm, an illuminance of 500,000 lux was controlled to be formed on a surface of the wood, and the handprint was obtained by photographing under a 540 nm filter, see Fig. 22.

Embodiment 15 (the sample is a stone with a fingerprint)



[0068] This embodiment provides a method for developing a handprint on a porous object, and the biological fluorescent development reagent used in this embodiment was the same with that used in Embodiment 13.

[0069] The developing method comprises the following steps:
  1. (1) The moisture content of the stone was controlled by drying to be less than 7%.
  2. (2) In an environment of 25 °C and a relative humidity of 60%, 0.8mL glycerol was added into 15 mL pure alcohol, and the solution was thoroughly stirred and dissolved to prepare a solution 1; 0.30 g indanedione was sufficiently dissolved in 8mL ethyl acetate to prepare a solution 2, and the mass concentration of indanedione was 0.0375 g/mL; the solution 1 and the solution 2 were mixed, then 75 mL petroleum ether was added, stirred and dissolved, and formulated into a biological fluorescent development reagent, and the biological fluorescent development reagent was used after it was ready, and if storage was required, it was stored in a brown light-proof bottle at normal temperature 25 °C or below 25 °C and used up within 30 days.
  3. (3) The stone was immersed in the fluorescent development reagent for 10 sec.
  4. (4) After the attached reagent on the soaked stone was volatilized under the ambient temperature (25 °C), the stone was dried in an environment with a relative humidity of less than 30% and a temperature of 80 °C - 85 °C for 15min.
  5. (5) The dried stone was irradiated with a laser having a wavelength of 532 nm and a full width at half-maximum of less than 1 nm, an illuminance of 500,000 lux was controlled to be formed on a surface of the stone, and the handprint was obtained by photographing under a 540 nm filter, see Fig. 23.

Control 1 (the sample is a napkin with a fingerprint)



[0070] This control embodiment provides a method for developing a handprint on a porous object, and a formulation of a biological fluorescent development reagent used in this method was: indanedione 0.01g; ethyl acetate 2 mL; glycerol 0.2 mL; pure alcohol 4 mL; petroleum ether 75 mL.

[0071] The developing method comprises the following steps:
  1. (1) The moisture content of the napkin was controlled by drying to be less than 7%.
  2. (2) In an environment of 25 °C and a relative humidity of 60%, 0.2 mL glycerol was added into 4 mL pure alcohol, and the solution was thoroughly stirred and dissolved to prepare a solution 1; 0.01 g indanedione was sufficiently dissolved in 2 mL ethyl acetate to prepare a solution 2; the solution 1 and the solution 2 were mixed, then 75 mL petroleum ether was added, stirred and dissolved, and formulated into a fluorescent development reagent, and the fluorescent development reagent was used after it was ready, and if storage was required, it was stored in a brown light-proof bottle at normal temperature 25 °C or below 25 °C and used up within 30 days.
  3. (3) The napkin was immersed in the fluorescent development reagent for 5 sec.
  4. (4) After the attached reagent on the soaked napkin was volatilized under the ambient temperature (25 °C), the napkin was dried in an environment with a relative humidity of less than 30% and a temperature of 50 °C - 55 °C for 10 min.
  5. (5) The dried napkin was irradiated with a laser having a wavelength of 532 nm and a full width at half-maximum of less than 1 nm, an illuminance of 300,000 lux was controlled to be formed on a surface of the napkin, and the handprint was obtained by photographing under a 540 nm filter, see Fig. 25.

Control 2 (the sample is a cotton cloth with a fingerprint)



[0072] This control embodiment provides a method for developing a handprint on a porous object, and a formulation of a biological fluorescent development reagent used in this method was: indanedione 0.20 g; ethyl acetate 10mL; glycerol 1.0mL; pure alcohol 15 mL; petroleum ether 75 mL.

