(19)
(11)EP 3 577 187 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
05.01.2022 Bulletin 2022/01

(21)Application number: 18703461.6

(22)Date of filing:  25.01.2018
(51)International Patent Classification (IPC): 
C09K 8/36(2006.01)
(52)Cooperative Patent Classification (CPC):
C10M 2215/08; C09K 8/035; C10M 2201/062; C09K 8/36; C04B 28/04; C04B 2103/46; C10N 2030/06; C10M 2215/28; C10M 2209/104; C10M 2201/08; C10N 2020/02; C10M 173/02; C09K 8/487; C09K 8/506; C04B 24/026; C09K 8/508; C10M 2215/042; C09K 8/467; C04B 2103/40; C09K 2208/34; C10M 2209/108; C09K 8/74; C09K 8/22; C09K 2208/12; C10N 2020/04; C04B 28/02; C10M 2207/046; C09K 8/28; C10M 2217/044; C09K 8/40; C04B 28/08; C10M 2201/103; Y02W 30/91; C10N 2020/017; C09K 8/04; C10M 2209/1045; C10N 2040/22; C10N 2050/013; C10M 173/00
 
C-Sets:
  1. C10M 2209/104, C10M 2209/108;
  2. C04B 28/02, C04B 24/026;
  3. C04B 28/04, C04B 18/08, C04B 18/141, C04B 18/146, C04B 24/026, C04B 24/32;
  4. C04B 28/04, C04B 18/08, C04B 18/141, C04B 18/146, C04B 24/08, C04B 24/32;
  5. C04B 28/04, C04B 18/08, C04B 18/141, C04B 18/146, C04B 24/026, C04B 2103/12, C04B 2103/22, C04B 2103/40, C04B 2103/46, C04B 2103/50;
  6. C04B 2103/40, C04B 24/026;
  7. C04B 28/04, C04B 18/08, C04B 18/141, C04B 18/146, C04B 24/026, C04B 24/32, C04B 2103/12, C04B 2103/22, C04B 2103/46, C04B 2103/50;
  8. C04B 28/02, C04B 24/026, C04B 24/08;
  9. C04B 28/08, C04B 7/02, C04B 18/08, C04B 18/146, C04B 24/026, C04B 24/08;

(86)International application number:
PCT/US2018/015191
(87)International publication number:
WO 2018/144307 (09.08.2018 Gazette  2018/32)

(54)

INVERT EMULSION BASED DRILLING FLUID AND METHODS OF USING SAME

AUF UMKEHREMULSION BASIERENDE BOHRFLÜSSIGKEIT UND VERFAHREN ZUR VERWENDUNG DAVON

FLUIDE DE FORAGE DE TYPE ÉMULSION INVERSE ET SES PROCÉDÉS D'UTILISATION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 03.02.2017 US 201762454189 P
03.02.2017 US 201762454192 P
02.06.2017 US 201715612397

(43)Date of publication of application:
11.12.2019 Bulletin 2019/50

(73)Proprietor: Saudi Arabian Oil Company
Dhahran 31311 (SA)

(72)Inventors:
  • WAGLE, Vikrant
    Dhahran 31311 (SA)
  • AL-YAMI, Abdullah
    Dhahran 31311 (SA)
  • ALHARETH, Nasser
    Dhahran 31311 (SA)

(74)Representative: D Young & Co LLP 
120 Holborn
London EC1N 2DY
London EC1N 2DY (GB)


(56)References cited: : 
WO-A1-2007/118328
US-A1- 2010 319 915
US-A1- 2005 049 147
US-A1- 2013 303 410
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] Embodiments of the present disclosure generally relate to drilling fluid compositions used for drilling oil wells and to methods of drilling subterranean wells using the drilling fluid compositions. More specifically, embodiments of the present disclosure generally relate to packer fluid compositions comprising a viscosifier package comprising a combination of a fatty acid and an aliphatic polyester.

    Background



    [0002] Oil and gas hydrocarbons are naturally occurring in some subterranean formations. During drilling operations, a drilling fluid, which may also be referred to as drilling mud, is circulated through the wellbore to cool the drill bit, to convey rock cuttings to the surface, or to support the wellbore against collapse of the wellbore and against intrusion of fluids from the formation, among other purposes. One type of drilling fluid includes packer fluids which are pumped into an annular opening between the casing and the wellbore wall or between adjacent and concentric strings of pipe extending into the wellbore. Packer fluids are also useful for the containment of reservoirs via hydrostatic pressure and reduction of the pressure gradient between the wellbore wall and casing to prevent wellbore collapse. In certain operations, packer fluids are also used to contact a packer, such as a swellable packer or bridge plug, and can be used for sand control, gravel packing, and workover operations. Drilling fluids, including packer fluids, are formulated to have certain fluid characteristics, such as density and rheology for example, which allow the drilling fluid to perform these functions.

    [0003] US 2010/0319915 discloses treating a subterranean formation using an invert emulsion wellbore fluid comprising an oleaginous continuous phase, a non-oleaginous discontinuous phase, an emulsifier, at least one degradable material and at least one bridging material. WO 2007/118328 and US 2005/0049147 disclose the use of fatty acid emulsifiers in drilling fluids. US 2013/0303410 discloses the use of a fatty acid dimer diamine as a rheology modifier in an invert emulsion drilling fluid.

    Summary



    [0004] However, there is an ongoing need for drilling fluids, and specifically packer fluids, which are viscous, insulative, and pumpable at low surface temperatures, such as below 0 °C.

    [0005] Embodiments of the present disclosure are directed to drilling fluid compositions having a viscosifier package comprising a combination of a fatty acid and aliphatic polyester and methods for drilling a subterranean well using the drilling fluid compositions having the viscosifier package.

    [0006] According to one aspect of the invention, a drilling fluid composition includes a base fluid, one or more additives, and a viscosifier package. The base fluid is an invert emulsion comprising oil and water. Further, the one or more additives is chosen from an emulsifier, a weighting material, a fluid-loss control additive, or an alkaline compound. The viscosifier package includes a long chain fatty acid having a carbon chain of 12 to 36 carbons and an aliphatic polyester chosen from polylactic acid, polyglycolic acid, poly(lactic-co-glycolic acid), polycaprolactone, and polyhydroxybutyrate. The drilling fluid composition has a yield point of from 14.36 to 47.88 Pa (30 lbf/100ft2 to 100 lbf/100ft2) measured at 48.9 °C (120 °F) according to API recommended practice 13-B2 according to the formula: yield point = [2 x (300 rpm shear rate)]-(600 rpm shear rate) and a low shear yield point of from 4.79 to 19.15 Pa (10 lbf/100ft2 to 40 lbf/100ft2) measured at 48.9 °C (120 °F) according to API recommended practice 13-B2 according to the formula: low shear yield point = [2 x (3 rpm shear rate)]-(6 rpm shear rate), where the drilling fluid composition comprises from 0.94 to 57.06 kg/m3 (0.33 lb/bbl to 20 lb/bbl) of the viscosifier package.

    [0007] According to another aspect, there is provided, a method of drilling a subterranean well includes operating a drill in a wellbore in the presence of the drilling fluid composition of the invention.

    [0008] Additional features and advantages of the described embodiments will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the described embodiments, including the detailed description which follows and the claims.

    Detailed Description



    [0009] Embodiments of the present disclosure are directed to viscosifier packages for drilling fluids, in particular to drilling fluid compositions incorporating the viscosifier package. The viscosifier package is a combination of a fatty acid and an aliphatic polyester. The drilling fluid composition incorporating the viscosifier package includes a base fluid, one or more additives including emulsifiers, weighting material, fluid-loss control additives, or alkaline compounds, and the viscosifier package with a long chain fatty acid having a carbon chain of 12 to 36 carbons and an aliphatic polyester chosen from polylactic acid, polyglycolic acid, poly(lactic-co-glycolic acid), polycaprolactone, and polyhydroxybutyrate,. The drilling fluid composition with the viscosifier package comprising both a fatty acid and an aliphatic polyester has enhanced rheology compared to a drilling fluid with neither a fatty acid nor an aliphatic polyester or with only a fatty acid.

