(19)
(11)EP 3 575 632 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
30.03.2022 Bulletin 2022/13

(21)Application number: 17928860.0

(22)Date of filing:  19.10.2017
(51)International Patent Classification (IPC): 
F16H 1/32(2006.01)
F16H 55/08(2006.01)
F16H 49/00(2006.01)
(52)Cooperative Patent Classification (CPC):
F16H 49/001; F16H 55/0833; F16H 2049/003
(86)International application number:
PCT/JP2017/037854
(87)International publication number:
WO 2019/077719 (25.04.2019 Gazette  2019/17)

(54)

WAVE GEAR DEVICE HAVING 3-DIMENSIONAL MESHING TOOTH PROFILE

WELLENGETRIEBEVORRICHTUNG MIT DREIDIMENSIONAL INEINANDERGREIFENDEM ZAHNPROFIL

DISPOSITIF À ENGRENAGE À ONDES AYANT UN PROFIL DE DENT D'ENGRÈNEMENT TRIDIMENSIONNEL


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
04.12.2019 Bulletin 2019/49

(73)Proprietor: Harmonic Drive Systems Inc.
Shinagawa-ku Tokyo 140-0013 (JP)

(72)Inventors:
  • SHIROKOSHI, Norio
    Azumino-shi Nagano 399-8305 (JP)
  • MURAYAMA, Yuya
    Azumino-shi Nagano 399-8305 (JP)
  • MIZOGUCHI, Yoshitomo
    Azumino-shi Nagano 399-8305 (JP)
  • KISHI, Satoshi
    Azumino-shi Nagano 399-8305 (JP)

(74)Representative: Schmitt-Nilson Schraud Waibel Wohlfrom Patentanwälte Partnerschaft mbB 
Pelkovenstraße 143
80992 München
80992 München (DE)


(56)References cited: : 
CN-A- 104 514 847
JP-A- H05 209 655
JP-A- 2017 044 287
JP-A- 2017 067 266
DE-A1-102004 034 823
JP-A- 2008 525 727
JP-A- 2017 044 287
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to a cup-type or silk-hat-type strain wave gearing. More specifically, the present invention pertains to a strain wave gearing having 3-dimensional meshing tooth profile, in which a predetermined meshing state is maintained not only in one axis-perpendicular cross-section but also even in the other axis-perpendicular cross-sections along the tooth trace direction.

    BACKGROUND ART



    [0002] A cup-type or silk-hat-type strain wave gearing has a rigid internally toothed gear, a cup-shaped or silk-hat-shaped flexible externally toothed gear coaxially arranged inside the internally toothed gear, and a wave generator fitted into the externally toothed gear. The externally toothed gear is provided with a flexible cylindrical body, a diaphragm extending radially from the rear end of the cylindrical body, and external teeth formed on an outer circumferential surface portion at the open-end side of the cylindrical body. The externally toothed gear is made to flex by the wave generator into an elliptical shape, and is meshed with the internally toothed gear on both ends in the major-axis direction of the elliptical shape.

    [0003] In JP 45-41171 B, it is proposed a basic tooth profile defined by an involute tooth profile. In JP 63-115943 A and JP 64-79448 A, it is proposed a tooth profile design method for deriving addendum tooth profiles of an internally toothed gear and an externally toothed gear for wide-area contact, using a process of approximating meshing of the two gears by rack meshing.

    [0004] The externally toothed gear is flexed into an elliptical shape, the flexion amount of which increases from an external-teeth inner end at the side of the diaphragm toward an external-teeth outer end at the side of the open end, the flexion amount being approximately proportional to the distance measured from the diaphragm. Further, each portion of the external teeth of the externally toothed gear is repeatedly flexed in the radial direction while the wave generator rotates. In this way, the flexing state of the external teeth of the externally toothed gear differ in each position along the tooth trace direction, and therefore the meshing state thereof with the internal teeth of the internally toothed gear also differ along the tooth trace direction. Even if a tooth profile of the external teeth is set so that a continuous meshing state is established with respect to the internal teeth in one axis-perpendicular cross section in the tooth trace direction of the external teeth, an appropriate meshing state cannot be obtained in another cross-sectional position in the tooth trace direction.