[0073] The developing method comprises the following steps:
  1. (1) The moisture content of the cotton cloth was controlled by drying to be less than 7%.
  2. (2) In an environment of 25 °C and a relative humidity of 60%, 1.0mL of glycerol was added into 15 mL pure alcohol, and the solution was thoroughly stirred and dissolved to prepare a solution 1; 0.20 g indanedione was sufficiently dissolved in 10mL ethyl acetate to prepare a solution 2; the solution 1 and the solution 2 were mixed, then 75 mL petroleum ether was added, stirred and dissolved, and formulated into a fluorescent development reagent, and the fluorescent development reagent was used after it was ready, and if storage was required, it was stored in a brown light-proof bottle at normal temperature 25 °C or below 25 °C and used up within 30 days.
  3. (3) The cotton cloth was immersed in the fluorescent development reagent for 8 sec.
  4. (4) After the attached reagent on the soaked cotton cloth was volatilized under the ambient temperature (25 °C), the cotton cloth was dried in an environment with a relative humidity of less than 30% and a temperature of 60 °C - 65 °C for 10 min.
  5. (5) The dried cotton cloth was irradiated with a laser having a wavelength of 532 nm and a full width at half-maximum of less than 1 nm, an illuminance of 300,000 lux was controlled to be formed on a surface of the cotton cloth, and the handprint was obtained by photographing under a 540 nm filter, see Fig. 26.

Control 3 (the sample is a brick with a fingerprint)



[0074] This control embodiment provides a method for developing a handprint on a porous object, and a formulation of a biological fluorescent development reagent used in this method was: indanedione 0.10 g; ethyl acetate 2 mL; glycerol 0.2 mL; pure alcohol 4 mL; petroleum ether 75 mL.

[0075] The developing method comprises the following steps:
  1. (1) The moisture content of the brick was controlled by drying to be less than 7%.
  2. (2) In an environment of 25 °C and a relative humidity of 60%, 0.2 mL glycerol was added into 4 mL pure alcohol, and the solution was thoroughly stirred and dissolved to prepare a solution 1; 0.10 g indanedione was sufficiently dissolved in 2 mL ethyl acetate to prepare a solution 2; the solution 1 and the solution 2 were mixed, then 75 mL petroleum ether was added, stirred and dissolved, and formulated into a fluorescent development reagent, and the fluorescent development reagent was used after it was ready, and if storage was required, it was stored in a brown light-proof bottle at normal temperature 25 °C or below 25 °C and used up within 30 days.
  3. (3) The brick was immersed in the fluorescent development reagent for 10 sec.
  4. (4) After the attached reagent on the soaked brick was volatilized under the ambient temperature (25 °C), the brick was dried in an environment with a relative humidity of less than 30% and a temperature of 80 °C - 85 °C for 12 min.
  5. (5) The dried brick was irradiated with a laser having a wavelength of 532 nm and a full width at half-maximum of less than 1 nm, an illuminance of 500,000 lux was controlled to be formed on a surface of the brick, and the handprint was obtained by photographing under a 540 nm filter, see Fig. 27.

Control 4 (the sample is a wood with a fingerprint)



[0076] This control embodiment provides a method for developing a handprint on a porous object, and the biological fluorescent development reagent used in this control embodiment was the same with that used in Control 3.

[0077] The developing method comprises the following steps:
  1. (1) The moisture content of the wood was controlled by drying to be less than 7%.
  2. (2) In an environment of 25 °C and a relative humidity of 60%, 0.2 mL glycerol was added into 4 mL pure alcohol, and the solution was thoroughly stirred and dissolved to prepare a solution 1; 0.10 g indanedione was sufficiently dissolved in 2 mL ethyl acetate to prepare a solution 2; the solution 1 and the solution 2 were mixed, then 75 mL petroleum ether was added, stirred and dissolved, and formulated into a fluorescent development reagent, and the fluorescent development reagent was used after it was ready, and if storage was required, it was stored in a brown light-proof bottle at normal temperature 25 °C or below 25 °C and used up within 30 days.
  3. (3) The wood was immersed in the fluorescent development reagent for 10 sec.
  4. (4) After the attached reagent on the soaked wood was volatilized under the ambient temperature (25 °C), the wood was dried in an environment with a relative humidity of less than 30% and a temperature of 70 °C - 75 °C for 12 min.
  5. (5) The dried wood was irradiated with a laser having a wavelength of 532 nm and a full width at half-maximum of less than 1 nm, an illuminance of 500,000 lux was controlled to be formed on a surface of the wood, and the handprint was obtained by photographing under a 540 nm filter, see Fig. 28.

Control 5 (the sample is a stone with a fingerprint)



[0078] This control embodiment provides a method for developing a handprint on a porous object, and the biological fluorescent development reagent used in this control embodiment was the same with that used in Control 3.