    [0010] To drill a subterranean well, a drill string, including a drill bit and drill collars to weight the drill bit, is inserted into a predrilled hole and rotated to cause the drill bit to cut into the rock at the bottom of the hole. The drilling operation produces rock fragments. To remove the rock fragments from the bottom of the wellbore, a drilling fluid, such as the drilling fluid composition, is pumped down through the drill string to the drill bit. The drilling fluid cools the drill bit and lifts the rock fragments known as cuttings away from the drill bit. The drilling fluid carries the cuttings upwards as the drilling fluid is recirculated back to the surface. At the surface, the cuttings are removed from the drilling fluid through a secondary operation, and the drilling fluid is recirculated back down the drill string to the bottom of the wellbore for collection of further cuttings. It will be appreciated by one skilled in the art that multiple terms familiar to those skilled in the art may be used to describe the same thing. For example, a subterranean well may alternatively be called a borehole or wellbore and usage of a single term is meant to encompass each of the related terms as well.

    [0011] Drilling fluids include drilling muds, packer fluids, and completion fluids. As used herein, "drilling fluid" means any fluid used to aid the drilling of boreholes into subterranean formations. As used herein, "completion fluids" are solids-free liquid used to "complete" an oil or gas well. Specifically, this fluid is placed in the well to facilitate final operations prior to initiation of production, such as setting screens production liners, downhole valves or shooting perforations into the producing zone. The fluid is meant to control a well should downhole hardware fail, without damaging the producing formation or completion components. As used herein, a packer fluid is a fluid that is left in the annular region of a well between tubing and outer casing above a packer. The main functions of a packer fluid are: (1) to provide hydrostatic pressure in order to lower differential pressure across the sealing element, (2) to lower differential pressure on the wellbore and casing to prevent collapse and (3) to protect metals and elastomers from corrosion. Generically, drilling fluids serve a number of functions with different types specializing in a particular function or functions. In one or more embodiments, the drilling fluid composition assists in the removal of cuttings from the bottom of a borehole during drilling operations. The drilling fluid composition suspends the cuttings and weighted material transports the cutting to the borehole surface with the drilling fluid composition. Additionally, the drilling fluid composition may absorb gases in the borehole, such as carbon dioxide (CO2), hydrogen sulfide (H2S), and methane (CH4), and transport them to the borehole surface for release, sequestration, or burn-off. In further embodiments, the drilling fluid composition also provides a cooling and lubrication functionality for cooling and lubrication of the bit and drill string utilized in boring operations. The drilling fluid composition additionally provides buoyancy to the drill string relieving the tension on the drill string as the length of the borehole increases. In embodiments, the drilling fluid composition also controls subsurface pressures. Specifically, the drilling fluid composition provides hydrostatic pressure in the borehole to provide support to the sidewalls of the borehole and prevent the sidewalls from collapsing and caving in on the drill string. Additionally, the drilling fluid composition provides hydrostatic pressure in the bore to prevent fluids in the downhole formations from flowing into the borehole during drilling operations.

    [0012] Under certain extreme downhole conditions, such as excessive temperature or difficult formations, some of the properties of the drilling fluid may be altered. For example, interaction of a drilling fluid with a formation having swelling clay, excessive solids content, or both, or subjecting the drilling fluid to extreme downhole temperatures. The temperatures, which range from surface temperature (ambient temperature) up to 500 °F (260 °C), may cause the drilling fluid to thicken or thin, excessively increase or decrease in viscosity, or any combination of these. Controlling the rheology of the drilling fluid can help to prevent barite sag, good cuttings disposal from the wellbore. In some drilling scenarios, a drilling fluid having an increased density, and therefore increased solids content, may enable drilling of a pressurized formation or may be used to control and kill a flowing downhole formation. A flowing downhole formation refers to a formation in which the fluid in the formation is flowing into the wellbore. The increased concentration of solids and increased density of the drilling fluids used in these applications increase the ability of the drilling fluids to support the wellbore and provide enhanced hydrostatic pressure to prevent fluids in the formation from flowing into the wellbore.

    [0013] The viscosifier package imparts enhanced rheology to the drilling fluid composition thereby gelling the drilling fluid composition. The synergistic effect of both the fatty acid and the aliphatic polyester imparts the enhanced rheology. Without wishing to be bound by theory, it is believed that the aliphatic polyester undergoes hydrolysis to create smaller chain products which along with the fatty acid results in the synergistic combination and increased rheology of the drilling fluid composition. For example, polylactic acid may undergo hydrolysis to generate lactic acid. The lactic acid, which has a smaller chain than polylactic acid, along with the fatty acid generates a synergistic combination which increases the rheology of the fluid. Mixing of lactic acid and fatty acid in the fluid at the surface will lead to a thick fluid with a high yield point (YP). Such a fluid may be difficult to pump. Smaller chain lactic acid and longer chain fatty acid can lead to good packing of the molecules at the oil-water interface in the drilling fluid thereby enhancing the rheology of the fluid.

    [0014] In one or more embodiments, the weight ratio of the fatty acid to the aliphatic polyester is in the range of 1:60 to 60:1. In further embodiments, the weight ratio of the fatty acid to the aliphatic polyester is in the range of 1:40 to 40:1, 1:20 to 20:1, 1:10 to 10:1, 1:5 to 5:1, 1:4 to 4:1, 1:3 to 3:1, 1:3 to 2:1, or 1:3 to 1:1. In yet further embodiments, the weight ratio of the fatty acid to the aliphatic polyester are in the range of 1:3 to 2:3 or approximately 1:2.

    [0015] In various embodiments, the aliphatic polyester comprises one or more polyesters chosen from polylactic acid, polyglycolic acid, poly(lactic-co-glycolic acid), polycaprolactone, and polyhydroxybutyrate.

    [0016] A fatty acid is a carboxylic acid with a long aliphatic chain, which is either saturated or unsaturated. Most naturally occurring fatty acids have an unbranched chain of an even number of carbon atoms, from 4 to 28. In one or more embodiments, the fatty acid is a long chain fatty acid having a carbon chain of 12 to 36 carbons. In further embodiments, the drilling fluid composition comprises fatty acid with a carbon chain of 14 to 24 carbons, 16 to 22 carbons, or 16 to 18 carbons. In embodiments, the fatty acid is a saturated fatty acid.

    [0017] As stated above, the drilling fluid composition includes at least a base fluid, the viscosifier package, and one or more additives, which may be used to change one or more characteristics of the drilling fluid. In one or more embodiments the drilling fluid composition comprises from 0.94 to 42.80 kg/m3 [0.33 to 15 pounds per barrel (lb/bbl)] of the viscosifier package, based on the total weight of the drilling fluid composition. The viscosifier package must be present in sufficient quantity to gel the drilling fluid composition, but not at an excessive quantity to impede other properties of the drilling fluid composition. Specifically, the amount of viscosifier must be controlled as too little viscosifier will not result in gelling while too much will result in excessive gelling. In further embodiments, the drilling fluid composition comprises from 0.94 to 57.06 kg/m3 (0.33 to 20 lb/bbl) of the viscosifier package. In embodiments, the drilling fluid composition comprises from 0.94 to 42.80 kg/m3 (0.33 to 15 lb/bbl), 0.94 to 22.82 kg/m3 (0.33 to 8 lb/bbl), 0.94 to 28.53 kg/m3 (0.33 to 10 lb/bbl), 2.85 to 42.80 kg/m3 (1 to 15 lb/bbl), 2.85 to 28.53 kg/m3 (1 to 10 lb/bbl), 2.85 to 14.27 kg/m3 (1 to 5 lb/bbl), 8.56 to 42.80 kg/m3 (3 to 15 lb/bbl), 8.56 to 28.53 kg/m3 (3 to 10 lb/bbl), or 8.56 to 14.27 kg/m3 (3 to 5 lb/bbl) of the viscosifier package. In yet further embodiments, the drilling fluid composition comprises from 11.41 to 28.53 kg/m3 (4 to 10 lb/bbl), 11.41 to 22.82 kg/m3 (4 to 8 lb/bbl), 11.41 to 14.27 kg/m3 (4 to 5 lb/bbl), or approximately 12.84 kg/m3 (4.5 lb/bbl) of the viscosifier package.