    [0005] In JP 2017 044 287 A, a straight tooth profile is adopted for the tooth profile of external teeth, and tooth surfaces on both sides thereof are defined by inclined surfaces that are inclined along the tooth trace direction so as to increase the tooth thickness from the diaphragm-side end toward the open-side end of the externally toothed gear. This prevents the tooth tip of the external teeth at the diaphragm side from interfering with the tooth tip of the internal teeth in meshing operation of the external and internal teeth.

    [0006] According to CN 104 514 847 A a flat harmonic transmission device with a drum-shaped gear teeth comprises a flexible gear, wherein the flexible gear is divided into a gear tooth part, a barrel part and an output shaft part; the length-diameter ratio of the barrel part is 1/4-1/2; the diameter of a maximum shaft section of the output shaft part is smaller than or equal to the diameter of an outer ring of the barrel part of the flexible gear; a bolt hole is formed in the output shaft part and the output shaft part is directly connected with a subsequent execution mechanism; the diameter of a gear tooth circle of the gear tooth part of the flexible gear becomes larger and lager in a non-linear manner from a cup opening of a barrel to the axial direction of the rear end; the gear teeth of the flexible gear have the same tooth outline shape in a tooth length direction; the width of tooth grooves of gear teeth of a rigid gear continuously becomes smaller and smaller, and then continuously becomes larger and larger from the cup opening of the barrel of the flexible gear to the axial direction of the rear end. The front ends and the middle parts of the gear teeth of the flexible gear are in an engaged state so that the engagement area is enlarged and the strength and rigidity are improved.

    SUMMARY OF THE INVENTION


    PROBLEMS TO BE SOLVED BY THE INVENTION



    [0007] In a cup-type or a silk-hat-type strain wave gearing, a movement locus of meshing motion of the external teeth, which is repeatedly flexed, is different in each position along the tooth trace direction of the external teeth. When the tooth thickness thereof is made to decrease toward the diaphragm side from the open-end side, it is possible to prevent the external teeth from interfering with the tip of the internal teeth or from making an uneven contact state with the internal teeth. It is, however, not possible to achieve a meshing (3-dimensional meshing) of the external teeth with the internal teeth in a wide range along the tooth trace direction in addition to a meshing (2-dimensional meshing) in one axis-perpendicular cross-section in the tooth trace direction.

    [0008] It is an object of the present invention to provide a cup-type or silk-hat-type strain wave gearing having 3-dimensional meshing tooth profile, which is able to realize not only a meshing of gears in one axis-perpendicular cross-section in the tooth trace direction but also a meshing thereof in a wide range along the tooth trace direction.

    MEANS OF SOLVING THE PROBLEMS



    [0009] The problem is solved with a strain wave gearing according to claim 1. Preferred embodiments are laid down in the dependent claims.

    [0010] According to the present invention, the tooth surface of the external teeth varies in inclination state in two directions from the external-teeth outer end toward the external-teeth inner end along the tooth trace direction. Thus, it is possible to avoid interference of the tooth tip of the external teeth at the diaphragm side with the tooth tip of the internal teeth, and at the same time it is also possible to establish a wide-range meshing state between the both teeth along the tooth trace direction rather than only in the one position along the tooth trace direction. Because the both teeth mesh with each other in an appropriate manner in each position along the tooth trace direction, it is possible to increase the load capacity of the strain wave gearing and enhance the reliability thereof during a high load operation.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0011] 

    FIG. 1 includes a longitudinal cross-sectional view and a front view of a cup-type strain wave gearing;

    FIG. 2 includes explanatory views illustrating the flexing state of a cup-shaped and silk-hat-shaped externally toothed gears, in which FIG. 2(a) illustrates a state before deformation, FIG. 2(b) illustrates a state of a cross-section including the major axis of the externally toothed gear after elliptically deformed, and FIG. 2(c) illustrates a state of a cross-section including the minor axis of the externally toothed gear after elliptically deformed;