[0079] The developing method comprises the following steps:
  1. (1) The moisture content of the stone was controlled by drying to be less than 7%.
  2. (2) In an environment of 25 °C and a relative humidity of 60%, 0.2 mL glycerol was added into 4 mL pure alcohol, and the solution was thoroughly stirred and dissolved to prepare a solution 1; 0.10 g indanedione was sufficiently dissolved in 2 mL ethyl acetate to prepare a solution 2; the solution 1 and the solution 2 were mixed, then 75 mL petroleum ether was added, stirred and dissolved, and formulated into a fluorescent development reagent, and the fluorescent development reagent was used after it was ready, and if storage was required, it was stored in a brown light-proof bottle at normal temperature 25 °C or below 25 °C and used up within 30 days.
  3. (3) The stone was immersed in the fluorescent development reagent for 10 sec.
  4. (4) After the attached reagent on the soaked stone was volatilized under the ambient temperature (25 °C), the stone was dried in an environment with a relative humidity of less than 30% and a temperature of 80 °C - 85 °C for 15min.
  5. (5) The dried stone was irradiated with a laser having a wavelength of 532 nm and a full width at half-maximum of less than 1 nm, an illuminance of 500,000 lux was controlled to be formed on a surface of the stone, and the handprint was obtained by photographing under a 540 nm filter, see Fig. 29.


[0080] The biological fluorescent development reagent used in the present invention is very suitable for spraying, so after it is sprayed on the sample, the solvent can be volatilized very quickly, and the handprint can be quickly developed, which is very suitable for the requirement of rapid development.

[0081] The above detailed describes the present invention, is intended to make those skilled in the art being able to understand the present invention and thereby implement it, and should not be concluded to limit the protective scope of this disclosure. Any equivalent variations or modifications according to the essence of the present invention should be covered by the protective scope of the present invention.


Claims

1. A method for developing biological trace evidence on a porous object, comprising immersing a porous object in a biological fluorescent development reagent or spraying a biological fluorescent development reagent on the porous object, drying the porous object in an environment having a relative humidity of less than 40% at a temperature of 50 °C - 120 °C, irradiating the dried porous object with a laser having a wavelength of 532 nm and a full width at half-maximum of less than 1 nm, controlling a surface of the porous object with an illuminance of over 300,000 lux, and using a cut-off filter under 540 nm to develop the biological trace evidence on the porous object, is characterized in that, a raw material formulation of the biological fluorescent development reagent is, in percent by weight, 0.02% - 0.5% of indanedione, 4% - 10% of ethyl acetate, 0.5% - 1.5% of glycerol, 5% - 15.5% of pure alcohol, and 73.5% - 90% of petroleum ether.
 
2. The method for developing biological trace evidence on a porous object according to claim 1, is characterized in that, the porous object comprises a napkin, toilet paper, thermal paper, invoice paper, writing paper, cloth, brick, wood, or stone.
 
3. The method for developing biological trace evidence on a porous object according to claim 2, is characterized in that, when the porous object is a napkin, toilet paper, thermal paper or invoice paper, the raw material formulation of the biological fluorescent development reagent is, in percent by weight, 0.02% - 0.15% of indanedione, 4% - 10% of ethyl acetate, 0.5% - 1.5% of glycerol, 5% - 15.5% of pure alcohol, and 74% - 90% of petroleum ether.
 
4. The method for developing biological trace evidence on a porous object according to claim 2, is characterized in that, when the porous object is a writing paper or cloth, the raw material formulation of the biological fluorescent development reagent is, in percent by weight, 0.05% - 0.25% of indanedione, 4% - 10% of ethyl acetate, 0.5% - 1.5% of glycerol, 5% - 15.5% of pure alcohol, and 74% - 90% of petroleum ether.
 
5. The method for developing biological trace evidence on a porous object according to claim 2, is characterized in that, when the porous object is a brick, wood or stone, the raw material formulation of the biological fluorescent development reagent is, in percent by weight, 0.2% - 0.5% of indanedione, 4% - 10% of ethyl acetate, 0.5% - 1.5% of glycerol, 5% - 15.5% of pure alcohol, and 73.5% - 89% of petroleum ether.
 
6. The method for developing biological trace evidence on a porous object according to any one of claims 1 - 5, is characterized in that, before immersing in the biological fluorescent development reagent or spraying the biological fluorescent development reagent, a moisture content of the porous object is controlled to be less than 8%.
 
7. The method for developing biological trace evidence on a porous object according to any one of claims 1 - 5, is characterized in that, the porous object is dried in an environment having a relative humidity of less than 30% at a temperature of 50 °C - 90 °C.
 
8. The method for developing biological trace evidence on a porous object according to any one of claims 1 - 5, is characterized in that, the biological trace evidence comprises a handprint.
 