    [0018] In one or more embodiments, the base fluid of the drilling fluid composition is a water-in-oil emulsion known as an invert emulsion. Smaller chain lactic acid and longer chain fatty acids may lead to enhanced packing of the molecules at the oil-water interface in the drilling fluid, thereby enhancing the rheology of the fluid. The enhanced packing of the molecules would not work in a water based drilling fluid.

    [0019] In water-in-oil emulsions or invert emulsions, oil is a continuous phase and water is dispersed in the continuous oil phase by emulsification so that the drilling fluid does not have a distinct water layer. The oil may be a natural oil or a synthetic oil. The choice of oils may vary based on multiple factors. For example, the choice of oils may depend on the availability of the oil, environmental concerns and cost. Diesel is more readily available and thus more cost effective but environmentally unfriendly. Mineral oils and synthetic oils are environmentally friendly but can be costly. The water in the base fluid may include one or more of deionized, tap, distilled or fresh waters; natural, brackish and saturated salt waters; natural, salt dome, hydrocarbon formation produced or synthetic brines; filtered or untreated seawaters; mineral waters; and other potable and non-potable waters containing one or more dissolved salts, minerals or organic materials. In embodiments, the water is chosen from fresh water, filtered water, distilled water, sea water, salt water, formation brine, produced water, or combinations thereof. Normally, a brine is chosen as the preferred internal phase. This is done to maintain the osmotic balance between the fluid and the formation. In embodiments, the drilling fluid composition comprises from 85.59 to 427.95 kg/m3 (30 lb/bbl to 150 lb/bbl) of the brine. In some embodiments, the base fluid is an invert emulsion comprising oil and a CaCl2 brine. Typically calcium chloride brine having a concentration between 10% w/w to 39% w/w of solution is chosen as the internal phase. The calcium chloride brine is formed from water and CaCl2. In one or more embodiments, the drilling fluid composition comprises from 28.53 to 128.39 kg/m3 (10 to 45 lb/bbl), 57.06 to 114.12 kg/m3 (20 to 40 lb/bbl), 71.33 to 99.86 kg/m3 (25 lb/bbl to 35 lb/bbl), or approximately 85.59 kg/m3 (30 lb/bbl) of the CaCl2. In one or more embodiments, the drilling fluid composition comprises from 85.59 to 427.95 kg/m3 (30 to 150 lb/bbl), 142.65 to 399.42 kg/m3 (50 to 140 lb/bbl), 199.71 to 370.89 kg/m3 (70 lb/bbl to 130 lb/bbl), 256.77 to 356.63 kg/m3 (90 lb/bbl to 125 lb/bbl), or approximately 328.10 kg/m3 (115 lb/bbl) of the brine (water and CaCl2).

    [0020] In one or more embodiments, the base fluid comprises an oil to water ratio by volume of 50:50 to 95:05. In further embodiments, the base fluid comprises an oil to water ratio by weight of 50:50 to 80:20, 50:50 to 75:25, 55:45 to 85:15, 60:40 to 85:15, 65:35 to 85:15, 70:30 to 85:15, 60:40 to 80:20, or 65:35 to 75:25. In yet further embodiments, the base fluid comprises an oil to water ratio by volume of 68:32 to 72:28 or approximately 70:30.

    [0021] The drilling fluid composition may have a weight percent of base fluid of from 1 to 99 wt.%, from 20 wt.% to 80 wt.%, from 30 wt.% to 70 wt.%, from 40 wt.% to 60 wt.%, or from 45 wt.% to 55 wt.% based on the total weight of the drilling fluid composition. Said another way, the drilling fluids may include from 14.27 to 2425.06 kg/m3 (5 lb/bbl to 850 lb/bbl), 285.30 to 2139.76 kg/m3 (100 lb/bbl to 750 lb/bbl), 427.95 to 1711.81 kg/m3 (150 lb/bbl to 600 lb/bbl), or 570.60 to 855.90 kg/m3 (200 lb/bbl to 300 lb/bbl) of base fluid. In embodiments, the drilling fluid composition contains an amount of base fluid, which is dependent on application. For example, the amount of oil or the oil to water ratio depends on the mud weight. For lower mud weight, we use low oil to water ratio. At lower mud weight, the fluid has less solids (weighting material) and hence it needs more water than oil to build up the viscosity.

    [0022] In further embodiments, additives in the drilling fluid composition may include a weighting material. The weighting material has a specific gravity (SG) suited for raising the drilling fluid composition density. In some embodiments, the weighting material may be a particulate solid having a specific gravity sufficient to increase the density of the drilling fluid composition by a certain amount without adding excessive weighting material such that the drilling fluid composition cannot be circulated through the wellbore. The weighting material may have a specific gravity of from 2 grams per cubic centimeter (g/cm3) to 6 g/cm3. Examples of weighting materials include, but are not limited to, barite (minimum SG of 4.20 grams per cubic centimeter (g/cm3)), hematite (minimum SG of 5.05 g/cm3), calcium carbonate (minimum SG of 2.7-2.8 g/cm3), siderite (minimum SG of 3.8 g/cm3), ilmenite (minimum SG of 4.6 g/cm3), other weighting materials, or any combination of these weighting materials. Some example drilling fluid compositions may include barite as the solid.

    [0023] The weight percent of the weighting material in the drilling fluid composition may be 1 to 99 wt.%, from 20 wt.% to 80 wt.%, from 30 wt.% to 70 wt.%, from 40 wt.% to 60 wt.%, or from 40 wt.% to 50 wt.% based on the total weight of the drilling fluid composition. Said another way, the drilling fluids may include from 14.27 to 2425.06 kg/m3 (5 lb/bbl to 850 lb/bbl), 285.30 to 2139.76 kg/m3 (100 lb/bbl to 750 lb/bbl), 427.95 to 1426.51 kg/m3 (150 lb/bbl to 500 lb/bbl), or 499.28 to 784.58 kg/m3 (175 lb/bbl to 275 lb/bbl) of weighting material. In embodiments, the drilling fluid composition contains an amount of weighting material sufficient to achieve a particular desired density.

    [0024] Other additives may be incorporated into the drilling fluid to enhance one or more characteristics of the drilling fluid. Examples of other additives include, but are not limited to, emulsifiers, fluid-loss control additives, alkaline compounds, or combinations of these. The drilling fluid may also include pH adjustor, electrolytes, glycols, glycerols, dispersion aids, corrosion inhibitors, defoamers, and other additives or combinations of additives.

    [0025] An additional viscosifier beyond the viscosifier package may be added to the drilling fluid to impart non-Newtonian fluid rheology to the drilling fluid and to facilitate lifting and conveying rock cuttings to the surface of the wellbore. Examples of viscosifiers may include, but are not limited to, xanthan gum polymer (XC polymer), bentonite, polyacrylamide, polyanionic cellulose, or combinations of these viscosifiers. In some embodiments, the drilling fluid composition may include xanthan gum polymer, which is a polysaccharide secreted by the bacteria Xanthomonas Campestris (XC). An example drilling fluid composition may include from 0.01 wt.% to 0.1 wt.% of the xanthan gum polymer. In another example drilling fluid composition, bentonite may be added to the drilling fluid in an amount from 0.01 wt.% to 1 wt.%. Other suitable viscosifiers may be used in the drilling fluid without deviating from the scope of the present subject matter.

    [0026] The drilling fluid composition may optionally include one or more alkaline compounds for pH adjustment, which may include lime (calcium hydroxide or calcium oxide), soda ash (sodium carbonate), sodium hydroxide, potassium hydroxide, other strong bases, or combinations thereof. It is noted that conjugate bases to acids with a pKα of more than about 13 are considered strong bases. The pH may be maintained within a range in order to minimize corrosion caused by the drilling fluid on steel tubulars, tanks, pumps, and other equipment contacting the drilling fluid. Additionally, the alkaline compounds may react with gases, such as CO2 or H2S for example, encountered by the drilling fluid during drilling operations to prevent the gases from hydrolyzing one or more components of the drilling fluid. Some example drilling fluid compositions may optionally include from 0.29 to 28.53 kg/m3 (0.1 lb/bbl to 10 lb/bbl) of alkaline compounds. In some embodiments, the drilling fluid compositions includes from 0.29 to 28.53 kg/m3 (0.1 lb/bbl to 10 lb/bbl) of lime, 1.43 to 14.27 kg/m3 (0.5 lb/bbl to 5 lb/bbl) of lime, or 2.85 to 5.71 kg/m3 (1 lb/bbl to 2 lb/bbl) of lime. In other embodiments, the drilling fluid compositions includes from 1.43 to 28.53 kg/m3 (0.5 lb/bbl to 10 lb/bbl) of lime.