    FIG. 3 is a diagram illustrating an example of movement loci obtained when a relative motion of the both gears is rack approximated in an arbitrary axis-perpendicular cross-section of the tooth profile along the tooth trace direction;

    FIG. 4 includes an explanatory view illustrating respective positions along the tooth trace direction of the external tooth, and an explanatory view illustrating tooth profiles in the respective positions along the tooth trace direction thereof; and

    FIG. 5 is an explanatory view illustrating a state of meshing of the tooth profile of the external teeth with the tooth profile of the internal teeth, in which states in five positions between the external-teeth outer end at the open-end side and the external-teeth inner end at the diaphragm side are illustrated.


    MODE FOR CARRYING OUT THE INVENTION



    [0012] A strain wave gearing according to the present invention will be explained with reference to the drawings. FIG. 1(a) is a longitudinal cross-sectional view illustrating an example of a cup-type strain wave gearing according to the present invention, and FIG. 1(b) is a front view thereof.

    [0013] The strain wave gearing 1 has a circular rigid internally toothed gear 2, a flexible externally toothed gear 3 coaxially arranged inside the internally toothed gear, and a wave generator 4 fitted into the externally toothed gear, the wave generator having an elliptical contour. The internally toothed gear 2 and the externally toothed gear 3 are spur gears having the same module (m). The difference in number of teeth between the both gears is 2n (n is a positive integer), and the number of teeth of the internally toothed gear 2 is larger. The external teeth 34 of the externally toothed gear 3 is made to flex into an elliptical shape by the wave generator 4 having the elliptical contour and is meshed with internal teeth 24 of the internally toothed gear 2 on both end portions in the direction of the major axis L1 of the elliptical shape.

    [0014] When the wave generator 4 rotates, the meshing positions between the both gears 2 and 3 move in the circumferential direction so that relative rotation occurs between the both gears 2 and 3 in accordance with the difference in number of teeth between the gears. The externally toothed gear 3 is provided with a flexible circular body 31; a diaphragm 32 continuous from one end that is a rear end 31b of the cylindrical body, and extending therefrom in the radial direction; a rigid annular boss 33 continuous from the diaphragm 32; and the external teeth 34 formed on an outer circumferential surface portion of the cylindrical body 31 at the side of the other end (front end) that is an open end 31a of the cylindrical body.

    [0015] The wave generator 4 is fitted into the inner circumferential surface of the external-teeth forming portion of the cylindrical body 31, whereby the flexion amount of the cylindrical body 31 in a radially inward or radially outward direction is gradually increased from the rear end 31b at the diaphragm side toward the open end 31a.

    [0016] FIG. 2 illustrates a cross-section of the cup-shaped externally toothed gear 3 in an elliptically flexed state, the cross-section including the axis of the externally toothed gear, in which FIG. 2(a) illustrates a state before deformation, FIG. 2(b) illustrates a cross-section including the major axis of the elliptical curve after deformation, and FIG. 2(c) illustrates a cross-section including the minor axis of the elliptical curve after deformation. In FIGS 2(a) to 2(c), dotted lines illustrate a silk-hat-shaped externally toothed gear 3A. The silk-hat-shaped externally toothed gear 3A has the cylindrical body 31, from the rear end 31b of which a diaphragm 32A extends radially and outward, and an annular boss 33A is formed on the outer circumferential end of the diaphragm. The flexing state of the external-teeth forming portion of the externally toothed gear 3A is the same as that of the cup-shaped externally toothed gear 3.

    [0017] The flexion amount in the radially outward direction is gradually increased in proportion to the distance measured from the rear end 31b toward the open end 31a in the cross-section including the major axis L1 of the elliptical curve as illustrated in FIG. 2(b), while the flexion amount in the radially inward direction is gradually increased in proportion to the distance from the rear end 31b toward the open end 31a in the cross-section including the minor axis L2 of the elliptical curve. Accordingly, the flexion amount of the external tooth 34 formed on the outer circumferential surface portion at the open end 31a side, varies in each axis-perpendicular cross-section along the tooth trace direction thereof. Specifically, the flexion amount is gradually increased from the external-teeth inner end 34e at the diaphragm side toward the external-teeth outer end 34a at the open end 31a side along the tooth trace direction of the external teeth 34, the flexion amount being in proportion to the distance from the rear end 31b.