9. The method for developing biological trace evidence on a porous object according to claim 1, is characterized in that, a method for preparing the biological fluorescent development reagent comprises following steps:

(1) dissolving glycerin in pure alcohol to obtain a solution 1;

(2) dissolving indanedione in ethyl acetate to obtain a solution 2;

(3) mixing the solution 1 obtained in the step (1) and the solution 2 obtained in the step (2), adding petroleum ether, and uniformly stirring the mixture to give the biological fluorescent development reagent.


 
10. A biological fluorescent development reagent for developing biological trace evidence on a porous object, is characterized in that, a raw material formulation of the biological fluorescent development reagent is, in percent by weight, 0.02% - 0.5% of indanedione, 4% - 10% of ethyl acetate, 0.5% - 1.5% of glycerol, 5% - 15.5% of pure alcohol, and 73.5% - 90% of petroleum ether.
 
11. A method for developing biological trace evidence on a porous object, comprising immersing a porous object in a biological fluorescent development reagent or spraying a biological fluorescent development reagent on the porous object, drying the porous object in an environment having a relative humidity of less than 40% at a temperature of 50 °C - 120 °C, irradiating the dried porous object with a laser having a wavelength of 532 nm and a full width at half-maximum of less than 1 nm, controlling a surface of the porous object with an illuminance of over 300,000 lux, and using a cut-off filter under 540 nm to develop the biological trace evidence on the porous object, is characterized in that, a raw material formulation of the biological fluorescent development reagent is indanedione, ethyl acetate, glycerol, pure alcohol and petroleum ether; wherein, in volume ratio, ethyl acetate: glycerol: pure alcohol: petroleum ether = (3 - 8): (0.3 - 0.8): (5 - 15): (60 - 80); when preparing, indanedione is dissolved in ethyl acetate at a mass concentration of 0.0025 - 0.1 g/mL.
 
12. The method for developing biological trace evidence on a porous object according to claim 11, is characterized in that, the porous object comprises a napkin, toilet paper, thermal paper, invoice paper, writing paper, cloth, brick, wood, or stone.
 
13. The method for developing biological trace evidence on a porous object according to claim 12, is characterized in that, when the porous object is a napkin, toilet paper, thermal paper or invoice paper, the biological fluorescent development reagent is prepared by dissolving indanedione in ethyl acetate at a mass concentration of 0.0025 - 0.0333 g/mL.
 
14. The method for developing biological trace evidence on a porous object according to claim 12, is characterized in that, when the porous object is a writing paper or cloth, the biological fluorescent development reagent is prepared by dissolving indanedione in ethyl acetate at a mass concentration of 0.00625 - 0.05 g/mL.
 
15. The method for developing biological trace evidence on a porous object according to claim 12, is characterized in that, when the porous object is a brick, wood or stone, the biological fluorescent development reagent is prepared by dissolving indanedione in ethyl acetate at a mass concentration of 0.01875 - 0.1 g/mL.
 
16. The method for developing biological trace evidence on a porous object according to any one of claims 11 - 15, is characterized in that, before immersing in the biological fluorescent development reagent or spraying the biological fluorescent development reagent, a moisture content of the porous object is controlled to be less than 8%.
 
17. The method for developing biological trace evidence on a porous object according to any one of claims 11 - 15, is characterized in that, the porous object is dried in an environment having a relative humidity of less than 30% at a temperature of 50 °C - 90 °C.
 
18. The method for developing biological trace evidence on a porous object according to any one of claims 11 - 15, is characterized in that, the biological trace evidence comprises a handprint.
 
19. The method for developing biological trace evidence on a porous object according to claim 11, is characterized in that, a method for preparing the biological fluorescent development reagent comprises following steps:

(1) dissolving glycerin in pure alcohol to obtain a solution 1;

(2) dissolving indanedione in ethyl acetate to obtain a solution 2;

(3) mixing the solution 1 obtained in the step (1) and the solution 2 obtained in the step (2), adding petroleum ether, and uniformly stirring the mixture to give the biological fluorescent development reagent.


 
20. A biological fluorescent development reagent for developing biological trace evidence on a porous object, is characterized in that, a raw material formulation of the biological fluorescent development reagent is indanedione, ethyl acetate, glycerol, pure alcohol and petroleum ether; wherein, in volume ratio, ethyl acetate: glycerol: pure alcohol: petroleum ether = (3 - 8): (0.3 - 0.8): (5 - 15): (60 - 80); when preparing, indanedione is dissolved in ethyl acetate at a mass concentration of 0.0025 - 0.1 g/mL.
 




Drawing








































REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description