    [0027] In one or more embodiments, the drilling fluid composition may include from 19.97 to 71.33 kg/m3 (7 lb/bbl to 25 lb/bbl) of emulsifier, from 22.82 to 57.06 kg/m3 (8 lb/bbl to 20 lb/bbl) of emulsifier, or from 25.68 to 42.80 kg/m3 (9 lb/bbl to 15 lb/bbl) of emulsifier. In one or more embodiments, the emulsifier may be an invert emulsifier and oil-wetting agent for synthetic based drilling fluid systems such as a carboxylic acid terminated polyamide. A commercially available carboxylic acid terminated polyamide is LE SUPERMUL, available from Halliburton Energy Services, Inc.

    [0028] In one or more embodiments, fluid-loss control additive may be added to the oil-based drilling fluid composition to reduce the amount of filtrate lost from the oil-based drilling fluid composition into a subsurface formation. Examples of fluid-loss control additives include organophilic (for example, amine-treated) lignite, bentonite, manufactured polymers, and thinners or deflocculants. The drilling fluid composition may include from 2.85 to 28.53 kg/m3 (1 lb/bbl to 10 lb/bbl) of fluid-loss control additive, from 2.85 to 14.27 kg/m3 (1 lb/bbl to 5 lb/bbl) of fluid-loss control additive, from 4.28 to 22.82 kg/m3 (1.5 lb/bbl to 8 lb/bbl) of fluid-loss control additive, or from 4.28 to 7.13 kg/m3 (1.5 lb/bbl to 2.5 lb/bbl) of fluid-loss control additive.

    [0029] Commercially available example fluid-loss control additives include VERSATROL, VERSALIG, ECOTROL RD, ONETROL HT, EMI 789, and NOVATECH F, all commercially available from MI SWACO, Houston, Texas, and DURATONE® HT (organophilic leonardite fluid loss additive) which is commercially available from Halliburton Energy Services, Inc. In one or more embodiments, the fluid-loss control additive may be a methylstyrene/acrylate copolymer filter control agent such as ADAPTA® which is commercially available from Halliburton Energy Services, Inc.

    [0030] In one or more embodiments, the drilling fluid composition is substantially free of organoclay. For purposes of this disclosure, substantially free of organoclay means the drilling fluid composition comprises less than 0.01 wt.% organoclay. In embodiments, the drilling fluid composition comprises less than 0.001 wt.% organoclay or less than 0.0001 wt.% organoclay. Organoclays, which are solids, may increase the plastic viscosity of the fluid, which is detrimental for a drilling fluid.

    [0031] The drilling fluid composition may have a density of from 961.11 to 2482.86 kg/m3 (60 pounds of mass per cubic foot (lbm/ft3) to 155 lbm/ft3), from 961.11 to 2082.40 kg/m3 (60 lbm/ft3 to 130 lbm/ft3), from 961.11 to 1922.22 kg/m3 (60 lbm/ft3 to 120 lbm/ft3), from 1121.29 to 2242.58 kg/m3 (70 lbm/ft3 to 140 lbm/ft3), from 1121.29 to 2002.31 kg/m3 (70 lbm/ft3 to 125 lbm/ft3), from 1211.29 to 1762.03 kg/m3 (70 lbm/ft3 to 110 lbm/ft3), from 1281.48 to 1922.22 kg/m3 (80 lbm/ft3 to 120 lbm/ft3), from 1281.48 to 1762.03 kg/m3 (80 lbm/ft3 to 110 lbm/ft3), or from 1281.48 to 1601.85 kg/m3 (80 lbm/ft3 to 100 lbm/ft3), where 1 lbm/ft3 is approximately 16.02 kilograms per cubic meter (kg/m3). In some embodiments, the drilling fluid composition may have a density that is approximately equal to 1441.2 kg/m3 (90 lbm/ft3) alternatively commonly referenced as 90 pcf.

    [0032] During circulation of the drilling fluid composition through the wellbore, the drilling fluid composition accumulated cuttings and other solids. Additionally, the drilling fluid itself has solids dispersed throughout, such as weighting material. During circulation of the drilling fluid composition the solids are continuously mixed and suspended within the drilling fluid composition. However, when circulation of the drilling fluid composition is interrupted or terminated the solids may settle or separate from the bulk of the drilling fluid composition based on the rheology of the drilling fluid composition. Settling of the cuttings and other solids in undesirable because they would accumulate at the bottom of the wellbore and potentially prevent the drill from rotating or completely block the flow path of the drilling fluid composition upon resumption of drilling activities. In an attempt to avoid setting and separation of solids upon interruption of circulation of the drilling fluid composition, the drilling fluid composition according to the present invention has a yield point of from 14.4 to 48 Pa (30 pounds of force per 100 square feet (lbf/100ft2) to 100 lbf/100ft2). As disclosed herein, the drilling fluid composition may have a low shear yield point of from 4.8 to 48 Pa (10 lbf/100ft2 to 100 lbf/100ft2), where 1 lbf/100ft2 is approximately 0.48 Pascal (Pa). The elevated yield point and low shear yield point assists in ensuring the drilling fluid composition gels upon interruption of circulation of the drilling fluid composition and thereby entrains the solids within the gel formation to prevent settling.

    [0033] The viscosifier package also adjusts the rheology and viscosity of the drilling fluid composition when combined with the base fluid and one or more additives. The addition of the viscosifier package including the polylactic acid or other aliphatic polyester results in increased yield points and gel strength. As previously indicated, the increased viscosity, yield point, and gel strength assists in maintaining suspension of solids and cuttings within the drilling fluid composition both during circulation and when circulation is interrupted.

    [0034] The viscosity of the drilling fluid composition may be measured using a standard oilfield viscometer according to test methods provided in the American Petroleum Institute (API) Recommended Practice For Field Testing Oil-Based Drilling Fluids (RP 13B-2/ISO 10414-1:2002) published August 2014. Drilling fluid is placed in an annular space between two concentric cylinders. The outer cylinder is rotated at a constant rotational velocity which produces a torque on the inner cylinder (or spindle) which is measured. The viscosity is reported as shear stress in units of pounds of force per 100 square feet (lbf/100ft2) or Pa. The viscometer, which may be a Fann 35 from FANN Instruments, may be used to measure the shear rate of the drilling fluid compositions.

    [0035] The gel strength refers to the shear stress of the drilling fluid measured at a low shear rate following a defined period of time during which the drilling fluid is maintained in a static state. The shear stress at low shear rate may be measured using a standard oilfield viscometer operated at low rpms, such as at 3 rpm, according to the test methods described in API RP 13B-2. To measure the gel strength, the drilling fluid is first stirred by contacting the drilling fluid with the spindle of the viscometer and operating the viscometer at 600 rotations per minute (rpm) for 10 seconds. The viscometer is then turned off for a period of time (time period). For a 10 second gel strength, the time period is 10 seconds, and for a 10 minute gel strength, the time period is 10 minutes. Other time periods for measuring gel strength are contemplated. During the time period, the drilling fluid comes to rest in a static state. Upon expiration of the time period, the viscometer is turned back on at a low speed, such as 3 rpm, to generate a low shear rate. The viscometer reading is then taken. The gel strength is reported in units of pounds of force per 100 square feet (lbf/100 ft2) or Pa.