    [0018] FIG. 3 illustrates movement loci of the external teeth 34 of the externally toothed gear 3 with respect to the internal teeth 24 of the internally toothed gear 2, the movement loci being obtained when the relative motion of the teeth of the both gears 2 and 3 of the strain wave gearing 1 is rack approximated. In this drawing, x axis indicates the direction of translation of the rack, and y axis indicates a direction perpendicular thereto. The flexion amount of the elliptical rim neutral line of the external teeth 34 with respect to the rim neutral circle before the external teeth 34 is deformed into an elliptical shape is 2κmn on a position of the major axis, where κ is a flexion coefficient.

    [0019] The origin of the y axis in FIG. 3 is set to be an average position of the amplitude of the movement loci. Among the movement loci, a non-deviation movement locus M1 is obtained in the case of no-deviation standard flexing state in which the flexion coefficient κ =1, a positive-deviation movement locus Mo is obtained in the case of positive-deviation flexing state in which the flexion coefficient κ > 1, and a negative-deviation movement locus Mi is obtained in the case of negative-deviation flexing state in which the flexion coefficient κ < 1. For example, an axis-perpendicular cross-section at a midway position in the tooth trace direction of the external teeth is referred to as a principal cross-section, which is, for example, a position passing through the center of ball 4a of a wave bearing. The flexion amount of the externally toothed gear is determined so that the non-deviation movement locus, in which the flexion coefficient κ equals 1, is obtained in the principal cross-section.

    (Tooth profiles of the both teeth)



    [0020] FIG. 4(a) is an explanatory view illustrating respective positions in the tooth trace direction of the external tooth 34 of the externally toothed gear 3, and FIG. 4(b) is an explanatory view illustrating tooth profiles of the internal teeth 24 and the external teeth 34. FIG. 5 is an explanatory view illustrating a state of meshing motion of the external teeth 34 with respect to the internal teeth 24 at each of the respective positions A to E of the external teeth 34.

    [0021] The tooth profile of the internal teeth 24 is the same along the tooth trace direction thereof. In an example, the tooth profile of the internal teeth 24 is defined by an addendum tooth profile portion 51, a dedendum tooth profile portion 52 continuous from the addendum tooth profile portion, and a tooth bottom portion 53 continuous from the dedendum tooth profile portion, in which the addendum tooth profile portion is formed by a convex-curvilinear tooth profile portion and a straight tooth profile portion, and the dedendum tooth profile portion is formed by a strain tooth profile portion and a concave-curvilinear tooth profile portion.

    [0022] The tooth profile of the external teeth 34 is set as follows. In an example, the tooth profile thereof at the external-teeth outer end 34a in the tooth trace direction is defined by a convex-curvilinear addendum tooth profile portion 41, a concave-curvilinear dedendum tooth profile portion 42 smoothly connected to the addendum tooth profile, and a tooth bottom portion 43 smoothly connected to the dedendum tooth profile portion. The tooth tip of the external teeth 34 is formed with a flat tooth tip surface 44 to secure a clearance between the internal teeth 24.

    [0023] The tooth profile of each portion of the external teeth 34 from the external-teeth outer end 34a to the external-teeth inner end 34e is determined as follows. The external teeth 34 has a tooth- bottom tooth thickness D1 which is set to be the same at each position in the tooth trace direction of the external teeth. The external teeth 34 has a tooth-tip tooth thickness which gradually decreases convex-curvilinear or concave-curvilinear from the external-teeth outer end 34a toward the external-teeth inner end 34e along the tooth trace direction of the external teeth (in other words, the width of the tooth tip surface 44 is gradually decreased), so that the tooth thickness D2a at the external-teeth outer end 34a is the largest and the tooth thickness D2e at the external-teeth inner end 34e is the smallest. Further, the pressure angle at the pitch point P gradually increases from the external-teeth outer end 34a toward the external-teeth inner end 34e along the tooth trace direction of the external teeth, so that the pressure angle αa at the external-teeth outer end 34a is the smallest and the pressure angle αe at the external-teeth inner end 34e is the largest.