    [0036] The 10 second gel strength provides an indication of the ability of the drilling fluid composition to gel immediately upon termination of drill rotation and circulation of the drilling fluid composition. Quick or near instantaneous gelling of the drilling fluid composition upon termination of circulation helps ensure solids do not settle before gelling. A sufficiently high 10 second gel strength indicates the drilling fluid composition formed a robust gel quickly after removal of agitation. The drilling fluid compositions, may have a 10 second gel strength of from 4.79 to 11.97 Pa (10 lbf/100 ft2 to 25 lbf/100 ft2), from 4.79 to 9.58 Pa (10 lbf/100 ft2 to 20 lbf/100 ft2), from 4.79 to 7.18 Pa (10 lbf/100 ft2 to 15 lbf/100 ft2), from 4.79 to 5.75 Pa (10 lbf/100 ft2 to 12 lbf/100 ft2), from 5.03 to 5.51 Pa (10.5 lbf/100 ft2 to 11.5 lbf/100 ft2), or from 5.17 to 5.36 Pa (10.8 lbf/100 ft2 to 11.2 lbf/100 ft2). In one or more embodiments, the drilling fluid compositions may have a 10 second gel strength of approximately 5.27 Pa (11 lbf/100 ft2).

    [0037] Similarly, the 10 minute gel strength provides an indication of the ability of the drilling fluid composition to sustain a gelled configuration for a sustained period after termination of drill rotation and circulation of the drilling fluid composition. A sufficiently high 10 minute gel strength indicates the drilling fluid composition formed a robust gel which was maintained during periods without agitation. The drilling fluid compositions, may have a 10 minute gel strength of 4.79 to 23.94 Pa (10 lbf/100 ft2 to 50 lbf/100 ft2), from 4.79 to 9.58 Pa (10 lbf/100 ft2 to 20 lbf/100 ft2), from 5.75 to 11.97 Pa (12 lbf/100 ft2 to 25 lbf/100 ft2), from 5.75 to 9.58 Pa (12 lbf/100 ft2 to 20 lbf/100 ft2), from 5.75 to 8.62 Pa (12 lbf/100 ft2 to 18 lbf/100 ft2), from 6.70 to 7.66 Pa (14 lbf/100 ft2 to 16 lbf/100 ft2), or from 6.94 to 7.42 Pa (14.5 lbf/100 ft2 to 15.5 lbf/100 ft2). In one or more embodiments, the drilling fluid composition may have a 10 minute gel strength of approximately 7.18 Pa (15 lbf/100 ft2).

    [0038] The drilling fluid composition behaves as a rigid body at low stress, but flows as a viscous fluid at higher shear stress. The rheology of the drilling fluid composition may be modeled based on Bingham plastic flow behavior. Additionally, the rheological behavior of the drilling fluid composition may be determined by measuring the shear stress on the drilling fluid composition at different shear rates, which may be accomplished by measuring the shear stress, the shear rate, or both on the drilling fluid using a viscometer (FANN 35 rheometer) at 3 rpm, 6 rpm, 300 rpm, and 600 rpm. Rheology measurements were done at 48.9 °C (120 °F). The rheology of the drilling fluid composition may be evaluated from the plastic viscosity (PV) and the yield point (YP), which are parameters from the Bingham plastic rheology model. The PV is related to the resistance of the drilling fluid composition to flow due to mechanical interaction between the solids of the drilling fluid composition and represents the viscosity of the drilling fluid composition extrapolated to infinite shear rate. The PV reflects the type and concentration of the solids in the drilling fluid composition, and a lesser PV is preferred. The PV of the drilling fluid composition may be estimated by measuring the shear rate of the drilling fluid composition using the viscometer at spindle speeds of 300 rotations per minute (rpm) and 600 rpm and subtracting the 300 rpm measurement from the 600 rpm measurement according to Equation 1, which is provided infra. The PV is provided in this disclosure in units of centipoise (cP).



    [0039] The YP represents the shear stress below which the drilling fluid composition behaves as a rigid body and above which the drilling fluid composition flows as a viscous fluid. Specifically, the YP represents the amount of stress required to move the drilling fluid composition from a static condition. The YP is expressed as a force per area, such as pounds of force per one hundred square feet (lbf/100ft2). YP provides an indication of the carrying capacity of the drilling fluid composition for rock cuttings through the annulus, which provides an indication the hole-cleaning ability of the drilling fluid composition. Additionally, frictional pressure loss is directly related to the YP. If you have a higher YP, you will have higher pressure loss while the drilling fluid composition is being circulated. A drilling fluid having a YP of equal to or greater than 7.18 Pa (15 lbf/100ft2) is considered acceptable for drilling and a YP of equal to or greater than 14.36 Pa (30 lbf/100ft2) is considered acceptable for utilization as a packer fluid. The YP is determined by extrapolating the Bingham plastic rheology model to a shear rate of zero. The YP may be estimated from the PV from Equation 1 by subtracting the PV obtained from Equation 1 from the shear rate of the drilling fluid composition measured at 300 rpm according to Equation 2 provided infra.



    [0040] The yield stress is a parameter obtained from the Herschel Buckley (HB) rheology model. The yield stress may be obtained by fitting the HB model to a shear stress vs. shear rate curve, which is obtained by plotting the dial readings against the corresponding rpm determined on a standard oilfield viscometer. The yield stress indicates the susceptibility of the drilling fluid composition to have barite sag. A high yield stress value is expected to result in a sag resistant drilling fluid composition. The yield stress of the drilling fluid composition may be estimated by calculating the low shear yield point (LSYP). The LSYP is determined by measuring the shear rate of the drilling fluid composition using the viscometer at spindle speeds of 6 rpm and 3 rpm and subtracting the 6 rpm viscometer measurement from twice the 3 rpm viscometer measurement according to Equation 3, which is provided infra.



    [0041] The LSYP is expressed as a force per area, such as pounds of force per one hundred square feet (lbf/100ft2). A drilling fluid having a LSYP of equal to or greater than 2.39 Pa (5 lbf/100ft2) considered acceptable for drilling and a LSYP of equal to or greater than 4.79 Pa (10 lbf/100ft2) is considered acceptable for utilization as a packer fluid.

    [0042] In one or more embodiments, the drilling fluid composition has a YP of from 14.36 to 47.88 Pa (30 lbf/100ft2 to 100 lbf/100ft2). In embodiments, the drilling fluid composition may have a YP of from 14.36 to 38.30 Pa (30 lbf/100ft2 to 80 lbf/100ft2), from 14.36 to 33.52 Pa (30 lbf/100ft2 to 70 lbf/100ft2), from 15.32 to 47.88 Pa (32 lbf/100ft2 to 100 lbf/100ft2), from 15.32 to 38.30 Pa (32 lbf/100ft2 to 80 lbf/100ft2), from 15.32 to 33.52 Pa (32 lbf/100ft2 to 70 lbf/100ft2), from 16.28 to 47.88 Pa (34 lbf/100ft2 to 100 lbf/100ft2), from 16.28 to 38.30 Pa (34 lbf/100ft2 to 80 lbf/100ft2), or from 16.28 to 33.52 Pa (34 lbf/100ft2 to 70 lbf/100ft2). In one or more embodiments, the drilling fluid composition may have a YP of from 14.36 to 28.73 Pa (30 lbf/100ft2 to 60 lbf/100ft2). Alternatively, in some embodiments, the drilling fluid composition may have a YP of from 14.36 to 23.94 Pa (30 lbf/100ft2 to 50 1bf/100ft2).

    [0043] In one or more embodiments, the drilling fluid composition has a LSYP of from 4.79 to 19.15 Pa (10 lbf/100ft2 to 40 lbf/100ft2). In embodiments, the drilling fluid composition may have a LSYP of from 4.79 to 14.36 Pa (10 lbf/100ft2 to 30 lbf/100ft2), from 4.79 to 9.58 Pa (10 lbf/100ft2 to 20 lbf/100ft2), or from 4.79 to 8.62 Pa (10 lbf/100ft2 to 18 lbf/100ft2). In one or more embodiments, the drilling fluid composition may have a LSYP of from 4.79 to 11.97 Pa (10 lbf/100ft2 to 25 lbf/100ft2). Alternatively, in some embodiments, the drilling fluid composition may have a LSYP of from 4.79 to 7.18 Pa (10 lbf/100ft2 to 15 lbf/100ft2).

    [0044] Drilling fluid compositions containing the viscosifier package may be used in various methods such as methods for drilling subterranean wells. Embodiments of methods for drilling subterranean wells will now be discussed.

    [0045] The drilling fluid composition that includes the viscosifier package may be used for drilling a subterranean well. According to embodiments, methods of drilling a subterranean well may include operating a drill in a wellbore in the presence of a drilling fluid composition as defined above. In some example methods, the base fluid is an invert emulsion comprising an oil to water ratio of 50:50 to 95:05.

    [0046] It will be appreciated that the various embodiments of the drilling fluid composition may be used in the methods of drilling a subterranean well. Additionally, the drilling fluid composition may be circulated through the wellbore during the drilling operation.

    Examples



    [0047] The following examples illustrate one or more additional features of the present disclosure. It should be understood that these examples are not intended to limit the scope of the disclosure or the appended claims in any manner.

    [0048] In the following examples, two invert emulsion drilling fluids were prepared containing oil, water, LE SUPERMUL (an invert emulsifier and oil-wetting agent for synthetic based drilling fluid systems commercially available from Halliburton Energy Services, Inc.), lime, ADAPTA® (a cross-linked polymer filter control agent commercially available from Halliburton Energy Services, Inc.), starch, lime, calcium chloride, and barite. The first invert emulsion drilling fluid was prepared as a Comparative Example 1 and additionally included a C16-C18 fatty acid. The second invert emulsion drilling fluid was prepared as an Example 1 and additionally included the viscosifier package, namely C16-C18 fatty acid and polylactic acid. The physical characteristics of the two prepared invert emulsion drilling fluids are described in Table 3.

    A. Example 1 (Comparative)


    Invert Emulsion Drilling Fluid without Viscosifier Package



    [0049] An invert emulsion drilling fluid without the viscosifier package, but the inclusion of the fatty acid component, was formulated as a control sample for comparison with the drilling fluid composition with the viscosifier package. The formulation of the Example 1 (Comparative) invert emulsion drilling fluid is provided subsequently in Table 1. The components of the invert emulsion drilling fluid were added to a vessel and thoroughly mixed. Specifically, Safra oil and LE SUPERMUL were added to a vessel and thoroughly mixed for a period of 5 minutes. Subsequently, lime was added and mixed for 5 minutes. Then C16-C18 fatty acid was added and mixed for 5 minutes. Subsequently, ADAPTA® was added, followed by a 5 minutes mixing period. Then, CaCl2 and water were added, followed by a 5 minutes mixing period, and finally barite was added, followed by a 5 minutes mixing period. The additives were mixed at room temperature using a high speed multimixer.
    Table 1: Invert Emulsion Drilling Fluid Formulation for Example 1 (Comparative)
     Example 1 (Comparative)
    Ingredientkg/m3 (Pounds Per Barrel (lb/bbl))
    Safra oil 411.97 (144.4)
    LE SUPERMUL 28.53 (10)
    Lime 4.28 (1.5)
    C16-C18 fatty acid 12.84 (4.5)
    ADAPTA® 5.71 (2)
    CaCl2 84.16 (29.5)
    Water 242.22 (84.9)
    Barite 653.05 (228.9)
    TOTAL 1442.77 (505.7)

    B. Example 2


    Invert Emulsion Drilling Fluid with Viscosifier Package



    [0050] An invert emulsion drilling fluid formulation was prepared to include an amount of a viscosifier package according to embodiments of the present disclosure. The viscosifier package comprises C16-C18 fatty acid and polylactic acid in a 1:2 weight ratio. The components of the invert emulsion drilling fluid of Inventive Example 1, including the viscosifier package, were added to a vessel and thoroughly mixed. Specifically, Safra oil and LE SUPERMUL were added to a vessel and thoroughly mixed for a period of 5 minutes. Subsequently, lime was added and mixed for 5 minutes followed by the addition of polylactic acid and a 5 minute mixing period. Then C16-C18 fatty acid was added and mixed for 5 minutes. Subsequently, ADAPTA® added followed by a 5 minutes mixing period, CaCl2 and water were added followed by a 5 minutes mixing period, and finally barite was added followed by a 5 minutes mixing period. The formulation of Example 2 is listed in Table 2 subsequently provided.
    Table 2: Invert Emulsion Drilling Fluid Formulation for Example 2
     Example 2
    Ingredientkg/m3 (Pounds Per Barrel (lb/bbl))
    Safra oil 411.97 (144.4)
    LE SUPERMUL 28.53 (10)
    Lime 4.28 (1.5)
    Viscosifier Package [12.84] ([4.5])
      C16-C18 fatty acid 4.28 (1.5)
    Polylactic Acid 8.56 (3.0)
    ADAPTA® 5.71 (2)
    CaCl2 84.16 (29.5)
    Water 242.22 (84.9)
    Barite 653.05 (228.9)
    TOTAL 1442.77 (505.7)
    The brackets "[ ]"indicate the total kg/m3 (lb/bbl) for the entire viscosifier package including the C16-C18 fatty acid and the polylactic acid.


    [0051] The invert emulsion drilling fluids of Example 1 (Comparative) and Example 2 were evaluated for viscosity, gel strength, PV, YP, and LSYP according to the methods previously described in this disclosure. The results of these measurements for the invert emulsion drilling fluids of Example 1 (Comparative) and Example 2 are provided in Table 3. Table 3 also includes a calculated change in the 10 second Gel Strength, 10 Minute Gel Strength, PV, YP, and LSYP of Example 2 compared to Example 1 (Comparative).
    Table 3: Evaluation of the Properties of the Invert Emulsion Drilling Fluids of Example 1 (Comparative) and Example 2
     Example 1 (Comparative)Example 2
    600 rpm viscometer reading 65 98
    300 rpm viscometer reading 38 66
    200 rpm viscometer reading 27 53
    100 rpm viscometer reading 18 37
    6 rpm viscometer reading 6 12
    3 rpm viscometer reading 5 11
    10 Second Gel Strength in Pa (lbf/100ft2) 2.39 (5) 5.27 (11)
    10 Minute Gel Strength in Pa (lbf/100ft2) 2.87 (6) 7.18 (15)
    PV in Pa·s (cP) 0.027 (27) 0.032 (32)
    YP in Pa (lbf/100ft2) 5.27 (11) 16.28 (34)
    LSYP in Pa (lbf/100ft2) 1.92 (4) 4.79 (10)
    Change in 10 Second Gel Strength (%) -- +120%
    Change in 10 Minute Gel Strength (%) -- +150%
    Change in PV (%) -- +18.5%
    Change in YP (%) -- +209%
    Change in LSYP (%) -- +150%


    [0052] As shown in Table 3, the drilling fluid of Example 2, which included the viscosifier package, resulted in a 120% increase in the 10 second gel strength and a 150% increase in the 10 minute gel strength of the drilling fluid compared to the drilling fluid of Example 1 (Comparative). Addition of the viscosifier package, as in Example 1, resulted in an increase in the PV of the drilling fluid compared to the drilling fluid of Example 1 (Comparative). The viscosifier package of Example 2 also resulted in a 209% increase in the YP of the drilling fluid composition and a 150% increase in the LSYP of the drilling fluid composition compared to the drilling fluid of Example 1 (Comparative). As it is desirable for a packer fluid to have a YP of at least 14.36 Pa (30 lbf/100ft2) and a LSYP of at least 4.79 Pa (10 lbf/100ft2), the respective 209% and 150% increases in YP and LSYP provides a more desirable drilling fluid composition for use as a packer fluid.

    [0053] The drilling fluid of Example 2 demonstrated improved rheology over the drilling fluid of Comparative Example 1. Specifically, the 10 second gel strength, the 10 minute gel strength, the PV, the YP, and the LSYP for Example 2 all demonstrated increases over the corresponding measurements of Example 1 (Comparative). As previously indicated, the improvement is attributed to the hydrolysis of the aliphatic polyester into shorter carbon chain units when mixed with the fatty acid to yield the improved rheology. Smaller chain lactic acid and longer chain fatty acid can lead to good packing of the molecules at the oil-water interface in the drilling fluid thereby enhancing the rheology of the fluid.