    [0024] Although the tooth-bottom tooth thickness D1 is constant, it can also be set so as to gradually decrease from the externa-teeth outer end 34a toward the external-teeth inner end 34e. For example, the tooth-bottom tooth thickness D1 may be decreased in a linear state or in a convex-curvilinear or a concave-curvilinear state along the tooth trace direction. According to the invention, the tooth-tip tooth thickness is gradually decreased in a convex-curvilinear or a concave-curvilinear state along the tooth trace direction. It is also possible for the tooth depth of the external teeth 34 to be varied along the tooth trace direction.

    [0025] In an example, the tooth profiles for the external teeth 34 and internal teeth 24, which are capable of performing continuous meshing between these teeth, are determined at the position C of the principle cross-section (at the position of the ball center) in the tooth trace direction. For example, as is described in Patent document 2 (JP 63-115943 A) and Patent document 3 (JP 64-79448 A) which are referred to hereinbefore, a curve portion is derived from a movement locus of the external tooth obtained by rack approximation, the curve portion being a certain range of the movement locus from a meshing limit point thereof, a similarity curve of the curve portion is employed to define the principal tooth profiles of the both teeth. The tooth profile of the internal teeth 24 is set to be the same along the tooth trace direction. The tooth profile of the external teeth 34 at each position along the tooth trace direction is modified in accordance with the flexion amount of the external teeth 34 at each corresponding position along the tooth trace direction. Specifically, the tooth-tip tooth thickness of the external tooth is made to gradually decrease from the external-teeth outer end 34a toward the external-teeth inner end 34e along the tooth trace direction of the external tooth. Also, the pressure angle at the pitch point P of the external teeth 34 is made to gradually increase from the external-teeth outer end 34a toward the external-teeth inner end 34e along the tooth trace direction of the external teeth.

    [0026] Although the above example relates to a cup-type strain wave gearing, the present invention can also be applied to a silk-hat-type strain wave gearing in the similar manner.


    Claims

    1. A strain wave gearing (1) having 3-dimensional meshing tooth profile comprising:

    a rigid internally toothed gear (2); a flexible externally toothed gear (3, 3A) coaxially arranged inside the internally toothed gear (2); and a wave generator (4) fitted into the externally toothed gear (3, 3A),

    wherein the externally toothed gear (3, 3A) has a flexible cylindrical body (31); a diaphragm (32) extending in a radial direction from a rear end (32b) of the cylindrical body (31); and external teeth (34) formed on an outer circumferential surface portion on a side of a front end (31a) of the cylindrical body (31), the front end being an open end (31a),

    the cylindrical body (31) of the externally toothed gear (3, 3A) is flexed into an elliptical shape by the wave generator (4), and the external teeth (34) are meshed with internal teeth (24) of the internally toothed gear (2) on both ends in a direction of a major axis (L1) of the elliptical shape,

    a flexion amount of the external teeth (34) increases from an external-teeth inner end (34e) at a side of the diaphragm (32) toward an external-teeth outer end (34a) at a side of the open end (31a) along a tooth trace direction of the external teeth (34), the flexion amount being in proportion to a distance measured from the diaphragm (32),

    the internal teeth (24) have a tooth profile that is a same at each position along a tooth trace direction of the internal teeth (24), and

    the external teeth (34) have a tooth profile configured so that:

    a tooth-tip tooth thickness (D2a, D2e) thereof gradually decreases from the external-teeth outer end (34a) toward the external-teeth inner end (34e) along the tooth trace direction of the external teeth (34);

    characterized in that the tooth-tip thickness(D2a, D2e) decreases in a concave-curvilinear or a convex-curvilinear manner along the tooth trace direction of the external teeth (34), so that a pressure angle (αa,αe) at a pitch point (P) thereof gradually increases from the external-teeth outer end (34a) toward the external-teeth inner end (34e) along the tooth trace direction of the external teeth (34).