    [0054] It should be understood that any two quantitative values assigned to a property may constitute a range of that property, and all combinations of ranges formed from all stated quantitative values of a given property are contemplated in this disclosure. It should be appreciated that compositional ranges of a chemical constituent in a composition or formulation should be appreciated as containing, in some embodiments, a mixture of isomers of that constituent. It should be appreciated that the examples supply compositional ranges for various compositions, and that the total amount of isomers of a particular chemical composition can constitute a range.

    [0055] Having described the subject matter of the present disclosure in detail and by reference to specific embodiments, it is noted that the various details described in this disclosure should not be taken to imply that these details relate to elements that are essential components of the various embodiments described in this disclosure, even in cases where a particular element is illustrated in each of the drawings that accompany the present description. Rather, the claims appended hereto should be taken as the sole representation of the breadth of the present disclosure and the corresponding scope of the various embodiments described in this disclosure. Further, it should be apparent to those skilled in the art that various modifications and variations can be made to the described embodiments without departing from the scope of the claimed subject matter. Thus it is intended that the specification cover the modifications and variations of the various described embodiments provided such modification and variations come within the scope of the appended claims.


    Claims

    1. A drilling fluid composition comprising:

    a base fluid, where the base fluid is an invert emulsion comprising oil and water;

    one or more additives chosen from an emulsifier, a weighting material, a fluid-loss control additive, or an alkaline compound; and

    a viscosifier package, the viscosifier package comprising:

    a long chain fatty acid having a carbon chain of 12 to 36 carbons; and

    an aliphatic polyester chosen from polylactic acid, polyglycolic acid, poly(lactic-co-glycolic acid), polycaprolactone, and polyhydroxybutyrate,

    the drilling fluid composition having a yield point of from 14.36 to 47.88 Pa (30 lbf/100ft2 to 100 lbf/100ft2) measured at 48.9 °C (120 °F) according to API recommended practice 13-B2 in accordance with:

    and a low shear yield point of from 4.79 to 19.15 Pa (10 lbf/100ft2 to 40 lbf/100ft2) measured at 48.9 °C (120 °F) according to API recommended practice 13-B2 in accordance with:

    where the drilling fluid composition comprises from 0.94 to 57.06 kg/m3 (0.33 lb/bbl to 20 lb/bbl) of the viscosifier package.
     
    2. The drilling fluid composition of claim 1 where a weight ratio of fatty acid to polyester in the viscosifier package is 1:60 to 60:1.
     
    3. The drilling fluid composition of claim 1 or claim 2 where a weight ratio of fatty acid to polyester in the viscosifier package is 1:3 to 2:3.
     
    4. The drilling fluid composition of any of claims 1 to 3 where the long chain fatty acid has a carbon chain of 16 to 18 carbons.
     
    5. The drilling fluid composition of any of claims 1 to 4 where the aliphatic polyester comprises polylactic acid.
     
    6. The drilling fluid composition of any of claims 1 to 5 where the drilling fluid composition comprises less than 0.01 wt.% organoclay.
     
    7. The drilling fluid composition of any of claims 1 to 6 where the drilling fluid composition has a 10 second gel strength of from 4.79 to 11.97 Pa (10 lbf/100ft2 to 25 lbf/100ft2) measured at 48.9 °C (120 °F) as determined according to test methods provided in API RP 13B-2.
     
    8. The drilling fluid composition of any of claims 1 to 7 where the drilling fluid composition has a 10 minute gel strength of from 4.79 to 23.94 Pa (10 lbf/100ft2 to 50 lbf/100ft2) measured at 48.9 °C (120 °F) as determined according to test methods provided in API RP 13B-2.
     
    9. The drilling fluid composition of any of claims 1 to 8 where the fatty acid is a saturated fatty acid.
     
    10. The drilling fluid composition of any of claims 1 to 9 where the base fluid comprises an oil to water ratio of 50:50 to 95:05.
     
    11. A method of drilling a subterranean well, the method comprising:
    operating a drill in a wellbore in the presence of a drilling fluid composition comprising:

    a base fluid, where the base fluid is an invert emulsion comprising oil and water;

    one or more additives chosen from an emulsifier, a weighting material, a fluid-loss control additive, or an alkaline compound; and

    a viscosifier package, the viscosifier package comprising:

    a long chain fatty acid having a carbon chain of 12 to 36 carbons; and

    an aliphatic polyester chosen from polylactic acid, polyglycolic acid, poly(lactic-co-glycolic acid), polycaprolactone, and polyhydroxybutyrate,

    the drilling fluid composition having a yield point of from 14.36 to 47.88 Pa (30 lbf/100ft2 to 100 lbf/100ft2) measured at 48.9 °C (120 °F) according to API recommended practice 13-B2 in accordance with:

    and a low shear yield point of from 4.79 to 19.15 Pa (10 lbf/100ft2 to 40 lbf/100ft2) measured at 48.9 °C (120 °F) according to API recommended practice 13-B2 in accordance with:

    where the drilling fluid composition comprises from 0.94 to 57.06 kg/m3 (0.33 lb/bbl to 20 lb/bbl) of the viscosifier package.
     
    12. The method according to claim 11, wherein the drilling fluid composition is as defined in any of claims 2-10.
     


    Ansprüche

    1. Bohrflüssigkeitszusammensetzung, die Folgendes umfasst:

    eine Basisflüssigkeit, wobei die Basisflüssigkeit eine Umkehremulsion aus Öl und Wasser ist;

    einen oder mehrere Zusatzstoffe, ausgewählt aus einem Emulgator, einem Beschwerungsmaterial, einem Zusatzstoff zur Kontrolle der Flüssigkeitsabgabe oder einer alkalischen Verbindung; und

    ein Viskositätsmittelpaket, wobei das Viskositätsmittelpaket umfasst:

    eine langkettige Fettsäure, die eine Kohlenstoffkette von 12 bis 36 Kohlenstoffen aufweist; und

    einen aliphatischen Polyester, der aus Polymilchsäure, Polyglykolsäure, Poly(milch-co-glykolsäure), Polycaprolacton und Polyhydroxybutyrat ausgewählt ist,

    wobei die Bohrflüssigkeitszusammensetzung eine Fließgrenze von 14,36 bis 47,88 Pa (30 lbf/100 ft2 bis 100 lbf/100 ft2) aufweist, die bei 48,9 °C (120 °F) gemäß der empfohlenen API-Praxis 13-B2 in Übereinstimmung mit:

    gemessen wird, und eine niedrige Scherfließgrenze von 4,79 bis 19,15 Pa (10 lbf/100 ft2 bis 40 lbf/100 ft2) aufweist, die bei 48,9 °C (120 °F) gemäß der empfohlenen API-Praxis 13-B2 in Übereinstimmung mit:

    gemessen wird, wobei die Bohrflüssigkeitszusammensetzung 0,94 bis 57,06 kg/m3 (0,33 lb/bbl bis 20 lb/bbl) des Viskositätsmittelpakets enthält.


     
    2. Bohrflüssigkeitszusammensetzung nach Anspruch 1, wobei das Gewichtsverhältnis von Fettsäure zu Polyester im Viskositätsmittelpaket 1:60 bis 60:1 beträgt.
     
    3. Bohrflüssigkeitszusammensetzung nach Anspruch 1 oder Anspruch 2, bei der das Gewichtsverhältnis von Fettsäure zu Polyester im Viskositätsmittelpaket 1:3 bis 2:3 beträgt.
     
    4. Bohrflüssigkeitszusammensetzung nach einem der Ansprüche 1 bis 3, wobei die langkettige Fettsäure eine Kohlenstoffkette mit 16 bis 18 Kohlenstoffen aufweist.
     
    5. Bohrflüssigkeitszusammensetzung nach einem der Ansprüche 1 bis 4, wobei der aliphatische Polyester Polymilchsäure umfasst.
     
    6. Bohrflüssigkeitszusammensetzung nach einem der Ansprüche 1 bis 5, wobei die Bohrflüssigkeitszusammensetzung weniger als 0,01 Gew.-% Organoton enthält.
     
    7. Bohrflüssigkeitszusammensetzung nach einem der Ansprüche 1 bis 6, wobei die Bohrflüssigkeitszusammensetzung eine 10-Sekunden-Gelfestigkeit von 4,79 bis 11,97 Pa (10 lbf/100 ft2 bis 25 lbf/100 ft2) aufweist, gemessen bei 48,9 °C (120 °F), bestimmt nach den in API RP 13B-2 vorgesehenen Testverfahren.
     