     
    2. The strain wave gearing (1) having 3-dimensional meshing tooth profile according to claim 1,

    wherein the external teeth (34) have a tooth-bottom tooth thickness (D1),

    the tooth-bottom tooth thickness (D1) being constant at each position along the tooth trace direction of the external teeth (34), or

    the tooth-bottom tooth thickness (D1) being gradually decreased from the external-teeth outer end (34a) toward the external-teeth inner end (34e).


     
    3. The strain wave gearing (1) having 3-dimensional meshing tooth profile according to claim 1,
    wherein the external teeth (34) have a tooth depth that varies along the tooth trace direction of the external teeth (34) .
     


    Ansprüche

    1. Verformungswellgetriebe (1) mit dreidimensionalem Zahneingriffsprofil, aufweisend:

    ein steifes innenverzahntes Zahnrad (2); ein flexibles außenverzahntes Zahnrad (3, 3A), das koaxial innerhalb des innenverzahnten Zahnrads (2) angeordnet ist; und einen Wellgenerator (4), der in das außenverzahnte Zahnrad (3, 3A) eingepasst ist,

    wobei das außenverzahnte Zahnrad (3, 3A) aufweist: einen flexiblen zylindrischen Körper (31); eine Membran (32), die sich in radialer Richtung von einem hinteren Ende (32b) des zylindrischen Körpers (31) weg erstreckt; und eine Außenverzahnung (34), die auf einem Außenumfangsflächenbereich auf einer Seite eines vorderen Endes (31a) des zylindrischen Körpers (31) gebildet sind, wobei das vordere Ende ein offenes Ende (31a) ist,

    wobei der zylindrische Körper (31) des außenverzahnten Zahnrads (3, 3A) durch den Wellgenerator (4) in eine elliptische Form gebogen wird und die Außenverzahnung (34) an beiden Enden in Richtung einer Hauptachse (L1) der elliptischen Form mit einer Innenverzahnung (24) des innenverzahnten Zahnrads (2) kämmt,

    wobei ein Biegeausmaß der Außenverzahnung (34) von einem inneren Ende (34e) der Außenverzahnung (34) auf der Seite der Membran (32) entlang einer Zahnbahnrichtung der Außenverzahnung (34) zu einem äußeren Ende (34a) der Außenverzahnung (34) auf einer Seite des offenen Endes (31) zu nimmt, wobei das Biegeausmaß proportional zu einer von der Membran (32) gemessenen Distanz ist,

    wobei die Innenverzahnung (24) ein Zahnprofil aufweist, das an jeder Stelle entlang einer Zahnbahnrichtung der Innenverzahnung (24) gleich ist, und

    wobei die Außenverzahnung (34) ein Zahnprofil aufweist, das derart ausge bildet ist, dass:

    eine Zahnspitzen-Zahndicke (D2a, D2e) desselben von dem äußeren Ende (34a) der Außenverzahnung (34) entlang der Zahnbahnrichtung der Außen verzahnung (34) zu dem inneren Ende (34e) der Außenverzahnung (34) allmählich abnimmt;

    dadurch gekennzeichnet, dass die Zahnspitzen-Dicke (D2a, D2e) entlang der Zahnbahnrichtung der Außenverzahnung (34) in konkav kurvenförmiger Weise oder in konvex kurvenförmiger Weise abnimmt, so dass ein Eingriffwinkel (aa, ae) an einem Wälzpunkt (P) derselben von dem äußeren Ende (34a) der Außenverzahnung (34) entlang der Zahnbahnrichtung der Außen verzahnung (34) zu dem inneren Ende (34e) der Außenverzahnung (34) allmählich zunimmt.