    8. Bohrflüssigkeitszusammensetzung nach einem der Ansprüche 1 bis 7, wobei die Bohrflüssigkeitszusammensetzung eine 10-Minuten-Gelfestigkeit von 4,79 bis 23,94 Pa (10 lbf/100 ft2 bis 50 lbf/100 ft2) aufweist, gemessen bei 48,9 °C (120 °F), bestimmt nach den in API RP 13B-2 vorgesehenen Testverfahren.
     
    9. Bohrflüssigkeitszusammensetzung nach einem der Ansprüche 1 bis 8, wobei die Fettsäure eine gesättigte Fettsäure ist.
     
    10. Bohrflüssigkeitszusammensetzung nach einem der Ansprüche 1 bis 9, wobei die Basisflüssigkeit ein Öl-Wasser-Verhältnis von 50:50 bis 95:05 aufweist.
     
    11. Verfahren zum Bohren eines unterirdischen Bohrlochs, wobei das Verfahren umfasst:
    Betreiben eines Bohrers in einem Bohrloch in Gegenwart einer Bohrflüssigkeitszusammensetzung, die Folgendes umfasst:

    eine Basisflüssigkeit, wobei die Basisflüssigkeit eine Umkehremulsion aus Öl und Wasser ist;

    einen oder mehrere Zusatzstoffe, ausgewählt aus einem Emulgator, einem Beschwerungsmaterial, einem Zusatzstoff zur Kontrolle der Flüssigkeitsabgabe oder einer alkalischen Verbindung; und

    ein Viskositätsmittelpaket, wobei das Viskositätsmittelpaket umfasst:

    eine langkettige Fettsäure, die eine Kohlenstoffkette von 12 bis 36 Kohlenstoffen aufweist; und

    einen aliphatischen Polyester, der aus Polymilchsäure, Polyglykolsäure, Poly(milch-co-glykolsäure), Polycaprolacton und Polyhydroxybutyrat ausgewählt ist,

    wobei die Bohrflüssigkeitszusammensetzung eine Fließgrenze von 14,36 bis 47,88 Pa (30 lbf/100 ft2 bis 100 lbf/100 ft2) aufweist, die bei 48,9 °C (120 °F) gemäß der empfohlenen API-Praxis 13-B2 in Übereinstimmung mit:

    gemessen wird, und eine niedrige Scherfließgrenze von 4,79 bis 19,15 Pa (10 lbf/100 ft2 bis 40 lbf/100 ft2), die bei 48,9 °C (120 °F) gemäß der API-Praxis 13-B2 in Übereinstimmung mit:

    gemessen wird, wobei die Bohrflüssigkeitszusammensetzung 0,94 bis 57,06 kg/m3 (0,33 lb/bbl bis 20 lb/bbl) des Viskositätsmittelpakets enthält.


     
    12. Verfahren nach Anspruch 11, wobei die Bohrflüssigkeitszusammensetzung wie in einem der Ansprüche 2-10 definiert ist.
     


    Revendications

    1. Composition de fluide de forage comprenant :

    un fluide de base, où le fluide de base est une émulsion inverse comprenant une huile et de l'eau ;

    un ou plusieurs additifs choisis parmi un émulsifiant, une matière de charge, un additif de régulation de perte de fluide et un composé alcalin ; et

    un ensemble viscosificateur, l'ensemble viscosificateur comprenant :

    un acide gras à chaîne longue possédant une chaîne carbonée de 12 à 36 carbones ; et

    un polyester aliphatique choisi parmi un poly(acide lactique), un poly(acide glycolique), un poly(acide lactique-co-glycolique), une polycaprolactone et un polyhydroxybutyrate,

    la composition de fluide de forage possédant une limite d'élasticité allant de 14,36 à 47,88 Pa (30 lbf/100 pi2 à 100 lbf/100 pi2) mesurée à 48,9 °C (120 °F) selon la pratique recommandée de l'API 13-B2 conformément à :

    et une limite d'élasticité à faible cisaillement allant de 4,79 à 19,15 Pa (10 lbf/100 pi2 à 40 lbf/100 pi2) mesurée à 48,9 °C (120 °F) selon la pratique recommandée de l'API 13-B2 conformément à :

    où la composition de fluide de forage comprend de 0,94 à 57,06 kg/m3 (0,33 lb/bbl à 20 lb/bbl) de l'ensemble viscosificateur.


     
    2. Composition de fluide de forage selon la revendication 1 où un rapport en poids d'acide gras sur polyester dans l'ensemble viscosificateur est de 1 : 60 à 60 : 1.
     
    3. Composition de fluide de forage selon la revendication 1 ou la revendication 2 où un rapport en poids d'acide gras sur polyester dans l'ensemble viscosificateur est de 1 : 3 à 2 : 3.
     
    4. Composition de fluide de forage selon l'une quelconque des revendication 1 à 3 où l'acide gras à chaîne longue possède une chaîne carbonée de 16 à 18 carbones.
     
    5. Composition de fluide de forage selon l'une quelconque des revendication 1 à 4 où le polyester aliphatique comprend un poly(acide lactique).
     
    6. Composition de fluide de forage selon l'une quelconque des revendication 1 à 5 où la composition de fluide de forage comprend moins de 0,01 % en poids d'argile organique.
     
    7. Composition de fluide de forage selon l'une quelconque des revendication 1 à 6 où la composition de fluide de forage possède une résistance de gel à 10 secondes allant de 4,79 à 11,97 Pa (10 lbf/100 pi2 à 25 lbf/100 pi2) mesurée à 48,9 °C (120 °F) telle que déterminée selon les méthodes d'essai fournies dans API RP 13B-2.
     
    8. Composition de fluide de forage selon l'une quelconque des revendication 1 à 7 où la composition de fluide de forage possède une résistance de gel à 10 minutes allant de 4,79 à 23,94 Pa (10 lbf/100 pi2 à 50 lbf/100 pi2) mesurée à 48,9 °C (120 °F) telle que déterminée selon les méthodes d'essai fournies dans API RP 13B-2.
     
    9. Composition de fluide de forage selon l'une quelconque des revendication 1 à 8 où l'acide gras est un acide gras saturé.
     
    10. Composition de fluide de forage selon l'une quelconque des revendication 1 à 9 où le fluide de base comprend un rapport huile sur eau de 50 : 50 à 95 : 05.
     
    11. Procédé de forage d'un puits souterrain, le procédé comprenant :
    l'exploitation d'une foreuse dans un puits de forage en la présence d'une composition de fluide de forage comprenant :

    un fluide de base, où le fluide de base est une émulsion inverse comprenant une huile et de l'eau ;

    un ou plusieurs additifs choisis parmi un émulsifiant, une matière de charge, un additif de régulation de perte de fluide et un composé alcalin ; et

    un ensemble viscosificateur, l'ensemble viscosificateur comprenant :

    un acide gras à chaîne longue possédant une chaîne carbonée de 12 à 36 carbones ; et

    un polyester aliphatique choisi parmi un poly(acide lactique), un poly(acide glycolique), un poly(acide lactique-co-glycolique), une polycaprolactone et un polyhydroxybutyrate,

    la composition de fluide de forage possédant une limite d'élasticité allant de 14,36 à 47,88 Pa (30 lbf/100 pi2 à 100 lbf/100 pi2) mesurée à 48,9 °C (120 °F) selon la pratique recommandée de l'API 13-B2 conformément à :

    et une limite d'élasticité à faible cisaillement allant de 4,79 à 19,15 Pa (10 lbf/100 pi2 à 40 lbf/100 pi2) mesurée à 48,9 °C (120 °F) selon la pratique recommandée de l'API 13-B2 conformément à :

    où la composition de fluide de forage comprend de 0,94 à 57,06 kg/m3 (0,33 lb/bbl à 20 lb/bbl) de l'ensemble viscosificateur.


     
    12. Procédé selon la revendication 11, la composition de fluide de forage étant telle que définie dans l'une quelconque des revendications 2 à 10.
     






    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description