     
    2. Verformungswellgetriebe (1) mit dreidimensionalem Zahneingriffsprofil nach Anspruch 1,

    wobei die Außenverzahnung (34)eine Zahnboden-Zahndicke (D1) aufweist,

    wobei die Zahnboden-Zahndicke (D1) an jeder Stelle entlang der Zahnbahnrichtung der Außenverzahnung (34) konstant ist, oder

    wobei die Zahnboden-Zahndicke (D1) von dem äußeren Ende (34a) der Außenverzahnung (34) in Richtung auf das innere Ende (34e) der Außenverzahnung (34) allmählich abnimmt.


     
    3. Verformungswellgetriebe (1) mit dreidimensionalem Zahneingriffsprofil nach Anspruch 1,
    wobei die Außenverzahnung (34) eine Zahntiefe aufweist, die entlang der Zahnbahnrichtung der Außenverzahnung (34) variiert.
     


    Revendications

    1. Un engrenage à ondes de déformation (1) ayant un profil de dent d'engrènement tridimensionnel comprenant :

    un engrenage à denture interne (2) rigide ; un engrenage à denture externe (3, 3A) flexible disposé coaxialement à l'intérieur de l'engrenage à denture interne (2) ; et un générateur d'ondes (4) monté dans l'engrenage à denture externe (3, 3A),

    dans lequel l'engrenage à denture externe (3, 3A) présente un corps cylindrique flexible (31) ; un diaphragme (32) s'étendant dans une direction radiale à partir d'une extrémité arrière (32b) du corps cylindrique (31) ; et des dents externes (34) formées sur une partie de surface circonférentielle externe sur un côté d'une extrémité avant (31a) du corps cylindrique (31), l'extrémité avant étant une extrémité ouverte (31a),

    le corps cylindrique (31) de l'engrenage à denture externe (3, 3A) est fléchi en une forme elliptique par le générateur d'ondes (4), et les dents externes (34) sont engrenées avec les dents internes (24) de l'engrenage à denture interne (2) sur les deux extrémités dans une direction d'un axe principal (L1) de la forme elliptique,

    une quantité de flexion des dents externes (34) augmente à partir d'une extrémité interne des dents externes (34e) sur un côté du diaphragme (32) vers une extrémité externe des dents externes (34a) sur un côté de l'extrémité ouverte (31a) le long d'une direction de trace de dent des dents externes (34), la quantité de flexion étant proportionnelle à une distance mesurée à partir du diaphragme (32),

    les dents internes (34) ont un profil de dent qui est le même à chaque position le long d'une direction de trace de dent des dents internes (24), et

    les dents externes (34) ont un profil de dent configuré de sorte que :

    l'épaisseur de dent en bout de dent (D2a, D2e) qui y correspond diminue progressivement à partir de l'extrémité extérieure des dents externes (34a) vers l'extrémité intérieure des dents externes (34e) le long de la direction de trace de dent des dents externes (34) ;
    caractérisé en ce que l'épaisseur en bout de dent (D2a, D2e) décroît de façon concave - curviligne ou convexe - curviligne le long de la direction de trace de dent des dents externes (34),

    de sorte qu'un angle de pression (aa, αe) au niveau d'un point de pas (P) qui y correspond augmente progressivement à partir de l'extrémité extérieure des dents externes (34a) vers l'extrémité intérieure des dents externes (34e) le long de la direction de trace de dent des dents externes (34).


     
    2. L'engrenage à ondes de déformation (1) ayant un profil de dent d'engrènement tridimensionnel selon la revendication 1,

    dans lequel les dents externes (34) présentent une épaisseur de dent de fond de dent (D1),

    l'épaisseur de dent de fond de dent (D1) étant constante à chaque position le long de la direction de trace de dent des dents externes (34), ou

    l'épaisseur de dent de fond de dent (D1) étant progressivement diminuée à partir de l'extrémité extérieure des dents externes (34a) vers l'extrémité intérieure des dents externes (34e).


     
    3. L'engrenage à ondes de déformation (1) ayant un profil de dent d'engrènement tridimensionnel selon la revendication 1,
    dans lequel les dents externes (34) présentent une profondeur de dent qui varie le long de la direction de trace de dent des dents externes (34).
     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description